Using Exadata Smart Scan

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Hello, and welcome to this online, self-paced course entitled Using Exadata Smart Scan. My
name is Peter Fusek. | am a curriculum developer at Oracle, and in various roles | have helped
customers to get the most out of Oracle products since 1992. Today, | will be you tour guide for

this course.

Using the Player

Attachments
Audio Script

&
=y
=1
|
Course Outline [=*_ = i Fe [°- imw

/DB command constructed . ;
and ssat 1o Exadeta oot © % ® B Resuts consoldated

h"!“m Ul I”‘:W

hll

Player Controls

-2 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Before we begin, now might be a good time to take a look at some of the features of this Flash-
based course player. Feel free to skip this slide and start the lecture if you've attended similar
Oracle online courses in the past.

To your left, you will find a hierarchical course outline. This course enables and even
encourages you to go at your own pace, which means you are free to skip over topics you
already feel confident on, or jump right to a feature that really interests you, or go back and
review topics that were already covered. Simply click on a course section to expand its
contents and then select an individual slide. However, note that by default we will automatically
walk you through the entire course without requiring you to use the outline.

Standard Flash player controls are also found at the bottom of the player, including pause,
previous, and next buttons. There is also an interactive progress bar to fast forward or rewind
the current slide. Interactive slides may have additional controls and buttons along with
instructions on how to use them.

Also found at the bottom of the player is a panel containing any additional reference notes for
the current slide. Feel free to read these reference notes at the conclusion of the course, in
which case you can minimize this panel and restore it later. Or if you prefer you can pause and
read them as we go along.

Various handouts may be available from the Attachments button, including the audio narration
scripts for this course.
The course will now pause, so feel free to take some time and explore the interface. Then when
you're ready to continue, click the next button below or alternatively click the Objectives slide in
the course outline.

Using Exadata Smart Scan - 2

Objectives

After completing this session, you should be able to:

* Describe Smart Scan and the query processing that can
be offloaded to Exadata Storage Server

* Describe the requirements for Smart Scan

« Describe the circumstances that prevent using Smart
Scan

* ldentify Smart Scan in SQL execution plans

+ Use database statistics and wait events to confirm how
queries are processed

-3 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Using Exadata Smart Scan - 3

| Exadata Smart Scan Overview |

Smart Scan includes:

« Table and Index Scans: Scans are performed inside
Exadata Storage Server rather than transporting all the
data to the database server

* Predicate filtering: Only the requested rows are returned
to the database server rather than all the rows in a table

* Column filtering: Only the requested columns are
returned to the database server rather than all the table
columns

« Join filtering: Join processing using Bloom filters are
offloaded to Exadata Storage Server

-4 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

One of the most powerful features of Database Machine is that data search and retrieval
processing can be offloaded to the Exadata Storage Servers. This feature is called Smart Scan.
Using this Smart Scan, Oracle Database can optimize the performance of operations that
perform table and index scans by performing the scans inside Exadata Storage Server, rather
than transporting all the data to the database server. This principle can also be applied to
encrypted data and compressed data. In addition, various aspects of SQL processing can be
offloaded to the Exadata Storage Server so that it is performed close to the data and so that the
amount of data transported back to the database server can be minimized.

The slide lists the key database functions which are integrated with Exadata Storage Server.
The term Smart Scan is also used to describe instances when these functions are performed
by Exadata Storage Server.

This session focuses on the requirements for performing Smart Scan processing, and how you
can use core SQL monitoring capabilities within Oracle Database to identify Smart Scans.

Using Exadata Smart Scan - 4

Classic Database 1/0 and SQL Processing Model

®

SELECT customer id (:)
FROM orders
WHERE order amount>20000;

b

Extents identified

l =

I/O issued

Rows returned

SQL processing:
rows identified

I/O executed:
tables returned

| 4

®

©
mm [

-5 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

To understand how Smart Scan works, let's start by considering how Oracle processes queries
using conventional storage. With conventional storage, all the database intelligence resides in
the software on the database server. To illustrate how SQL processing is performed in this
architecture, an example of a table scan is shown in the graphic on the screen:

1. The client issues a SELECT statement with a predicate to filter a table and return only the
rows of interest to the user.

The database kernel maps this request to the file and extents containing the table.
The database kernel issues the 1/Os to read all the table blocks.
All the blocks for the table being queried are read into memory.

SQL processing is conducted against the data blocks searching for the rows that satisfy
the predicate.

6. The required rows are returned to the client.

o~ eDb

As is often the case with large queries, the predicate filters out most of the rows in the table.
Yet all the blocks from the table need to be read, transferred across the storage network, and
copied into memory. Many more rows are read into memory than required to complete the
requested SQL operation. This generates a large amount of unproductive I/O, which wastefully
consumes resources and impacts application throughput and response time.

Using Exadata Smart Scan - 5

Exadata Smart Scan Model

SELECT customer id (:)
FROM
WHERE

®

Rows returned
orders

order_amount>20000;

iDB command constructed
and sent to Exadata cells

I

@] Results consolidated

|

<& <
| /

SQL processing @ Rows returned
in Exadata cells to server

| 4

| |

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

On Exadata Database Machine, database operations are handled differently. Queries that
perform table scans can be processed within Exadata cells and return only the required subset
of data to the database server. Row filtering, column filtering, some join processing, and other
functions can be performed within Exadata cells. Exadata Storage Server uses a special direct-
read mechanism for Smart Scan processing. The graphic on the screen illustrates how a table
scan operates with Exadata cell storage:

1.
2.

3.

5.

6.

The client issues a SELECT statement to return some rows of interest.

The database kernel determines that the data is stored on Exadata cells, so an iDB
command representing the SQL command is constructed and sent to the Exadata cells.

The Exadata Storage Server software scans the data blocks to extract the relevant rows
and columns that satisfy the SQL command.

Exadata cells return to the database instance iDB messages containing the requested
rows and columns of data. These results are not block images, so they are not stored in
the buffer cache.

The database kernel consolidates the result sets from across all the Exadata cells. This is
similar to how the results from a parallel query operation are consolidated.

The rows are returned to the client.

Moving SQL processing off the database server frees server CPU cycles and eliminates a
massive amount of unproductive I/O transfers. These resources are free to better service other
requests. Queries run faster, and more of them can be processed.

Using Exadata Smart Scan - 6

Exadata Smart Scan Capabilities

* Predicate filtering:
— Only the requested rows are returned to the database server rather
than all the rows in a table.
— Supported conditional operators include =, !=, <, >, <=, >=,
IS [NOT] NULL, LIKE, [NOT] BETWEEN, [NOT] IN,EXISTS, IS
OF type, NOT, AND, OR

— Many common SQL functions supported

SQL> SELECT * FROM v$sqlfn_metadata WHERE offlocadable = 'YES';

« Column filtering:

— Only the requested columns are returned to the database server
rather than all the columns in a table.

For example:

SQL> SELECT name FROM employees WHERE LENGTH (name) > 5;

-7 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Exadata Storage Server enables predicate filtering for table scans. Rather than returning all the
rows for the database to evaluate, Exadata Storage Server returns only the rows that match the
filter condition. A list of conditional operators that are supported by predicate filtering is shown
on the screen. In addition, many common SQL functions can be evaluated by Exadata Storage
Server during predicate filtering. For a full list of functions that can be evaluated by Exadata
cell, use the query shown on the screen.

Exadata Storage Server provides column filtering, also called column projection, for table
scans. Only the requested columns are returned to the database server, rather than all columns
in a table. For tables with many columns, or columns containing LOBS, the I/O bandwidth saved
by column filtering can be very large.

When used together, the combination of predicate and column filtering dramatically improves
performance and reduces I/0O bandwidth consumption. For example, without filtering, the entire
employees table must be sent from the storage to the database server to satisfy the query at
the bottom of the screen. With predicate and column filtering, only the employee names that
are longer than five characters are sent to the database servers.

Using Exadata Smart Scan - 7

Exadata Smart Scan Capabilities

« Join processing:
— Using Bloom Filters to optimize large join operations
« Scans on encrypted data
« Scans on compressed data
« Scoring for Data Mining
— For example:

SELECT cust_id

FROM customers

WHERE region = 'US'

AND prediction_ probability (churnmod,'Y' using *) > 0.8;

-8 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Exadata Storage Server can optimize join processing for large join operations. This is
implemented by using a Bloom Filter, which is a very efficient probabilistic method to determine
whether an element is a member of a set. We'll talk about this more later in the course.

Exadata Storage Server performs Smart Scans on encrypted tablespaces and encrypted
columns. For encrypted tablespaces, Exadata Storage Server can decrypt blocks and return
the decrypted blocks to Oracle Database, or it can perform row and column filtering on
encrypted data. Significant CPU savings can be made within the database server by offloading
the CPU-intensive decryption task to Exadata cells.

Smart Scan works in conjunction with Exadata Hybrid Columnar Compression so that column
projection and row filtering can be executed along with decompression at the storage level to
save CPU cycles on the database servers.

Exadata Storage Server can perform scoring functions, such as PREDICTION PROBABILITY,
for data mining models. This accelerates warehouse analysis while it reduces database server
CPU consumption and the 1/O load between the database server and storage servers.

Using Exadata Smart Scan - 8

| Smart Scan Requirements |

Smart Scan is not governed by the optimizer, but it is
influenced by the results of query optimization.

* Query-specific requirements:
— Smart Scan is possible only for full table or index scans
— Smart Scan can only be used for direct-path reads

— Direct-path reads are automatically used for parallel queries

— Direct-path reads may be used for serial queries
— Not used by default for serial small table scans
— Use serial direct read=TRUE to force direct-path reads

-9 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Smart Scan optimization is a run-time decision. It is not integrated with the Oracle optimizer;
however, it is influenced by the results of query optimization. In order words, the decision
regarding whether or not to use Smart Scan is not made by the optimizer, but the optimizer
does indirectly determine when Smart Scan can be used.

The following query-specific requirements must be met before Smart Scan is considered:

* Smart Scan is possible only for full segment scans; that is, full table scans, fast full index
scans and fast full bitmap index scans.

+ Smart Scan can only be used in conjunction with direct-path reads. Direct path reads are
used by parallel operations so any parallel query is automatically a potential candidate for
Smart Scan. Serial operations can do direct reads too, depending on factors such as the
table size and the state of the buffer cache. By default, direct-path reads are not used for
tables that are considered to be small. However, direct-path reads can be forced for serial
access by setting serial direct read=TRUE at either the system or session level.

Using Exadata Smart Scan - 9

Smart Scan Requirements

« Additional general requirements:

— Smart Scan must be enabled within the database

~ The CELL OFFLOAD PROCESSING Iinitialization parameter enables
or disables Smart Scan

— Dynamically modifiable at the session or system level using ALTER
SESSION or ALTER SYSTEM

— Specifiable at the statement level using the OPT PARAM hint:

SQL> SELECT /*+ OPT_PARAM('cell offload processing' 'true') */

— Segments must be stored in appropriately configured disk groups
— Disk group must be completely contained on Exadata storage
- Required disk group attribute settings:

'compatible.rdbms' = '11.2.0.0.0' (or later)
'compatible.asm' = '11.2.0.0.0' (or later)
'cell.smart_scan_capable' = 'TRUE'

-10 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

In addition to the query-specific requirements, the following general requirements must also be
met to enable Smart Scan:

+ Smart Scan must be enabled within the database. The CELL OFFLOAD PROCESSING
initialization parameter controls Smart Scan. The default value of the parameter is TRUE,
meaning that Smart Scan is enabled by default. If it is set to FALSE, Smart Scan is

disabled and the database uses Exadata storage to serve data blocks similar to traditional
storage. To enable Smart Scan for a particular SQL statement, use the OPT PARAM hint
as shown in the query fragment on the screen.

» Each segment being scanned must be on a disk group that is completely stored on
Exadata cells. The disk group must also have the disk group attribute settings shown at
the bottom of the screen.

Using Exadata Smart Scan - 10

| Situations Preventing Smart Scan |

Smart Scan cannot be used in these circumstances:
* Ascan on a clustered table
« A scan on an index-organized table
* Afast full scan on a compressed index
« Afast full scan on a reverse key indexes
* The table has row-level dependency tracking enabled
« The ORA ROWSCN pseudocolumn is being fetched
* The optimizer wants the scan to return rows in ROWID order
« The command is CREATE INDEX using NOSORT
A LOB or LONG column is being selected or queried
* ASELECT ... VERSIONS flashback query is being executed
* To evaluate a predicate based on a virtual column
* More than 255 columns are referenced in the query
« The data is encrypted and cell-based decryption is disabled

-1 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This slide lists specific circumstances where Smart Scan cannot be used. Most of these are
pretty straight-forward; however, the final two scenarios on the list are worthy of further
explanation:

* More than 255 columns are referenced in the query: This restriction only applies if the
query involves tables that are not compressed using Exadata Hybrid Columnar
Compression. Queries on tables compressed using Exadata Hybrid Columnar
Compression can be offloaded even if they reference more than 255 columns.

» The data is encrypted and cell-based decryption is disabled: In order for Exadata Storage
Server to perform decryption, Oracle Database needs to send the decryption key to each
cell. If there are security concerns about keys being shipped across the storage network,
cell-based decryption can be disabled by setting the CELL OFFLOAD DECRYPTION
initialization parameter to FALSE.

Using Exadata Smart Scan - 11

Monitoring Smart Scan in SQL Execution Plans

Relevant Initialization Parameter:
* CELL OFFLOAD PLAN DISPLAY
— AUTO | ALWAYS | NEVER
— Allows execution plan to show offloaded predicates

— Dynamically modifiable at the session or system level using
ALTER SESSIONoOr ALTER SYSTEM

-12 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

The CELL OFFLOAD PLAN DISPLAY initialization parameter determines whether the SQL
EXPLAIN PLAN statement displays the predicates that can be evaluated by Exadata Storage
Server as STORAGE predicates for a given SQL statement. The possible values are:

* AUTO instructs the SQL EXPLAIN PLAN statement to display the predicates that can be
evaluated as STORAGE only if a cell is present and if a table is on the cell. AUTO is the
default setting.

» ALWAYS produces changes to the SQL EXPLAIN PLAN statement output whether or not
Exadata storage is present or the table is on the cell. You can use this setting to identify
statements that are candidates for offloading before migrating to Exadata Database Machine.

* NEVER produces no changes to the SQL EXPLAIN PLAN statement output due to
Exadata. This may be desirable, for example, if you wrote tools that process execution
plan output and these tools have not been updated to deal with the updated syntax, or
when comparing plans from Database Machine with plans from your previous system.

Using Exadata Smart Scan - 12

Smart Scan Execution Plan Example

SQL> explain plan for select count(*) from customers where custivalid = 'A'T,;
Explained.
SQL> select * from table (dbms xplan.display):

Id	Operation	Name	Rows	Bytes	Cost (%CPU)
0	SELECT STATEMENT	\ 1	2	627K (1)	
1	SORT AGGREGATE	\ 1	2		
= 2	TABLE ACCESS STORAGE FULL	CUSTOMERS	38M	73M	627K (1)

Predicate Information (identified by operation id):

2 - storage ("CUST VALID"='A')
filter ("CUST VALID"='A')

-13 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

The slide shows a basic example of Smart Scan manifested in a query plan.

The TABLE ACCESS STORAGE FULL operation indicates Smart Scan being used to scan the
CUSTOMERS table. The plan also shows evidence of row filtering. In this example, the
predicate "CUST VALID"='A"' is evaluated inside Exadata Storage Server.

Note that the execution plan shows no evidence of parallel query, so evidently the table in this
example is large enough to prompt the use of direct-path reads.

Using Exadata Smart Scan - 13

Smart Scan Execution Plan Example

SQL> explain plan for select count(*) from customers where cust id > '10000';
Explained.

SQL> select * from table(dbms xplan.display);

Id	Operation	Name	Rows	Bytes
0	SELECT STATEMENT		1	6
1	SORT AGGREGATE		1	6
[2 PX COORDINATOR			I	
3	PX SEND QC (RANDOM)	:TQ10000	1	6
4	SORT AGGREGATE		1	6
5	PX BLOCK ITERATOR		TTM	443M
I o | INDEX STORAGE FAST FULL SCAN| CUSTOMERS_PK | TTM| 443M|

Predicate Information (identified by operation id):

6 - storage ("CUST_ID">10000)
filter ("CUST ID">10000)

-14 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This slide shows another Smart Scan query plan example. This time, offloading of a fast full
index scan is indicated. Row filtering is also pushed down to the storage servers.

Unlike the previous example, this example indicates the use of parallel query which
automatically implies the use of direct-path reads.

Using Exadata Smart Scan - 14

Example of a Situation Preventing Smart Scan

SQL> explain plan for select count(*) from cust iot where cust id > '10000';
Explained.

SQL> select * from table (dbms xplan.display):

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | [1| 13 | 21232 (1)| 00:04:15 |
| 1 | SORT AGGREGATE | \ 1 | 13 | | |
[* 2 | INDEX RANGE SCAN| CUST PK | 86M| 1071M| 21232 (1)| 00:04:15 |

Predicate Information (identified by operation id):

2 - access ("CUST ID">10000)

-15 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This slide shows almost exactly the same example as the previous slide. The only difference is
that the table being queried in this example is an index-organized table with the CUST ID

column defined as the primary key. Since Smart Scan cannot be applied to index-organized
tables the execution plan contains no storage operations.

Using Exadata Smart Scan - 15

Smart Scan Join Processing with Bloom Filters

A Bloom filter is a data structure which can be used to
test if an element is a member of a set
* Bloom filter properties:

— The amount of data used in the Bloom filter is much smaller
than the set being tested

— The time required to check whether an element is a
member of the set is constant

— False positives are possible but their frequency can be
managed

— False negatives are not possible

» Since Oracle 10g Release 2, Bloom filters have been
used to optimize parallel joins

« With Exadata, the Bloom filter can be processed by the
storage server, reducing the amount of data
unnecessarily transported to the database server

-16 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

A Bloom filter, conceived by Burton Howard Bloom in 1970, is a space-efficient probabilistic
data structure that is used to test whether an element is a member of a set. The properties of a
Bloom filter make is a very efficient way of determining which values are not in a set. This is
very useful for processing join conditions where a significant proportion of the data does not
fulfill the join criteria.

Oracle Database 10g Release 2 first used Bloom filters to optimize parallel join operations.
When two tables are joined via a hash join, the first table (typically the smaller table) is scanned
and the rows that satisfy the WHERE clause predicates (for that table) are used to create a hash
table. During the hash table creation, a Bloom filter bit string is also created based on the join
column. The bit string is then sent as an additional predicate to the second table scan. After the
WHERE clause predicates relating to the second table are applied, the resulting rows are tested
using the Bloom filter. Any rows rejected by the Bloom filter must fail the join criteria and are
discarded. Any rows that match using the Bloom filter are sent to the hash join.

With Exadata, the Bloom filter is passed to the storage servers as an additional predicate.
Processing the Bloom filter inside Exadata Storage Server can reduce the amount of data
transported to the database server to process a join, which in turn can speed up query
performance.

Using Exadata Smart Scan - 16

Smart Scan Join Filtering Example

SQL> SELECT AVG(s.amount_sold) FROM customers cu, sales s
2 WHERE cu.cust id = s.cust id
3 AND cu.cust_credit limit > 5000;

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time	TQ	IN-OUT	PQ Distrib
0	SELECT STATEMENT		1] 19	55979 (1)1 00:11:12					
1	SORT AGGREGATE		1] 18				I		
2] PX COORDINATOR									
3 P¥ SEND QC (RANDCM)	:TQLO002	1	19			Q1,02	P->S	QC (REND)	
4 SORT AGGREGATE		1 19			Q1,02	PCWP			
= &	HASH JOIN		577M	10G	55979 (1)] 00:11:12	Q1,02	PCWP		
6	JOIN FILTER CREATE	:BFO000	57M	547M	14499 (1)	00:02:54	Q1,02	PCWP	
7	PX RECEIVE		57M	547M	14499 (1) 00:02:54	Q1,02	PCWP		
I 81 PX SEND HASH	:TQLO000	57	547M	14499 (1)	00:02:54	Q1,00	P->P	HASH	
9	PX BLOCK ITERATOR		5TM	547M	14499 (1)] 00:02:54	©Q1,00	PCWC		
* 10	TABLE ACCESS STORAGE FULL	CUSTCMERS	5TM	547M	14499 (1)] 00:02:54	Q1,00	PCWP		
11	PX RECEIVE		T774M	6651M	24044 (1)] 00:04:49	Q1,02	PCWP		
12	PX SEND HASH	:TQL0001	T74M	6651M	24044 (1)] 00:04:49	Q1,01	P->P	HASH	
13	JOIN FILTER USE	:BFO000	T74M	6651M	24044 (1)] 00:04:49	Q1,01	PCWP		
14	PX BLOCK ITERATOR		774M	6051M	24044 (1)	00:04:49	Q1,01	PCWC	I
& 15 TABLE ACCESS STORAGE FULL| SALES | 774M| 6651M| 24044 (1)| 00:04:4%9 | Q1,01 | PCWP | |
Predicate Information (identified by operation id):

5 - access("CU"."CUST ID"="S"."CUST_ID")

10 - storage("CU"."CUST CREDIT LIMIT">5000)

filter ("CU"."CUST CREDIT LIMIT">5000)
15 - storage(SYS OP BLOOGM FILTER(:BF0000,"S"."CUST ID"))
filter (SYS_OP_BLOOM FILTER (:BF0000,"S"."CUST_ID"))
-7 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

The slide shows an example of Smart Scan join filtering using a Bloom filter. The example
guery joins a table containing approximately 77 million customer records, with a table
containing approximately 774 million sales records, to determine the average transaction
amount for customers having a credit limit in excess of 5000. The query is processed as
follows:

* Smart Scan is used to filter the customer records and retrieve the CUST 1D values for the
customers having a credit limit in excess of 5000 (operation 10).

« A Bloom filter is created representing the set of CUST ID values, which match the query
from the CUSTOMERS table (operation 6).

» Inthe absence of Exadata storage, the Bloom filter would be applied to data from the
SALES table inside a parallel query server process (operation 13). However, with
Exadata, the Bloom filter is sent to the storage servers as a predicate and applied as part
of a Smart Scan of the SALES table (operation 15). Since the SALES table is quite large,
guery performance will benefit considerably if a significant amount of 10 is saved by not
transporting unnecessary sales records back to the database. Exadata storage server
also performs column filtering for the SALES table so that only the CUST 1D and
AMOUNT SOLD values are returned.

* The results from the Smart Scan operations on the CUSTOMERS table (operations 6-10) and
the SATES table (operations 11-15) are combined using a HASH JOIN (operation 5).

* Finally, the query is serialized and the result is returned (operations 1-4).

Using Exadata Smart Scan - 17

Other Situations Affecting Smart Scan

« Seeing STORAGE in the execution plan does not
guarantee that the query is satisfied using Smart Scan
alone

 Even when Smart Scan is indicated by the execution
plan, other block IO might also be used; for example:

— |f Exadata Storage Server is not sure that a block is current
it transfers that block read to the buffer cache

— If chained or migrated rows are detected, then additional
non-Smart Scan block reads may be required

— If dynamic sampling is used, then the sampling 10 will not
use Smart Scan

« Statistics and wait events can be used to confirm what is
happening

-18 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

As we have already seen, the query execution plan provides an indicator regarding the use of
Smart Scan; however, seeing a STORAGE operation in the plan does not guarantee that the
guery is satisfied entirely using Smart Scan. Beware that even when Smart Scan is indicated in
the execution plan, other block 10 might also be used. Here are some situations where this
might occur:

» Since Smart Scan uses direct-path reads, the data being read must be current. If Exadata
Storage Server is not sure that a block is current, it transfers the read of that block to the
traditional buffer cache read-consistency path. So, if you run updates at the same time as
queries you will benefit less from Smart Scan.

+ The same is also true for indirect rows; that is, reads on chained or migrated rows. To
resolve indirect row references, additional block reads may be required. So if your tables
contain chained or migrated rows you will benefit less from Smart Scan.

+ If the optimizer uses dynamic sampling to formulate the query execution plan, then the
sampling 1O does not use Smart Scan even if the query does end up using Smart Scan.
In this case, you may see Smart Scan mixed in with other block 10.

Statistics and wait events can be used to confirm and measure the use of Smart Scan. A series
of examples are presented later in the course.

Using Exadata Smart Scan - 18

Exadata Storage Server Statistics Overview

SELECT s.name, m.value/1024/1024 MB FROM VS$SYSSTAT s, VSMYSTAT m
WHERE s.statistic# = m.statistic# AND

(s.name LIKE 'physical%total bytes' OR s.name LIKE 'cell phys%'
OR s.name LIKE 'cell IO%');

esdEEEEEEE AR i iassasannaannn

.-" cell .

+ flash cache cell physical IO ‘s,
. read hits bytes saved during s
3 optimized RMAN file %

cell physical IO restore :

bytes eligible for

: edicate offload cell physical 10
E prect interconnect bytes i VSSQL
i ocell physical IO :
: interconnect bytes cell physical IO . - SQIt:fEXT
g, CiEitbonzel 195y St bytes saved by E - PHYSICAL READ BYTES
K scan storage index 5, — —
K physical write ‘ \: - PHYSICAL WRITE BYTES
A total bytes physical read s
e, total bytes ., - IO INTERCONNECT BYTES
'.“‘ il sfiyslesnl 18 '._. - IO CELL OFFLOAD ELIGIBLE BYTES
VSSYSSTAT 5 bytes saved during % |- IO CELL UNCOMPRESSED BYTES
kS optimized file H _
- NAME € emssnrnashecennanaad Y RCRNGE] IO CELL OFFLOAD RETURNED BYTES
- VALUE B cell 10 ; - OPTIMIZED PHY READ REQUESTS
) uncompressed s
'.“.__ bytes ot
-19 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Numerous cell-specific statistics are recorded in VSSYSSTAT and VSSESSTAT. These statistics
can be used to monitor Exadata Storage Server operations at both the system and session
level. The statistics can be used to monitor the effectiveness of Smart Scan. There are also
statistics relating to Exadata Smart Flash Cache, Exadata Hybrid Columnar Compression,
storage index, fast file creation, and optimized incremental backups. In addition, other statistics
provide the total volume of I/O exchanged over the interconnect and the total volume of
physical disk reads and writes. The slide lists a selection of the available statistics.

The query in the slide shows key cell statistics for the current session. Examples of the output
from this query are shown later in the course.

In addition, v$SQL lists statistics on shared SQL areas. It contains statement-level statistics for
the volume of physical I/O (reads and writes), the volume of I/0O exchanged over the
interconnect, along with information relating to the effectiveness of Smart Scan and other
Exadata Storage Server features.

For more information on cell-specific statistics, refer to the Oracle Exadata Storage Server
Software User's Guide.

Using Exadata Smart Scan - 19

Exadata Storage Server Wait Events Overview

SELECT DISTINCT event, total waits, time waited/100 wait secs,
average wait/100 avg wait secs

FROM V$SESSION_EVENT e, VSMYSTAT s
WHERE event LIKE 'cell%' AND e.sid = s.sid;

Wait Event Description

cell interconnect retransmit Database wait during retransmission for an 1/0 of a
during physical read single-block or multiblock read
cell single block physical read [Cellequivalentofdb file sequential read
cell multiblock physical read Cell equivalentof db file scattered read
cell smart table scan Database wait for table scan to complete
cell smart index scan Database wait for index or IOT fast full scan
cell smart file creation Database wait for file creation operation
cell smart incremental backup Database wait for incremental backup operation
cell smart restore from backup Database wait during file initialization for restore
cell statistics gather Wait during query of VSCELL views

-20 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Oracle uses a specific set of wait events for disk 1/0 to Exadata Storage Server. Information
about cell wait events is displayed in v$ dynamic performance views, such as
VSSESSION WAIT, VSSYSTEM EVENT, and VSSESSION EVENT.

The slide shows an example of a query used to display a summary of cell wait events for the
current session. Examples of the output from this query are shown later in the course.

A list of cell wait events with a brief description is also shown. Most of the cell wait events are
self-explanatory however the cell statistics gather eventis a little different. It appears
when a query is done on the VSCELL STATE, V$CELL THREAD HISTORY, Of

VSCELL REQUEST TOTALS view. During such a query, data from the cells and any wait
events are shown in this wait event. Normally, these VSCELL views are only used by Oracle
Support Services.

Note that for detailed analysis purposes, the cell wait events can also identify the
corresponding cell and grid disk being accessed which is more useful for performance and
diagnostics purposes than the database file number and block number information that is
provided by wait events for conventional storage.

For more information about these wait events, refer to the Oracle Exadata Storage Server
Software User's Guide.

Using Exadata Smart Scan - 20

Smart Scan Statistics Example

SQL> select count(*) from customers where cust valid = 'A';

8602831
Elapsed: 00:00:11.76

SQL> SELECT s.name, m.value/1024/1024 MB FROM VS$SYSSTAT s, VSMYSTAT m
2 WHERE s.statistic# = m.statistic# AND
3 (s.name LIKE 'physical%total bytes' OR s.name LIKE 'cell phys%'
4 OR s.name LIKE 'cell IO%'):

NAME MB
physical read total bytes 18005.6953
physical write total bytes 0
cell physical IO interconnect bytes 120.670433
cell physical IO bytes pushed back due to excessive CPU on cell 0
cell physical IO bytes saved during optimized file creation 0
cell physical IO bytes saved during optimized RMAN file restore 0
cell physical IO bytes eligible for predicate offload 18005.6953
cell physical IO bytes saved by storage index 0
cell physical IO interconnect bytes returned by smart scan 120.670433
cell IO uncompressed bytes 18005.6953
-21 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This slide shows the first example query introduced earlier in the course. You might remember
that the execution plan for this query indicated the use of Smart Scan. This is backed up by the
statistics that follow the query. The statistics show that although the query referenced over
18,000 MB of data, Smart Scan reduced the amount of IO transported over the storage
interconnect to a little more than 120 MB. In other words, Smart Scan reduced the amount of IO
transported to the database server by more than 99% compared with what would have been
required using non-Exadata storage.

Note also that the amount of data returned by Smart Scan matches the amount of data
transported across the storage interconnect. This is a sign that all the 10 in this example is
associated with Smart Scan.

Using Exadata Smart Scan - 21

Smart Scan Wait Events Example

SQL> select count (*) from customers where cust valid = '

oy

8602831
Elapsed: 00:00:11.76

SQL> SELECT DISTINCT event, total waits, time waited/100 wait secs,

2 average wait/100 avg wait secs
3 FROM ‘-«"$SESSION_EVENT e, VSMYSTAT s
eve id

4 WHERE event LIKE 'cell%' AND e.sid = s.sid;
EVENT TOTAL WAITS WAIT SECS AVG_WAIT_ SECS
cell smart table scan 9026 11.05 .0012
-22 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This slide shows the same example query are the previous slide, but this time the cell wait
events associated with the query session are shown. The wait events confirm that all of the IO
associated with the example query was satisfied using Smart Scan. Notice also that the Smart
Scan total wait time (11.05 sec) accounts for almost all of the query elapsed time (11.76 sec).
This means that nearly all of the processing for this query occurred inside the Exadata cells.

Using Exadata Smart Scan - 22

Concurrent Transaction Example

SQL> select count(*) from customers where cust valid = 'A';

8602831

Elapsed: 00:02:13.55

NAME MB
physical read total bytes 19047.2266
physical write total bytes 0
cell physical IO interconnect bytes 4808.85828
cell physical IO bytes pushed back due to excessive CPU on cell 0
cell physical IO bytes saved during optimized file creation 0
cell physical IO bytes saved during optimized RMAN file restore 0
cell physical IO bytes eligible for predicate offload 18005.6953
cell physical IO bytes saved by storage index 0
cell physical IO interconnect bytes returned by smart scan 3767.32703
cell IO uncompressed bytes 18005.6953
EVENT TOTAL WAITS WAIT SECS AVG_WAIT SECS
cell list of blocks physical read 1 0 .0006
cell smart table scan 19238 ST .0017
cell single block physical read 133286 74.91 .0006
-23 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

The slide shows exactly the same query as before; however, this time a batch process was
updating the CUSTOMERS table at the same time as the query. The wait events confirm that
Smart Scan is still used; however, this time a large number of cell single block physical reads
are also required. The statistics quantify the effect. Notice how the physical IO over the
interconnect rises from approximately 120 MB in the previous example, to over 4800 MB in this
case. Note also the increase in the query elapsed time and how it correlates with the wait
times.

Using Exadata Smart Scan - 23

Extreme Concurrent Transaction Example

SQL> select count(*) from customers where cust valid = 'A';

COUNT (*)

8602831

Elapsed: 00:15:04.29
NAME MB
physical read total bytes 28550.3125
physical write total bytes 0
cell physical IO interconnect bytes 28537.5555
cell physical IO bytes pushed back due to excessive CPU on cell 0
cell physical IO bytes saved during optimized file creation 0
cell physical IO bytes saved during optimized RMAN file restore 0
cell physical IO bytes eligible for predicate offload 18005.6953
cell physical IO bytes saved by storage index 0
cell physical IO interconnect bytes returned by smart scan 17992.9383
cell IO uncompressed bytes 18005.6953
EVENT TOTAL WAITS WAIT SECS AVG_WAIT SECS
cell list of blocks physical read 1 0 .0006
cell single block physical read 1349704 683.94 .0005
cell smart table scan 9191 3.29 .0004

-24 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This time the query is executed after another session has updated every row in the
CUSTOMERS table, but before the update transaction is committed (or rolled-back). In this
extreme case Smart Scan is still attempted; however, since every record is subject to a pending
transaction, every block 1/0O must be transferred to the traditional buffer cache read-consistency
path. In this unusual case, attempting to use Smart Scan actually results in more 1/O traffic
across the storage interconnect than if Smart Scan was not used.

Following is a summary of the results for the same scenario, but with Smart Scan disabled:

SQL> select /*+ OPT PARAM('cell offload processing' 'false') */
count (*) from customers where cust valid = 'A';

Elapsed: 00:14:52.63

NAME MB
cell physical I0 interconnect bytes 28522.4922
cell physical IO bytes eligible for predicate offload 0
EVENT TOTAL WAITS WAIT SECS AVG_WAIT
cell single block physical read 1346130 678.83 .0005
cell list of blocks physical read 2 0 .0007

Using Exadata Smart Scan - 24

Migrated Rows Example

SQL> select count(*) from customers where cust valid = 'A';

8602831

Elapsed: 00:00:14.02

NAME MB
physical read total bytes 22327.5781
physical write total bytes 0
cell physical IO interconnect bytes 130.069008
cell physical IO bytes pushed back due to excessive CPU on cell 0
cell physical IO bytes saved during optimized file creation 0
cell physical IO bytes saved during optimized RMAN file restore 0 [%%]
cell physical IO bytes eligible for predicate offload 22324.6094
cell physical IO bytes saved by storage index 0
cell physical IO interconnect bytes returned by smart scan 127.100258 =
cell IO uncompressed bytes 22324.6094
EVENT TOTAL WAITS WAIT SECS AVG_WAIT SECS
cell single block physical read 236 .14 .0006
cell smart table scan 10880 13.19 .0012
cell multiblock physical read 17 .02 .0009

-25 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

In this example, the CUSTOMERS table has been updated in a way that resulted in row migration
across approximately 6.5% of the data blocks in the table. Now, when the query is executed,
the guery timing, the statistics, and the wait events are close to the original values observed
without any migrated rows. However, there is still a noticeable difference between the amount
of data returned by Smart Scan and amount of physical interconnect |O. This difference, along
with the cell physical read wait events, are symptoms of the row migration present in the
CUSTOMERS table.

Using Exadata Smart Scan - 25

Column Filtering Example

SQL> select * from customers;

Id	Cperation	Name	Rows	Bytes	Cost (%CPU)
0	SELECT STATEMENT		1239K	244M	10242 (1)
1	TABLE ACCESS STORAGE FULL	CUSTOMERS	1239K	244M	10242 (1)
NAME MB
physical read total bytes 290.335938
cell physical IO interconnect bytes 290.335938
cell physical IO bytes eligible for predicate offlocad 0
cell physical IO interconnect bytes returned by smart scan 0
SQL> select cust_email from customers;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) |
| 0 | SELECT STATEMENT | | 1239K| 20M|] 10235 (1)1
| 1 | TABLE ACCESS STORAGE FULL| CUSTOMERS | 1239K| 20M| 10235 (1) |
NAME MB
physical read total bytes 290.289063
cell physical IO interconnect bytes 29.0223618
cell physical IO bytes eligible for predicate offload 290.289063
cell physical IO interconnect bytes returned by smart scan 29.0223618

-26 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

This example examines the effect of column filtering using two simple SQL queries.

The top query selects the entire customers table. The associated query execution plan shows
that the table scan is offloaded to Exadata Storage Server. However, because the query asks
for the entire table to be returned the entire table must be transported across the storage
network.

The bottom query selects just one column from the customers table. Note that the associated
guery execution plan provides no explicit notification regarding column filtering. It does indicate
that the optimizer expects to process a smaller volume of data (20M bytes compared to 244M
bytes), which can be used to infer that column filtering will take place. However, the proof of
column filtering can be seen from the statistics associated with the query. This time the entire
table is eligible for predicate offload but only the data associated with the cust email column
is transported across the storage network.

Using Exadata Smart Scan - 26

Point Value

The CELL_OFFLOAD_PLAN_DISPLAY initialization parameter enables Smart Scan.

O True

O False

PROPERTIES

On passing, 'Finish' button:
On failing, 'Finish' button:
Allow user to leave quiz:
User may view slides after quiz:

At any time

lLicar mayv attamnt rugiz:

Goes to Next Slide Je}
Goes to Next Slide

Properties...

At any time

Linlimitad timac

=) Editin Quizmaker

1

Now you can test what you've learnt using a couple of quiz questions.

Using Exadata Smart Scan - 27

Demonstration

Video Placeholder
Your video will display here.

-28 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Using Exadata Smart Scan - 28

In this session, you should have learned how to:

* Describe Smart Scan and the query processing that can
be offloaded to Exadata Storage Server

* Describe the requirements for Smart Scan

« Describe the circumstances that prevent using Smart
Scan

* ldentify Smart Scan in SQL execution plans

+ Use database statistics and wait events to confirm how
queries are processed

-29 Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Using Exadata Smart Scan - 29

