Benchmarking Oracle Property Graph against
Neo4j

Oracle

June 30, 2020

Abstract

Recently, an in-depth benchmarking paper was published by
researchers of UC Merced [19] comparing performance of Neo4j via
the LDBC Social Network Benchmark [7, 9]. Here, we use the same
benchmark and focus on its complex ”“Business Intelligence”
workload tocompare performance of Oracle Property Graph against
those numbers from UC Merced. We show that Oracle outperforms
Neo4j on most queries in this workload.

1 Introduction

The Property Graph is a new data model that provides an intuitive
abstraction to represent data and especially the connectivity of data.
Connectivity is modeled through edges (or relationships), each edge
connecting two vertices (or nodes) with one another. Whereas XML, JSON
and RDF graphs all have standardized textual syntaxes to represent data for
easy sharing on the World Wide Web, the Property Graph is merely an
abstract model and instances are easiest shared through visualizations like
the one in Figure 1.

(a) An example property graph with 8 vertices and 10 edges. Here, “Person”,
”Account” and “Company” are vertex labels, “ownerOf”, ”transaction” and
“worksFor” are edge labels, “name” and "number” are vertex properties and
“amount” is an edge property.

companies personWorksForCompany companyOwnerOfAccount

persons name person company company account
e Oracle Camille Oracle Oracle 10039
Nikita accounts transactions personOwnerOfAccount
itz number accountl account2 | amount person account
HELD 10039 10039 8021 1000.00 Nikita 8021
8021 8021 1001 150030 Camille 10039
1001 8021 1001 3000.70 Liam 2090
2090 1001 2090 9999.50
2090 10039 9900.00

(b) The same example represented in the Relational model.

Figure 1. An example property graph (a) and a corresponding
representation in the Relational model (b).)

Although concepts behind property graphs were already developed before
Dijkstra’s Shortest Path algorithm was invented in 1956, property graphs
only became popular as a practical approach to data management over the last
decade or so, in part thanks to community efforts like Apache TinkerPop [1] with its
graph traversal language Gremlin [2] and Titan [6] as well as commercial graph
database vendors like Neo4j [10].

Since then, industry adoption spurred, and database vendors have adopted graph
technologyaspartofabroader data management approach that allows users to see
their data in different ways, for example as both tables and graphs. Examples of this
are Oracle Property Graph [11], SAP Hana Graph [12] and graphs in Microsoft
SQL Server [4].

To compare the graph offerings by these vendors in a meaningful way,
standardized benchmarks are needed. This allows users to identify which products
best suit their needs. Furthermore, standard benchmarks also stimulate competition
and product growth. To these ends, the Linked Data Benchmark Council (LDBC)
[7] — a joint effort between academia and industry — developed two benchmarks
for graphs: the LDBC Social Network Benchmark (SNB) [9] and the LDBC
Graphalytics benchmark [8]. Together, SNB and Graphalytics target “a broad range
of systemswith different nature and characteristics’ [9]'. To date, the LDBC SNB is
the most advanced and complete benchmark for graphs and is therefore used in this
paper to compare Oracle Property Graph against Neo4j.

Outline The remainder of this paper is organized as follows. Section 2
introduces LDBC’s Social Network Benchmark (SNB). Section 3 compares
the graph query languages used by different products. Section 4 presents
the benchmarking results, including comparison of loading time and query
performance. Finally, Section 5 gives the conclusions.

2 LDBC’s Social Network Benchmark

Benchmark Workloads. The LDBC Social Network Benchmark (SNB) [9]
consists of two workloads:

» The Interactiveworkload consists of user-centric transactional-like queries.
It has three classes of queries: (1) complex read-only queries, (2) short

Figure 2: The LDBC SNB data schema.

read-only queries and (3) transactional update queries inserting new
entities.

e The Business Intelligence (BI) workload includes analytic queries to
respond to business-critical questions. A research paper was published
on it at the GRADES-NDA workshop at SIGMOD 2018 [20] and
presents results for Oracle for 10 of the 25 queries. This paper is the
first paper to show results for Oracle for all 25 queries.

Data Schema. Figure 2 shows the data schema of SNB in UML. Data
represents a snapshot of the activity of a social network during a periodof
timeand includes dataonentitiessuch as persons, organizationsand places.
Theschemaalso modelsthe way persons interact, by means of the friendship
relations, the sharing of content such as messages, replies to messages and

likes to messages. People form groups to talk about specific topics, which
are represented as tags.

Data Generator. The benchmark comes with a data generator that
allows you to generate data sets of user-specified scale factors. Data
generated mimics the characteristics of those found in real social networks
such as Facebook. Output attributes, cardinalities, correlations and
distributions have been finely tuned to reproduce social networks and real
datafromDBpedia[3] isincluded to ensure attribute values are realisticand
correlated [20].

3 Property Graph Query Languages

In this section we introduce the query languages that were used to express
the queries of the LDBC’s Business Intelligence (BI) workload.

PGQL and Cypher.Most vendors currently use their own proprietary
property graph query languages: Neo4j has Cypher [13], and Oracle has
PGQL [16]. These languages are expressive enough to express all 25
queries of the Bl workload, the more complex workload of the LDBC SNB
benchmark. Cypher and PGQL are more suitable for expressing complex
queries when compared to the open-sourced graph traversal language
Gremlin that is used by products such as Amazon Neptune; to date, we are
not aware of anyone who has attempted to express the Bl queries in
Gremlin.

Example query. Figure 3 shows one of the LDBC’s Bl queries (query
23) from LDBC’s SNB Specification [9]. Note that this query requiresfour
edge traversals (“isPartOf”, “isLocatedIn”, “hasCreator” and another
“isLocatedIn”), as well as grouping, aggregation and top-n fetching. Listing
1 expressesthe query in Oracle’s PGQL and Listing 2 expresses the queryin
Neo4j’s Cypher.

Figure 3: Query 23 of the Business Intelligence Workload of the LDBC Social
Network Benchmark. See [9] for the full specification of the benchmark.

1SELECT COUNT(message) AS messageCount, destination.name, month

2 FROM MATCH (person:Person) <-[:hasCreator]-

3 (message:Post|Comment),
4 MATCH (message) -[:isLocatedIn]-> (destination:Place),
5 MATCH (person) -[:isLocatedIn]-> (city:Place),

6 MATCH (city) -[:isPartOf]-> (homeCountry:Place)

7 WHERE homeCountry.type = "country® AND

8 destination.type = "country® AND

9 city.type = "city"™ AND

10 homeCountry.name = “"Ethiopia® AND

11 homeCountry <> destination

12 GROUP BY EXTRACT(MONTH FROM message.creationDate) AS month,
13 destination.name

14 ORDER BY messageCount DESC, destination.name, month
15LIMIT 100

Listing 1: LDBC's Bl Query 23 expressed in Oracle’s PGQL [17].

1 MATCH

2 (home:Country {name:"Ethiopia®)<-[:1S_PART OF]-(:City)<-[:
IS _LOCATED_IN]-

3 (:Person)<-[:HAS_CREATOR]-(message:Message)-[:1S_LOCATED IN
]->(destination:Country)

4 WHERE home <> destination

5WITH

6 message,

7 destination,

8 message.creationDate/100000000000%100 AS month

9 RETURN

10 count(message) AS messageCount,

11 destination.name,

12 month

13 ORDER BY

14 messageCount DESC,

15 destination.name ASC,

16 month ASC

17LIMIT 100

Listing 2: LDBC’s Bl Query 23 expressed in Neo4j’s Cypher [13].

1
2
3
4

0 N o Q1

9
10
11
12
13
14
15
16
17
18
19
20
21

Standardization of Property Graph Querying. Standardization of
property graph querying is on-going with Oracle, IBM, SAP, Neo4j,
TigerGraph, ArangoDB Inc, and Redis Labs participating in the ANSI INCITS
DM32 Ad Hoc on SQL extensions for property graphs. SQL/PGQ [5] is the
property graph extension of SQL that is planned to come out in the next
version of the SQL standard. There is also an effort going on to create a
standalone property graph query language named GQL.

The plan for Oracle’s PGQL is to align it to SQL/PGQ and to SQL in
general, to provide a unified experience to users of the Oracle database
and to not require them to learn an entire new language if they want to get
started with property graphs. A big part of this effort has already been
completedascanbeseeninListingl, whichshowsthat PGQL closelyfollows
SQL’s “SELECT .. FROM .. GROUP BY .. ORDER BY ...” syntax.

Listing 3 shows what the same query looks like according to the latest
working draft of SQL/PGQ. The main difference between SQL and PGQL
is that PGQL provides a syntactic shortcut that allows the MATCH clause
of the SQL/PGQ query to be pulled up into the outer query.

SELECT COUNT(*) AS messageCount, GT.name,
EXTRACT(MONTH FROM GT.creationDate) AS month
FROM GRAPH_TABLE (
lIdbcGraph
MATCH
(person:Person) <-[:hasCreator]-
(message:Post|Comment),
(message) -[:isLocatedIn]-> (destination:Place),
(person) -[:isLocatedIn]-> (city:Place),
(city) -[:isPartOf]-> (homeCountry:Place)
WHERE homeCountry.type = "country® AND
destination.type = “country® AND
city._type = "city” AND
homeCountry.name = “"Ethiopia® AND
homeCountry <> destination
COLUMNS (message.creationDate, destination.name)
) AS GT
GROUP BY EXTRACT(MONTH FROM GT.creationDate),
GT.name
ORDER BY messageCount DESC, GT.name, month
FETCH FIRST 100 ROWS ONLY

Listing 3: LDBC’s Bl Query 23 expressed in ISO/IEC’s SQL/PGQ [5]
following the latest Working Draft.

Graph Algorithms. Although this paper focusesongraph queriesand
their performance, graph algorithms are just as essential for many graph use
cases. The Graphalytics benchmark of LDBC specifically focuses on the
performance of graph algorithms such as Breadth-First Search (BFS),
PageRank (PR), Weakly Connected Components (WCC), Community
Detection using Label-Propagation (CDLP), Local Clustering Coefficient
(LCC) and Single-Source Shortest Paths (SSSP). Although some of these
algorithms — particularly BFS and SSSP — can be expressed as a graph
qguery in SQL/PGQ, PGQL and Cypher, the other algorithms have a more
procedural nature and require constructs like for-loops, while-loops, etc.

Oracle Property Graph and Neo4j provide many of the popular graph
algorithms as a built-in feature so that the algorithms can easily be invoked
on arbitrary graphs through a single API call. In addition, Oracle Property
Graph also provides an algorithm API called PGX Algorithm [17] that
allows you to write your own graph algorithms from scratch and compile
them into highly optimized parallel in-memory execution.

4 Benchmark Experiments

First, we provide details about the benchmark setup in Section 4.1, then we
show results for loading performance in Section 4.2 followed by results for
guery performance in Section 4.3.

4.1 Setup

Chosen hardware and scale factor. Rather than re-doing the Neo4j
experiments, we reuse the numbers from the UC Merced paper [19] and
compare them against the numbers we obtain for the same queryworkload
evaluated against Oracle Property Graph. We used amachinewiththe same
hardware capabilitiesandwe also matched the scale factor of the graph data.

10

The chosen OCI machineand AWSmachine used by UC Merced is shownin Table
1. Details on the scale factor 100 graph are shown in Table 2.

Table 1: Comparison of hardware used for experiments with Oracle and

Neo4;j.
Oracle Neo4j
Machine | Oracle OCI - VM.Standard2.161 Amazon AWS - r4.8xlarge?
CPUs 16 cores (32 virtual cores) 16 cores (32 virtual cores)
2.0 GHz Intel® Xeon® Platinum 8167M | 2.3 GHz Intel Xeon E5-2686 v4
Memory | 240 GB 244 GB
Cost” 735 USD per month 1532 USD per month

(excl. DB license cost)

*As of January 15, 2021

(excl. DB license cost)

Table 2: Details on the LDBC SNB graph used in the experiments.

Scale factor
Number of vertices
Number of edges

100
0.3 billion
1.8 billion

Total size of CSV files 87 gigabyte

Thttps://www.oracle.com/cloud/compute/virtual-machines.html

2https://docs.aws.amazon.com/AWSECZ/Iatest/UserGuide/

memory-optimized-instances._html

11

https://www.oracle.com/cloud/compute/virtual-machines.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/memory-optimized-instances.html

Setup of Oracle Property Graph. Oracle Property Graph allows
PGQL queries to be executed directly against the Oracle database through
translation to SQL [14]. There are also ways to speed up query execution
further through features like Oracle Database In-Memory [15] and the in-
memory graph server (PGX) [18]. The in-memory graph server (PGX) is
asolution thatcreatesin-memorygraphsfromtablesthatresideintheOracle
database. Alternatively, ifdatapersistenceisnotarequirement, CSVfilescan
beloaded directly into PGX without first having to store the data as tables.
Graphsin PGXarestored inmemoryinacompressed formthatis optimized
forgraph traversal. Todate, PGX provides the most performant way to run
graph queries and graph algorithms in Oracle Property Graph and has
therefore been used in this performance evaluation.

Tosetuptheloadingexperiment of Section4.2, we did notuse any special
setting when creating the graph from tables. However, before loadingCSV
into PGX, we did split up each CSV file into multiple files in order to benefit
from parallel loading. We paired the OCI machine with the AWS machine
based on memory and number of CPUs (see above) and did not compare the
disk speed of the two machines.

Query evaluation methodology. First of all, we cross-validated the
correctness of queriesviapublished query output 4 of Neo4j for the scale fac-
tor 1 graph. Second, we use the same query parameters that were used for
Neo4j to execute PGQL queries against PGX. Third, we take the median of
10 query executions. Note that [19] gnored the execution time of the first
guery and then took the median of the next 9 query executions, but since
the first query is always the slowest, the median of all 10 runs should be
strictly larger than the median of the last 9 runs (next time, we will also take
the median of the next 9 queries as that may give slightly better results).
Finally, just like [19] we impose a timeout of 18,000 seconds (5 hours) such
that when the timeout expires, the query is terminated.

12

4.2 Graph Loading Performance

Figure 4 shows the loading performance of Oracle Property Graphcompared to
Neo4;j.

Figure 4. Loading performance of LDBC’s scale factor 100 graph (0.3B
vertices & 1.8B edges; 87 GB of raw CSV data). Note that PGX can load
graphs either from tables in the Oracle database or from CSV files, hence
the two bars for Oracle Property Graph.

https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_
benchmark/neo4j/result

13

https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/neo4j/result
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/neo4j/result

time (s)

From the results it follows that Oracle Property Graph outperforms Neo4j,
no matter if graphs are created from tables or from CSV files. An
interesting observation is that Oracle Property Graph performs better
when creating graphs from tables than when loading graphs from CSV files,
even though graphs were created in parallel in both cases.

4.3 Graph Query Performance

Figure 5 plots the query performance of Oracle Property Graph compared
to Neo4j and Table 3 shows the raw numbers and relative speedups. The
results can be summarized as follows:

e Oracle outperforms Neo4j on 19 out of 25 queries (Q1, Q2, Q3, Q4,

Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q14, Q16, Q17, Q21, Q23, Q24,
Q25).

10000

1000
1

0.01 I I

Ql Q2 Q03 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25

[=}
o

[
[=}

=

=

o

W Oracle S&G / PGX (single machine) ENeodj (single machine)

Figure 5: Results for LDBC’s Social Network Benchmark (SNB) - Business
Intelligence (BI) workload - scale factor 100 (0.3B vertices & 1.8B edges; 87
GB of raw CSV data)

14

* Neo4j outperforms Oracle ononly 4 out of 25 queries (Q13, Q15, Q18,
Q20).

Atimeoutwassetat5hourssuchthatqueriesthattook longerwere canceled:
e Oracle times out on two queries (Q19 and Q22).
* Neo4j times out on five queries (Q7, Q10, Q17, Q19, Q22).

Overall, Oracle handles the workload better than Neo4j. Both engines
do store the vertices and edges in the graph in such a way that lists of
incoming and/or outgoing neighbors of vertices can be accessed in
constant time. This is important since edge traversal is the fundamental
graph operation.

However, although constant-time traversal is supported by both
engines, Oracle does significantly better than Neo4j and this is likely
because the neighbor lists are stored in memory in amore compressed and
optimal form that may benefit better from spatial locality whengraph data
in memory is cached by CPUs. This impacts all queries since all 25 queries
require edge traversal.

15

Table 3: Raw performance numbers and speedup of Oracle over Neo4;.

Oracle (s) | Neo4j (s) | Neo4j/Oracle
Q1 | 7659110 1,508.6240 | 1.970
Q2 | 0.4955 125.7995 253.884
Q3 | 13.9055 1,601.4695 | 115.168
Q4 | 0.0200 2.3326 116.630
Q5 | 0.5705 125.4889 219.963
Q6 | 0.8020 7.5908 9.465
Q7 | 17.466 t/o > 2,410.930
Q8 | 1.009 20.9287 20.742
Q9 | 3422 523.3391 152.934
Q10 | 0.6385 t/o > 28,191.073
Q11 | 7.6085 109.6632 14.413
Q12 | 12.4655 659.7865 52.929
Q13 | 141.4660 20.2515 0.143
Q14 | 7.3475 229.2400 31.200
Q15 | 17.0365 3.2056 0.188
Q16 | 5.6215 277.9866 49.451
Q17 | 0.7110 t/o > 25,316.456
Q18 | 2,802.283 294.7010 0.105
Q19 | t/o t/o ?
Q20 | 2,835.683 399.9949 0.141
Q21 | 0.1305 16.2169 124.267
Q22 | t/o t/o ?
Q23 | 0.0575 7.8020 135.687
Q24 | 21.684 1,051.4582 | 48.490
Q25 | 1.112 5.2952 4.762

16

5 Conclusions

In this paper we first gave a brief introduction to Oracle Property Graph
and compared its graph query language PGQL to Neo4j’s graph query language
Cypher by taking one of the LDBC benchmark queries as example. Oracle’s
PGQL isclosely aligned to SQL and is able to express all 25 complex queries
of LDBC’s Business Intelligence workload, which is the more complex
workload of the LDBC Social Network Benchmark (SNB). We showed that
through the in-memory graph server (PGX), Oracle Property Graph is able
to outperform Neo4j on graph loading as well as on the bulk of the queries
in the workload.

17

References

[1] Apache TinkerPop, 2020 (accessed June 25, 2020). http://
tinkerpop.apache.org/.

[2] Apache TinkerPop’s Gremlin, 2020 (accessed June 25, 2020). https:
//tinkerpop.apache.org/gremlin_html.

[3] DBpedia, 2020 (accessed June 25, 2020). https://wiki .dbpedia.
org/.

[4] Graph processing with SQL Server and Azure SQL Database,
2020 (accessed June 25, 2020). https://docs.microsoft.
com/en-us/sqgl/relational-databases/graphs/
sgl-graph-overview?view=sgl-server-verl5.

[5] ISO/IEC WD 9075-16 Information technology — Database languages
SQL— Part 16: SQL Property Graph Queries (SQL/PGQ), 2020 (ac-
cessed June 25, 2020). https://www. iso.org/standard/79473.
html.

[6] JanusGraph, 2020 (accessed June 25,2020). https://janusgraph.
org/.

[7] LDBC - The graph & RDF benchmark reference, 2020 (accessed June
25,2020). http://1dbcouncil.org/.

[8] LDBC Graphalytics Benchmark v0.9.0 - Draft Release, 2020
(accessed June 25, 2020). https://github.com/
Idbc/1dbc_graphalytics_docs/raw/master/doc/
LDBC-Graphalytics_tech-specs_v0.9.0.pdf.

[9] The LDBC Social Network Benchmark (version 0.3.2), 2020 (accessed
June 25, 2020). http://1ldbc.github.10o/ldbc_snb_docs/
lIdbc-snb-specification.pdf.

[10] Neo4j Graph Platform, 2020 (accessed June 25, 2020). https://
neo4j.com/.

[11] Oracle Property Graph, 2020 (accessed June 25, 2020).
https://www.oracle.com/database/technologies/

18

http://tinkerpop.apache.org/
http://tinkerpop.apache.org/
http://tinkerpop.apache.org/
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html
https://wiki.dbpedia.org/
https://wiki.dbpedia.org/
https://wiki.dbpedia.org/
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15
https://www.iso.org/standard/79473.html
https://www.iso.org/standard/79473.html
https://www.iso.org/standard/79473.html
https://janusgraph.org/
https://janusgraph.org/
https://janusgraph.org/
http://ldbcouncil.org/
https://github.com/ldbc/ldbc_graphalytics_docs/raw/master/doc/LDBC-Graphalytics_tech-specs_v0.9.0.pdf
https://github.com/ldbc/ldbc_graphalytics_docs/raw/master/doc/LDBC-Graphalytics_tech-specs_v0.9.0.pdf
https://github.com/ldbc/ldbc_graphalytics_docs/raw/master/doc/LDBC-Graphalytics_tech-specs_v0.9.0.pdf
https://github.com/ldbc/ldbc_graphalytics_docs/raw/master/doc/LDBC-Graphalytics_tech-specs_v0.9.0.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
https://neo4j.com/
https://neo4j.com/
https://neo4j.com/
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features.html
https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features.html

[12]

[13]

[14]

[15]

[16]

[17]

spatialandgraph/property-graph-features.html.

SAP HANA Graph, 2020 (accessed June 25, 2020). https://help.
sap.com/viewer/f381aa9c4b99457fb3c6b53a21d29c02/1.
0.12/en-US/7734f2cftafdb4e8a9d49de516829dc32. html.

Neo4j. Cypher Query Language, 2020 (accessed June 25,2020). https:
//neodj .com/developer/cypher-query-language/.

Oracle. Executing PGQL Queries Directly Against Oracle Database,
2021 (accessed February 10, 2021).
https://docs.oracle.com/en/database/oracle/property-
graph/21.1/spgdg/property-graph-query-language-
pggl.htmI#GUID-94F08780-EC3D-4F9B-985F-49984939E61C.

Oracle. Oracle Database In-Memory, 2020 (ac-
cessed June 25, 2020). https://docs.oracle.
com/en/database/oracle/oracle-database/20/
inmem/intro-to-in-memory-column-store.html#
GUID-BFA53515-7643-41E5-A296-654AB4A9F9E7.

Oracle. Property Graph Query Language, 2020 (accessed June 25,2020).
https://pgql-lang.org/.

Oracle. Using Custom PGX Graph Algorithms, 2021 (accessed
February 10, 2021).

https://docs.oracle.com/en/database/oracle/property-
graph/21.1/spgdg/using-inmemory-analyst-oracle-database.htmI#GUID-
OCE6EC02-649E-403B-A61C-61BE7F4CB537.

19

https://www.oracle.com/database/technologies/spatialandgraph/property-graph-features.html
https://help.sap.com/viewer/f381aa9c4b99457fb3c6b53a2fd29c02/1.0.12/en-US/7734f2cfafdb4e8a9d49de5f6829dc32.html
https://help.sap.com/viewer/f381aa9c4b99457fb3c6b53a2fd29c02/1.0.12/en-US/7734f2cfafdb4e8a9d49de5f6829dc32.html
https://help.sap.com/viewer/f381aa9c4b99457fb3c6b53a2fd29c02/1.0.12/en-US/7734f2cfafdb4e8a9d49de5f6829dc32.html
https://help.sap.com/viewer/f381aa9c4b99457fb3c6b53a2fd29c02/1.0.12/en-US/7734f2cfafdb4e8a9d49de5f6829dc32.html
https://help.sap.com/viewer/f381aa9c4b99457fb3c6b53a2fd29c02/1.0.12/en-US/7734f2cfafdb4e8a9d49de5f6829dc32.html
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/
https://docs.oracle.com/en/database/oracle/oracle-database/20/inmem/intro-to-in-memory-column-store.html#GUID-BFA53515-7643-41E5-A296-654AB4A9F9E7
https://docs.oracle.com/en/database/oracle/oracle-database/20/inmem/intro-to-in-memory-column-store.html#GUID-BFA53515-7643-41E5-A296-654AB4A9F9E7
https://docs.oracle.com/en/database/oracle/oracle-database/20/inmem/intro-to-in-memory-column-store.html#GUID-BFA53515-7643-41E5-A296-654AB4A9F9E7
https://docs.oracle.com/en/database/oracle/oracle-database/20/inmem/intro-to-in-memory-column-store.html#GUID-BFA53515-7643-41E5-A296-654AB4A9F9E7
https://docs.oracle.com/en/database/oracle/oracle-database/20/inmem/intro-to-in-memory-column-store.html#GUID-BFA53515-7643-41E5-A296-654AB4A9F9E7
https://docs.oracle.com/en/database/oracle/oracle-database/20/inmem/intro-to-in-memory-column-store.html#GUID-BFA53515-7643-41E5-A296-654AB4A9F9E7
https://pgql-lang.org/

[18] Oracle. Using the In-Memory Analyst (PGX), 2021 (accessed
February 10, 2021).
https://docs.oracle.com/en/database/oracle/property-
graph/21.1/spgdg/using-inmemory-analyst-oracle-
database.htm|#GUID-C80502F2-67B0-42B3-B80OF-
6DA297EA655C.

[19] F. Rusu and Z. Huang. In-depth benchmarking of graph database
systems with the linked data benchmark council (Idbc) social network
benchmark (snb), 2019.

[20] G. Szarnyas, A. Prat-Pérez, A. Averbuch, J. Marton, M. Paradies,
M. Kaufmann, O. Erling, P. Boncz, V. Haprian, and J. B. Antal. An
early look at the Idbc social network benchmark’s business intelligence
workload. In Proceedings of the 1st ACM SIGMOD Joint Interna-
tional Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics(NDA), GRADES-NDA ’18,
New York, NY, USA, 2018. Association for Computing Machinery.

	1 Introduction
	2 LDBC’s Social Network Benchmark
	3 Property Graph Query Languages
	4 Benchmark Experiments
	4.1 Setup
	4.2 Graph Loading Performance
	4.3 Graph Query Performance

	5 Conclusions
	References

