
Hello, and welcome to this online, self-paced course entitled Using Exadata Smart Scan. My

name is Peter Fusek. I am a curriculum developer at Oracle, and in various roles I have helped

customers to get the most out of Oracle products since 1992. Today, I will be you tour guide for

this course.

Before we begin, now might be a good time to take a look at some of the features of this Flash-

based course player. Feel free to skip this slide and start the lecture if you’ve attended similar

Oracle online courses in the past.

To your left, you will find a hierarchical course outline. This course enables and even

encourages you to go at your own pace, which means you are free to skip over topics you

already feel confident on, or jump right to a feature that really interests you, or go back and

review topics that were already covered. Simply click on a course section to expand its

contents and then select an individual slide. However, note that by default we will automatically

walk you through the entire course without requiring you to use the outline.

Standard Flash player controls are also found at the bottom of the player, including pause,

previous, and next buttons. There is also an interactive progress bar to fast forward or rewind

the current slide. Interactive slides may have additional controls and buttons along with

instructions on how to use them.

Also found at the bottom of the player is a panel containing any additional reference notes for

the current slide. Feel free to read these reference notes at the conclusion of the course, in

which case you can minimize this panel and restore it later. Or if you prefer you can pause and

read them as we go along.

Various handouts may be available from the Attachments button, including the audio narration

scripts for this course.

The course will now pause, so feel free to take some time and explore the interface. Then when

you’re ready to continue, click the next button below or alternatively click the Objectives slide in

the course outline.

Using Exadata Smart Scan - 2

Using Exadata Smart Scan - 3

One of the most powerful features of Database Machine is that data search and retrieval

processing can be offloaded to the Exadata Storage Servers. This feature is called Smart Scan.

Using this Smart Scan, Oracle Database can optimize the performance of operations that

perform table and index scans by performing the scans inside Exadata Storage Server, rather

than transporting all the data to the database server. This principle can also be applied to

encrypted data and compressed data. In addition, various aspects of SQL processing can be

offloaded to the Exadata Storage Server so that it is performed close to the data and so that the

amount of data transported back to the database server can be minimized.

The slide lists the key database functions which are integrated with Exadata Storage Server.

The term Smart Scan is also used to describe instances when these functions are performed

by Exadata Storage Server.

This session focuses on the requirements for performing Smart Scan processing, and how you

can use core SQL monitoring capabilities within Oracle Database to identify Smart Scans.

Using Exadata Smart Scan - 4

To understand how Smart Scan works, let's start by considering how Oracle processes queries

using conventional storage. With conventional storage, all the database intelligence resides in

the software on the database server. To illustrate how SQL processing is performed in this

architecture, an example of a table scan is shown in the graphic on the screen:

1. The client issues a SELECT statement with a predicate to filter a table and return only the

rows of interest to the user.

2. The database kernel maps this request to the file and extents containing the table.

3. The database kernel issues the I/Os to read all the table blocks.

4. All the blocks for the table being queried are read into memory.

5. SQL processing is conducted against the data blocks searching for the rows that satisfy

the predicate.

6. The required rows are returned to the client.

As is often the case with large queries, the predicate filters out most of the rows in the table.

Yet all the blocks from the table need to be read, transferred across the storage network, and

copied into memory. Many more rows are read into memory than required to complete the

requested SQL operation. This generates a large amount of unproductive I/O, which wastefully

consumes resources and impacts application throughput and response time.

Using Exadata Smart Scan - 5

On Exadata Database Machine, database operations are handled differently. Queries that
perform table scans can be processed within Exadata cells and return only the required subset
of data to the database server. Row filtering, column filtering, some join processing, and other
functions can be performed within Exadata cells. Exadata Storage Server uses a special direct-
read mechanism for Smart Scan processing. The graphic on the screen illustrates how a table
scan operates with Exadata cell storage:

1. The client issues a SELECT statement to return some rows of interest.

2. The database kernel determines that the data is stored on Exadata cells, so an iDB
command representing the SQL command is constructed and sent to the Exadata cells.

3. The Exadata Storage Server software scans the data blocks to extract the relevant rows
and columns that satisfy the SQL command.

4. Exadata cells return to the database instance iDB messages containing the requested
rows and columns of data. These results are not block images, so they are not stored in
the buffer cache.

5. The database kernel consolidates the result sets from across all the Exadata cells. This is
similar to how the results from a parallel query operation are consolidated.

6. The rows are returned to the client.

Moving SQL processing off the database server frees server CPU cycles and eliminates a
massive amount of unproductive I/O transfers. These resources are free to better service other
requests. Queries run faster, and more of them can be processed.

Using Exadata Smart Scan - 6

Exadata Storage Server enables predicate filtering for table scans. Rather than returning all the

rows for the database to evaluate, Exadata Storage Server returns only the rows that match the

filter condition. A list of conditional operators that are supported by predicate filtering is shown

on the screen. In addition, many common SQL functions can be evaluated by Exadata Storage

Server during predicate filtering. For a full list of functions that can be evaluated by Exadata

cell, use the query shown on the screen.

Exadata Storage Server provides column filtering, also called column projection, for table

scans. Only the requested columns are returned to the database server, rather than all columns

in a table. For tables with many columns, or columns containing LOBs, the I/O bandwidth saved

by column filtering can be very large.

When used together, the combination of predicate and column filtering dramatically improves

performance and reduces I/O bandwidth consumption. For example, without filtering, the entire

employees table must be sent from the storage to the database server to satisfy the query at

the bottom of the screen. With predicate and column filtering, only the employee names that

are longer than five characters are sent to the database servers.

Using Exadata Smart Scan - 7

Exadata Storage Server can optimize join processing for large join operations. This is

implemented by using a Bloom Filter, which is a very efficient probabilistic method to determine

whether an element is a member of a set. We'll talk about this more later in the course.

Exadata Storage Server performs Smart Scans on encrypted tablespaces and encrypted

columns. For encrypted tablespaces, Exadata Storage Server can decrypt blocks and return

the decrypted blocks to Oracle Database, or it can perform row and column filtering on

encrypted data. Significant CPU savings can be made within the database server by offloading

the CPU-intensive decryption task to Exadata cells.

Smart Scan works in conjunction with Exadata Hybrid Columnar Compression so that column

projection and row filtering can be executed along with decompression at the storage level to

save CPU cycles on the database servers.

Exadata Storage Server can perform scoring functions, such as PREDICTION_PROBABILITY,

for data mining models. This accelerates warehouse analysis while it reduces database server

CPU consumption and the I/O load between the database server and storage servers.

Using Exadata Smart Scan - 8

Smart Scan optimization is a run-time decision. It is not integrated with the Oracle optimizer;

however, it is influenced by the results of query optimization. In order words, the decision

regarding whether or not to use Smart Scan is not made by the optimizer, but the optimizer

does indirectly determine when Smart Scan can be used.

The following query-specific requirements must be met before Smart Scan is considered:

• Smart Scan is possible only for full segment scans; that is, full table scans, fast full index

scans and fast full bitmap index scans.

• Smart Scan can only be used in conjunction with direct-path reads. Direct path reads are

used by parallel operations so any parallel query is automatically a potential candidate for

Smart Scan. Serial operations can do direct reads too, depending on factors such as the

table size and the state of the buffer cache. By default, direct-path reads are not used for

tables that are considered to be small. However, direct-path reads can be forced for serial
access by setting _serial_direct_read=TRUE at either the system or session level.

Using Exadata Smart Scan - 9

In addition to the query-specific requirements, the following general requirements must also be

met to enable Smart Scan:

• Smart Scan must be enabled within the database. The CELL_OFFLOAD_PROCESSING

initialization parameter controls Smart Scan. The default value of the parameter is TRUE,

meaning that Smart Scan is enabled by default. If it is set to FALSE, Smart Scan is

disabled and the database uses Exadata storage to serve data blocks similar to traditional
storage. To enable Smart Scan for a particular SQL statement, use the OPT_PARAM hint

as shown in the query fragment on the screen.

• Each segment being scanned must be on a disk group that is completely stored on

Exadata cells. The disk group must also have the disk group attribute settings shown at

the bottom of the screen.

Using Exadata Smart Scan - 10

This slide lists specific circumstances where Smart Scan cannot be used. Most of these are

pretty straight-forward; however, the final two scenarios on the list are worthy of further

explanation:

• More than 255 columns are referenced in the query: This restriction only applies if the

query involves tables that are not compressed using Exadata Hybrid Columnar

Compression. Queries on tables compressed using Exadata Hybrid Columnar

Compression can be offloaded even if they reference more than 255 columns.

• The data is encrypted and cell-based decryption is disabled: In order for Exadata Storage

Server to perform decryption, Oracle Database needs to send the decryption key to each

cell. If there are security concerns about keys being shipped across the storage network,
cell-based decryption can be disabled by setting the CELL_OFFLOAD_DECRYPTION

initialization parameter to FALSE.

Using Exadata Smart Scan - 11

The CELL_OFFLOAD_PLAN_DISPLAY initialization parameter determines whether the SQL

EXPLAIN PLAN statement displays the predicates that can be evaluated by Exadata Storage

Server as STORAGE predicates for a given SQL statement. The possible values are:

• AUTO instructs the SQL EXPLAIN PLAN statement to display the predicates that can be

evaluated as STORAGE only if a cell is present and if a table is on the cell. AUTO is the

default setting.

• ALWAYS produces changes to the SQL EXPLAIN PLAN statement output whether or not

Exadata storage is present or the table is on the cell. You can use this setting to identify

statements that are candidates for offloading before migrating to Exadata Database Machine.

• NEVER produces no changes to the SQL EXPLAIN PLAN statement output due to

Exadata. This may be desirable, for example, if you wrote tools that process execution

plan output and these tools have not been updated to deal with the updated syntax, or

when comparing plans from Database Machine with plans from your previous system.

Using Exadata Smart Scan - 12

The slide shows a basic example of Smart Scan manifested in a query plan.

The TABLE ACCESS STORAGE FULL operation indicates Smart Scan being used to scan the

CUSTOMERS table. The plan also shows evidence of row filtering. In this example, the
predicate "CUST_VALID"='A' is evaluated inside Exadata Storage Server.

Note that the execution plan shows no evidence of parallel query, so evidently the table in this

example is large enough to prompt the use of direct-path reads.

Using Exadata Smart Scan - 13

This slide shows another Smart Scan query plan example. This time, offloading of a fast full

index scan is indicated. Row filtering is also pushed down to the storage servers.

Unlike the previous example, this example indicates the use of parallel query which

automatically implies the use of direct-path reads.

Using Exadata Smart Scan - 14

This slide shows almost exactly the same example as the previous slide. The only difference is
that the table being queried in this example is an index-organized table with the CUST_ID

column defined as the primary key. Since Smart Scan cannot be applied to index-organized

tables the execution plan contains no storage operations.

Using Exadata Smart Scan - 15

A Bloom filter, conceived by Burton Howard Bloom in 1970, is a space-efficient probabilistic

data structure that is used to test whether an element is a member of a set. The properties of a

Bloom filter make is a very efficient way of determining which values are not in a set. This is

very useful for processing join conditions where a significant proportion of the data does not

fulfill the join criteria.

Oracle Database 10g Release 2 first used Bloom filters to optimize parallel join operations.

When two tables are joined via a hash join, the first table (typically the smaller table) is scanned
and the rows that satisfy the WHERE clause predicates (for that table) are used to create a hash

table. During the hash table creation, a Bloom filter bit string is also created based on the join

column. The bit string is then sent as an additional predicate to the second table scan. After the
WHERE clause predicates relating to the second table are applied, the resulting rows are tested

using the Bloom filter. Any rows rejected by the Bloom filter must fail the join criteria and are

discarded. Any rows that match using the Bloom filter are sent to the hash join.

With Exadata, the Bloom filter is passed to the storage servers as an additional predicate.

Processing the Bloom filter inside Exadata Storage Server can reduce the amount of data

transported to the database server to process a join, which in turn can speed up query

performance.

Using Exadata Smart Scan - 16

The slide shows an example of Smart Scan join filtering using a Bloom filter. The example

query joins a table containing approximately 77 million customer records, with a table

containing approximately 774 million sales records, to determine the average transaction

amount for customers having a credit limit in excess of 5000. The query is processed as

follows:

• Smart Scan is used to filter the customer records and retrieve the CUST_ID values for the

customers having a credit limit in excess of 5000 (operation 10).

• A Bloom filter is created representing the set of CUST_ID values, which match the query
from the CUSTOMERS table (operation 6).

• In the absence of Exadata storage, the Bloom filter would be applied to data from the
SALES table inside a parallel query server process (operation 13). However, with

Exadata, the Bloom filter is sent to the storage servers as a predicate and applied as part
of a Smart Scan of the SALES table (operation 15). Since the SALES table is quite large,

query performance will benefit considerably if a significant amount of IO is saved by not
transporting unnecessary sales records back to the database. Exadata storage server
also performs column filtering for the SALES table so that only the CUST_ID and
AMOUNT_SOLD values are returned.

• The results from the Smart Scan operations on the CUSTOMERS table (operations 6-10) and
the SALES table (operations 11-15) are combined using a HASH JOIN (operation 5).

• Finally, the query is serialized and the result is returned (operations 1-4).

Using Exadata Smart Scan - 17

As we have already seen, the query execution plan provides an indicator regarding the use of
Smart Scan; however, seeing a STORAGE operation in the plan does not guarantee that the

query is satisfied entirely using Smart Scan. Beware that even when Smart Scan is indicated in

the execution plan, other block IO might also be used. Here are some situations where this

might occur:

• Since Smart Scan uses direct-path reads, the data being read must be current. If Exadata

Storage Server is not sure that a block is current, it transfers the read of that block to the

traditional buffer cache read-consistency path. So, if you run updates at the same time as

queries you will benefit less from Smart Scan.

• The same is also true for indirect rows; that is, reads on chained or migrated rows. To

resolve indirect row references, additional block reads may be required. So if your tables

contain chained or migrated rows you will benefit less from Smart Scan.

• If the optimizer uses dynamic sampling to formulate the query execution plan, then the

sampling IO does not use Smart Scan even if the query does end up using Smart Scan.

In this case, you may see Smart Scan mixed in with other block IO.

Statistics and wait events can be used to confirm and measure the use of Smart Scan. A series

of examples are presented later in the course.

Using Exadata Smart Scan - 18

Numerous cell-specific statistics are recorded in V$SYSSTAT and V$SESSTAT. These statistics

can be used to monitor Exadata Storage Server operations at both the system and session

level. The statistics can be used to monitor the effectiveness of Smart Scan. There are also

statistics relating to Exadata Smart Flash Cache, Exadata Hybrid Columnar Compression,

storage index, fast file creation, and optimized incremental backups. In addition, other statistics

provide the total volume of I/O exchanged over the interconnect and the total volume of

physical disk reads and writes. The slide lists a selection of the available statistics.

The query in the slide shows key cell statistics for the current session. Examples of the output

from this query are shown later in the course.

In addition, V$SQL lists statistics on shared SQL areas. It contains statement-level statistics for

the volume of physical I/O (reads and writes), the volume of I/O exchanged over the

interconnect, along with information relating to the effectiveness of Smart Scan and other

Exadata Storage Server features.

For more information on cell-specific statistics, refer to the Oracle Exadata Storage Server

Software User's Guide.

Using Exadata Smart Scan - 19

Oracle uses a specific set of wait events for disk I/O to Exadata Storage Server. Information
about cell wait events is displayed in V$ dynamic performance views, such as

V$SESSION_WAIT, V$SYSTEM_EVENT, and V$SESSION_EVENT.

The slide shows an example of a query used to display a summary of cell wait events for the

current session. Examples of the output from this query are shown later in the course.

A list of cell wait events with a brief description is also shown. Most of the cell wait events are
self-explanatory however the cell statistics gather event is a little different. It appears

when a query is done on the V$CELL_STATE, V$CELL_THREAD_HISTORY, or

V$CELL_REQUEST_TOTALS view. During such a query, data from the cells and any wait

events are shown in this wait event. Normally, these V$CELL views are only used by Oracle

Support Services.

Note that for detailed analysis purposes, the cell wait events can also identify the

corresponding cell and grid disk being accessed which is more useful for performance and

diagnostics purposes than the database file number and block number information that is

provided by wait events for conventional storage.

For more information about these wait events, refer to the Oracle Exadata Storage Server

Software User's Guide.

Using Exadata Smart Scan - 20

This slide shows the first example query introduced earlier in the course. You might remember

that the execution plan for this query indicated the use of Smart Scan. This is backed up by the

statistics that follow the query. The statistics show that although the query referenced over

18,000 MB of data, Smart Scan reduced the amount of IO transported over the storage

interconnect to a little more than 120 MB. In other words, Smart Scan reduced the amount of IO

transported to the database server by more than 99% compared with what would have been

required using non-Exadata storage.

Note also that the amount of data returned by Smart Scan matches the amount of data

transported across the storage interconnect. This is a sign that all the IO in this example is

associated with Smart Scan.

Using Exadata Smart Scan - 21

This slide shows the same example query are the previous slide, but this time the cell wait

events associated with the query session are shown. The wait events confirm that all of the IO

associated with the example query was satisfied using Smart Scan. Notice also that the Smart

Scan total wait time (11.05 sec) accounts for almost all of the query elapsed time (11.76 sec).

This means that nearly all of the processing for this query occurred inside the Exadata cells.

Using Exadata Smart Scan - 22

The slide shows exactly the same query as before; however, this time a batch process was
updating the CUSTOMERS table at the same time as the query. The wait events confirm that

Smart Scan is still used; however, this time a large number of cell single block physical reads

are also required. The statistics quantify the effect. Notice how the physical IO over the

interconnect rises from approximately 120 MB in the previous example, to over 4800 MB in this

case. Note also the increase in the query elapsed time and how it correlates with the wait

times.

Using Exadata Smart Scan - 23

This time the query is executed after another session has updated every row in the
CUSTOMERS table, but before the update transaction is committed (or rolled-back). In this

extreme case Smart Scan is still attempted; however, since every record is subject to a pending

transaction, every block I/O must be transferred to the traditional buffer cache read-consistency

path. In this unusual case, attempting to use Smart Scan actually results in more I/O traffic

across the storage interconnect than if Smart Scan was not used.

Following is a summary of the results for the same scenario, but with Smart Scan disabled:

SQL> select /*+ OPT_PARAM('cell_offload_processing' 'false') */

count(*) from customers where cust_valid = 'A';

Elapsed: 00:14:52.63

NAME MB

--- ----------

cell physical IO interconnect bytes 28522.4922

cell physical IO bytes eligible for predicate offload 0

EVENT TOTAL_WAITS WAIT_SECS AVG_WAIT

--------------------------------- ----------- --------- --------

cell single block physical read 1346130 678.83 .0005

cell list of blocks physical read 2 0 .0007

Using Exadata Smart Scan - 24

In this example, the CUSTOMERS table has been updated in a way that resulted in row migration

across approximately 6.5% of the data blocks in the table. Now, when the query is executed,

the query timing, the statistics, and the wait events are close to the original values observed

without any migrated rows. However, there is still a noticeable difference between the amount

of data returned by Smart Scan and amount of physical interconnect IO. This difference, along

with the cell physical read wait events, are symptoms of the row migration present in the
CUSTOMERS table.

Using Exadata Smart Scan - 25

This example examines the effect of column filtering using two simple SQL queries.

The top query selects the entire customers table. The associated query execution plan shows

that the table scan is offloaded to Exadata Storage Server. However, because the query asks

for the entire table to be returned the entire table must be transported across the storage

network.

The bottom query selects just one column from the customers table. Note that the associated

query execution plan provides no explicit notification regarding column filtering. It does indicate

that the optimizer expects to process a smaller volume of data (20M bytes compared to 244M

bytes), which can be used to infer that column filtering will take place. However, the proof of

column filtering can be seen from the statistics associated with the query. This time the entire
table is eligible for predicate offload but only the data associated with the cust_email column

is transported across the storage network.

Using Exadata Smart Scan - 26

Now you can test what you've learnt using a couple of quiz questions.

Using Exadata Smart Scan - 27

Using Exadata Smart Scan - 28

Using Exadata Smart Scan - 29

