Tuning All Layers of the E-Business Suite – Part I
Lester Gutierrez, Senior Architect, EBS Applications Performance
Deepak Bhatnagar, Senior Manager, EBS Applications Performance
The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.

The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Context within Performance Management

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload Management</td>
<td>Performance Triage & Resolution</td>
<td>Performance Monitoring & Trending</td>
<td>People Management</td>
</tr>
</tbody>
</table>
Tuning All Layers of the E-Business Suite

- **Introduction**
 - Performance Triage Approach
- **Part 1**
 - Tuning Application Modules
 - Upgrade Performance Best Practices
 - Tuning the Database Tier
- **Part 2**
 - Tuning the Concurrent Manager
 - Network and Desktop Client Tuning
- **Part 3**
 - Tuning & Troubleshooting the Apps Tier
Performance Triage & Resolution

• How to Approach a Performance Issue

1. **DEFINE** the problem clearly
2. **GATHER** the right data to analyze the issue
3. Identify the **ROOT CAUSE** of the problem, possibly gather additional data
4. Search for a **KNOWN SOLUTION** or workaround that addresses the root cause of the problem
5. If it is a product issue, **PASS ON** the right information to support/dev through the regular channels
6. Try to identify a **TEMPORARY WORKAROUND** to alleviate the issue while you get a permanent fix
Performance Triage & Resolution

• Define
 • Get a clear understanding & quantitative definition of the issue

 What
 Where
 When
 Why
 How
Performance Triage & Resolution

- Define
 - Identify the techstack components in-play
 - Refer to the architecture

Sequence Diagram
Performance Triage & Resolution

• Gather
 – ~ 80% of issues are DB processing related
 – If non-database (client side) processing occurs within the flow, you may see DB wait events like
 • SQL*Net Message from client
 • TCP Socket%
 • PLSQL Lock Timer
 – Keep a watchful eye on OS metrics and resource consumption in all 3 tiers
Gather Diagnostic Data

Start with *MOS Doc 1121043.1* for How-to & Best Practices

- **SQL Tuning**
 - Trace files
 - SQLT output (mos: 215187.1)
 - Trace Analyzer (mos: 224270.1)
 - AWR Report (mos: 748642.1)
 - 11g SQL Monitor Report
 - AWR SQL Report (awrsqrpt.sql)
- **PL/SQL Tuning**
 - Product logs
 - PL/SQL Profiler (mos: 808005.1)
- **Reports Tracing** (mos: 111311.1)

- **Database Tuning**
 - AWR Report (mos: 748642.1)
 - ADDM report (mos: 250655.1)
 - Active Session History (ASH)

- **Forms Tuning**
 - Forms Tracing (mos: 373548.1)
 - FRD Log (mos: 445166.1)
 - Generic note (mos: 438652.1)

- **Middletier Tuning**
 - JVM Logs
 - JVM Sizing/Tuning (mos: 362851.1, 278868.1)

- **OS** - OSWatcher (mos: 301137.1)
Start

Obtain a "Good" SQL Trace

Time in the DB? NO

Time in SQL Execution? NO

Get PL/SQL Profiler Report

Get AWR & OS Stats

Analyze AWR

Take Remedial Actions

- Search for Known Issues
 - Send all diagnostic data and analysis to Support/Dev

Clear Bad Execution Plan? NO

Analyze Execution Plans

Get SQLTTRACT, 11g Mon Report

End

Performance OK? NO

Product Issue? YES

YES

End
Performance Triage & Resolution

- Check for Known Issues & Available Fixes/Workarounds - MOS
- Check the basics
 - Version levels
 - Required Configuration
 - `Init.ora`: Notes 396009.1 (R12) & 216205.1 (11i)
 - Latest patch levels
 - Recommended Patch lists in MOS, OAM
 - Also check for product specific notes
- Best Practices in Performance for EBS
Tuning the Applications
Tuning the Applications

• Patch Current
 – Apply latest Release Update Packs
 • Release 12.1.3: Patch 9239090 : MOS Doc: 1080973.1
 • Release 12.0 - RUP6: Patch 6728000 : MOS Doc: 743368.1
 – Apply the latest EBS Family Packs + Recommended Patch List
 • Patching & Maintenance Advisor: (EBS) 11i and R12 (MOS Doc 313.1)
 • OAM Patch Wizard
 – “Recommended Performance Patches for the Oracle E-Business Suite”, MOS Doc 244040.1
 • Recommended performance patches for all the modules and tech stack components are consolidated in this note
Tuning the Applications

• Stay Current
 – Upgrade techstack components to the latest certified levels
 For example (as of Aug/2011), for R12 => Database 11.2.0.2, Forms 10.1.2.3, OC4J 10.1.3.5, JDK 6, etc
 • http://blogs.oracle.com/stevenChan/resource/certifications.html
Tuning the Applications

• Performance Best Practices
 – Purge & Archive
 • Implement a regular purge process including transient data as well as obsolete transactional data
 • Purge old data before performing upgrades
 • Many documented standard programs available
 – ~260 purge programs in R12
 • Purge Portal
 – Purge programs can be configured, initiated and monitored
 • Set the execution frequency as well view history of purge programs
 – R12: programs tagged with the “Purge” program type
Tuning the Applications

- **System Administrator** > Oracle Applications Manager > Purging/Critical Activities
Tuning the Applications

• Performance Best Practices
 – Logging
 • FND: Debug Log Enabled - Set it to ‘Yes’ (12.0 RUP3+, 12.1.x)
 • FND: Debug Log Level - Set to Unexpected (Level=6)
 • Query **FND_LOG_MESSAGES** to check the logging traffic
 • With above profile configuration
 – If the query shows a large number of rows being created, there could be exceptions and errors which need to be investigated
Tuning the Applications

• Performance Best Practices
 – Workflow
 • For background engines via Concurrent Manager, set the ‘Process Stuck’ parameter to ‘No’
 – Identification of stuck workflows is resource intensive
 – Start a separate background engine to handle stuck/timed out processes with a low frequency –i.e. once a day
 • Use deferred activities to improve online response times for flows such as Scheduling, PO Document Approval, etc.
 • Purge runtime data (Conc Program: FNDWFPR)
 – Can run by ITEM_TYPE
 – Monitor/Troubleshoot old workflows not properly closed
 – Purge frequently
Tuning the Applications

• Performance Best Practices
 – Workflow
 • Run `$FND_TOP/sql/wffngen.sql` to translate the activity function calls into static calls
 – Edit & add heavily used ITEMTYPES
      ```plsql
def itemtypeList_t ('WFSTD','FNDFFWF')
```
 – Generates `wffncal2b.pls` in `utl_file_dir` to re-create pkg
 • Disable retention on Workflow Queues
 – `DBMS_AQADM.ALTER_QUEUE(queue_name=>'b1',retention_time=>0);`
 • Partition runtime tables for higher scalability – MOS Doc: 260884.1
 • For high volume batch processing in RAC use ITEM_TYPE to Node affinity
Tuning the Applications

• Performance Best Practices
 – Order Management
 • R12 OM Performance Fixes & Configuration Options to speed up processing: MOS Docs 849060.1 & 130511.1
 • Use streamlined workflows
 – Consider seeded workflow: “Line Flow Generic: Performance”
 – Removes unnecessary activities and sub-processes, reducing WF data significantly
 • Use Deferred tax & credit check
 • For online booking speed, consider deferring scheduling –MOS Doc 421314.1
 • Configurator should be setup to use a separate pool of JVMs
Tuning the Applications

• Performance Best Practices
 – Order Management
 • For online order entry, use the Quick Sales Order Form - OEXOETEL
 • Disable Debugging
 – OM: Debug Level, set to 0 for OFF
 – QP: Debug Mode, set to Request Viewer Off
 – WSH: Debug Enabled, set to No
 – WSH: Debug Level, set to 0 for OFF
 • Set “MRP: Calculate Supply Demand” to No
 – Only enable for a user session if detailed supply / demand data needs to be reviewed in an ATP Inquiry
Tuning the Applications

• Performance Best Practices
 – Financials
 • *Account Analysis & Journal Entries Report* – MOS Doc 983063.1
 – Troubleshoot & Tune XML generation – BI Publisher
 – Recommended Performance Fixes
 – Debug, Scalable Flags and Memory setting recommendations – OOM Issues
 • *Subledger Accounting & Accounting Hub* - MOS Doc 791049.1
 – Recommended Performance Fixes
 – Custom Indexing guidelines
 – Optimize # of Processors, Processing Unit Size & Event Class ordering
 – Payables specific fixes in MOS Doc 1271365.1
Tuning the Applications

- **Performance Best Practices**
 - **Financials - AR**
 - Profile Option: AR: AutoInvoice Gather Statistics
 - Set to "NO" once representative stats have been gathered for RA_INTERFACE* tables
 - Index trx flexfields for headers & lines used in validation
 - interface_line_attributeN columns
 - Parallelize Batch flow
 - By supplied parameters where possible
 - e.g. Autoinvoice
 - Manually by data sets if needed
 - e.g. Rev Rec, AutoReceipts/Remittance, Auto-accounting (R12)
• **Runtime Performance Testing Tips**
 – Use Automated, scripted tools
 • EBS Test Started Kits (Winrunner/QTP)
 – Bundled QA based automated scripts for EBS testing - Patch 8408886
 • Oracle Applications Testing Suite (Accelerators for EBS)
 – Web and Forms based flows
 – Complement with user participation tests and batch load tests with frequent and critical jobs
 – References

Upgrade Performance Best Practices
R12 Upgrade Best Practices

• **Reduce Downtime**
 – Apply latest RUPs for ATG/AD/OAM prior to upgrade
 – Prepare a complete list of pre and post patches and recommended code levels including CUP - Critical Upgrade Patches
 • e.g. EBS R12.1 CUP1 (7303029:12.1.0), FIN upgrade patches from 1127593.1
 – Take advantage of patch merge & hot patching of help/nls portions
 – Use OAM reports & Patch Wizard
 – Use Shared APPL_TOP with Distributed AD
 – Use Staged APPL_TOP
R12 Upgrade Best Practices

• Reduce Downtime
 – Plan and execute pre-upgrade activities in separate windows
 • Migrate to OATM
 • DB Upgrade
 • Steps described in "Downtime reduction" and “Upgrade By Request” appendices E and G of the R12.1 upgrade guide
 • Other H/W and OS planned changes
 – Purge Data aggressively and re-gather Statistics close to start of actual upgrade downtime
R12 Upgrade Best Practices

- **Database tier configuration**
 - Maximize SGA and PGA sizing
 - An upgrade only involves 10's of concurrent sessions; starting rules of thumb ...
 - log buffer = 30 to 100 Mb
 - shared pool = 1 to 4 Gb
 - pga target = 3 to 20 Gb
 - buffer cache = multi Gb, be generous without causing excessive paging or swapping
 - Adjust with help from AWR pool advisories
R12 Upgrade Best Practices

• **Database tier configuration**
 – Other upgrade specific init.ora changes
 • If specified, remove `db_file_multiblock_read_count`
 – Maximize multiblock I/O sizes
 • Set `job_queue_processes = # of CPUS`
 – `adobjcmp.sql` (Phases : plb+90 and last+63)
 • Set `parallel_max_servers = 2 X CPUs`
 – Helps with large index creation, stats gathering and some large upg+ phase jobs
 – Need to test with production-like DB server and I/O subsystem
 – Shutdown other RAC instances
R12 Upgrade Best Practices

Batch size and #workers

- **Batch size**
 - 10K is suitable for most installs, you can test other values from 1K up to 100K if time allows

- **# Workers**
 - Starting rule-of-thumb is between 1 and 1.5 x #CPUs
 - It is critical to do multiple rounds of testing, adjusting above settings to maximize server utilization, but constrained by factors such as:
 - Memory utilization (no swapping/ excessive paging)
 - CPU utilization (scale down if at 100%)
 - I/O response times (scale down if averages > 20 ms)
R12 Upgrade Best Practices

- **Performance testing, monitoring and additional optimizations...**
 - Analyze long runners via timing report, ad_task_timing analysis
 - Mine ad_task_timing to identify low worker utilization due to phasing waits and review responsible culprits
 - Review targeted AWR Instance and SQL reports
 - awrrpt.sql and awrsqrpt.sql
 - Use My Oracle Support to check for known issues and workarounds for the longest running jobs
Tuning the Database
Tuning the Database Tier – Configuration

• Ensure mandatory init.ora parameters are set correctly
 – MOS Docs 396009.1 & 216205.1 (R12 & 11i respectively)
 – Use AWR advisories to optimize SGA/PGA sizing

• Required Patches & Fixes/Workarounds for Known Issues
 – Recommended Performance Patches -MOS Doc 244040.1
 – Required Patching – Interoperability Notes
 • 11gR1 Certified with 11i and R12 – MOS Docs 452783.1 & 735276.1
 • 11gR2 Certified with 11i – MOS Doc 881505.1
 • 10gR2 Uptake patch bundle 8362683, MOS Doc 791049.1
Tuning the Database Tier – Configuration

• Use key Database features
 – Auto Memory Management
 • Exception – Linux HugePages – MOS Doc 744769.1
 – System Managed Undo
 – Auto Segment Space Management
 – PL/SQL Native Compilation

• Convert to the OATM Tablespace Model
 – Consolidates # of Apps tablespaces from 400 to ~12
 • MOS Doc 248857.1
 – Best practices: LMT, ASSM, groups objects by size/type/access pattern
 – Migration utility can be used to migrate a schema at a time
 – Use AUTOALLOCATE extent sizes
Tuning the Database Tier – Disk IO

• I/O Optimization
 – Configure & verify direct IO is used if using file system datafiles
 • Improves performance/scalability by simulating raw devices, avoiding file system cache traffic
 – Ensure your IO subsystem can handle your peak IO load & IOPS
 • RAID, S.A.M.E. configs with sufficient spindles
 • Measure with ORION tool or in 11g
 DBMS_RESOURCE_MANAGER.CALIBRATE_IO – MOS Doc 727062.1
 – Reduce the IO workload
 • Tune expensive SQL
 • Trim the workload of unnecessary tasks
 • Do 3X less IO on average with 11g Advanced Compression Option
Tuning the Database Tier – Statistics Gathering

- Use only FND_STATS or the Gather Schema / Table Statistics Concurrent Programs
 - Rule-based optimizer (RBO) is no longer supported.
 - Do NOT USE the analyze or dbms_stats command directly. It is not supported, and can result in sub-optimal plans
 - Gather Schema Statistics concurrent program is used fnd_stats does the bookkeeping for the run.
 - We also recommend FND_STATS because of its support for histograms.

- Use the GATHER_AUTO option to gather incrementally

- Analyze all schemas at 10%, then specific objects at x%
 - Due to data skew, some tables benefit from higher sampling %
 - For 11g, can use value of zero (AUTO_SAMPLE_SIZE)
Tuning the Database Tier – Statistics Gathering

• Disable the 10g/11g automatic job to gather stats

• Consider locking stats for very volatile tables once a representative set is gathered
 – Some Interface tables
 – Other examples: ap_selected_invoices, wsh_pr_workers
 – Use FND_STATS.LOAD_XCLUD_TAB to skip the table

• Histograms can be seeded by calling to fnd_stats.load_histogram_cols.

• Do not gather statistics excessively on entire schemas or the entire database such as nightly or weekly
Tuning the Database Tier – Statistics Gathering

- FND_STATS now supports Database 11g Extended Stats. The Multi-Column Statistics statistics are used by Oracle to estimate the combined selectivity of the predicates.

- Multi-Column Stats can be seeded by calling FND_STATS.LOAD_EXTNSTATS_COLS. FND_STATS Schema/Table stats will take care of the gathering stats on Multi-Column stats.

- 11g Extended Stats FND_STATS Patch 9470196. Also, in patch set 9962815.
Tuning the Database Tier – Performance Management

- Establish baselines for different workloads
 - Use AWR baselines & diff reports
 - DBMS_WORKLOAD_REPOSITORY or Enterprise Manager
 - OS metrics with tools such as OS Watcher – MOS Doc 301137.1
 - Timings/Traces for critical flows & concurrent programs

- Use 11g’s SQL Performance Analyzer (SPA) & SQL Plan Management features (SPM)
 - Change management performance impact
 - Stabilize execution plans as needed & quickly restore “good” plans while analysis and permanent solutions are found
Tuning the Database Tier - AWR

- Regularly Review Automatic Workload Repository data
- Review Top 5 Timed Events section to determine utilization & bottlenecks and review relevant detailed sections for these

Top 5 Timed Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Waits</th>
<th>Time(s)</th>
<th>Avg Wait(ms)</th>
<th>% Total Call Time</th>
<th>Wait Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>latch free</td>
<td>31,342,490</td>
<td>613,374</td>
<td>20</td>
<td>58.0</td>
<td>Other</td>
</tr>
<tr>
<td>CPU time</td>
<td>386,590</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>db file sequential read</td>
<td>13,474,726</td>
<td>37,319</td>
<td>3</td>
<td>3.5</td>
<td>User I/O</td>
</tr>
<tr>
<td>latch: cache buffers chains</td>
<td>2,270,036</td>
<td>12,802</td>
<td>6</td>
<td>1.2</td>
<td>Concurrency</td>
</tr>
<tr>
<td>db file scattered read</td>
<td>434,296</td>
<td>6,151</td>
<td>14</td>
<td>.6</td>
<td>User I/O</td>
</tr>
</tbody>
</table>
Tuning the Database Tier - AWR

• For latch related waits
 – Often due to non-sharable SQL, sub-optimal SQL which performs full table or full index scans, dynamic object creation/removal, etc.
 – Review the latch Statistics section to determine the hot latches
 – Trace some waiter and holder sessions to determine actual cause

• For I/O related waits
 – Review SQL sections by Logical/Physical reads and the Segment Statistics sections by I/O

• For enqueue related or buffer busy waits
 – Review the following sections: enqueue, segment statistics by buffer busy waits, row lock & ITL waits
Tuning the Database Tier - AWR

• **Link AWR with ASH data**
 – Map sessions & SQL to main bottlenecks
 – Query Active Session History (ASH) data
 – Enable tracing for a few of the sessions with heavy waits determine the actual cause and SQL statements.
 – Review the Advisory sections in AWR to fine tune SGA & PGA
 – Correlate top SQL in AWR to business flows
 – Produce and review SQL AWR reports for top SQLs (awrsqrpt.sql)
 – Monitor OS Stats (included in 11g AWR)
 • CPU and Memory Utilization & Paging, I/O statistics & response times
Tuning the Database Tier – DB Console
Tuning the Database Tier – DB Console

```sql
SELECT item_id, item_description, inventory_item_id, item_identifier_type, decode (item_identifier_type, '1', 'CUST', '2', item_identifier_type) item_identifier_type Meaning, inventory_item_id, Address, cust_address, item_definition_level from oe_items_v where (UPPER(item) LIKE '%3 AND (ITEM LIKE '%4 OR ITEM LIKE '%5 OR ITEM LIKE '%6 OR ITEM LIKE '%7)) AND ((sold_to_org_id = :8 OR sold_to_org_id is null) AND (item_status = 'ACTIVE' OR item_status IS NULL) AND (cross_ref_status = 'ACTIVE' OR cross_ref_status IS NULL)) ORDER BY item
```

Execution Plan

<table>
<thead>
<tr>
<th>Operation</th>
<th>Object Type</th>
<th>Order</th>
<th>Number of Rows</th>
<th>KB Cost</th>
<th>Time (seconds)</th>
<th>CPU Cost</th>
<th>IO Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT STATEMENT</td>
<td>VIEW</td>
<td>46</td>
<td>31.793</td>
<td>27</td>
<td>17414759</td>
<td>26</td>
<td>383366</td>
</tr>
<tr>
<td>SORT ORDER BY</td>
<td>VIEW</td>
<td>47</td>
<td>31.793</td>
<td>27</td>
<td>17414759</td>
<td>26</td>
<td>383366</td>
</tr>
<tr>
<td>UNION-ALL</td>
<td>VIEW</td>
<td>45</td>
<td>31.793</td>
<td>27</td>
<td>17414759</td>
<td>26</td>
<td>383366</td>
</tr>
<tr>
<td>NESTED LOOPS OUTER</td>
<td>VIEW</td>
<td>30</td>
<td>10.322</td>
<td>15</td>
<td>166450</td>
<td>15</td>
<td>222040</td>
</tr>
<tr>
<td>NESTED LOOPS OUTER</td>
<td>VIEW</td>
<td>27</td>
<td>10.263</td>
<td>12</td>
<td>142969</td>
<td>12</td>
<td>212084</td>
</tr>
<tr>
<td>NESTED LOOPS</td>
<td>VIEW</td>
<td>24</td>
<td>10.196</td>
<td>11</td>
<td>127676</td>
<td>11</td>
<td>167059</td>
</tr>
<tr>
<td>NESTED LOOPS OUTER</td>
<td>VIEW</td>
<td>21</td>
<td>10.15</td>
<td>10</td>
<td>112153</td>
<td>10</td>
<td>141107</td>
</tr>
<tr>
<td>NESTED LOOPS OUTER</td>
<td>VIEW</td>
<td>18</td>
<td>10.113</td>
<td>9</td>
<td>95490</td>
<td>9</td>
<td>122074</td>
</tr>
<tr>
<td>NESTED LOOPS</td>
<td>VIEW</td>
<td>15</td>
<td>10.114</td>
<td>8</td>
<td>880017</td>
<td>8</td>
<td>115745</td>
</tr>
</tbody>
</table>
Tuning the Database Tier –
Common corrective actions to maximize scalability

• If bottleneck is IO related...
 (db file sequential read, db file scattered read, log file sync, free buffer waits, etc...)
 – Tune Top SQL is always the first step
 – Maximize Memory availability, allocate generously to buffer cache, review
 AWR advisories & monitor swapping & paging
 – Use ASM or alternatively use the SAME methodology for db files
 – IO Sub-system:
 • RAID 10 still preferred most often for high end requirements Ideal avg.
 response times of < 10ms.
 – Check for excessive/redundant indexing
 – Configure async IO, use quick IO technologies
Tuning the Database Tier –
Common corrective actions to maximize scalability

• If the bottleneck is concurrency related
 (enq%, latch%, buffer busy%, etc)
 – Use global hash-partitioned indexes for hot leaf blocks - Identify via AWR "Top logical IOs by Segment"
 – Some of these waits are commonly caused by bad SQL execution plans
 – i.e. : `latch: cache buffer chains, %buffer busy waits, read by other session`
 – Make sure to use ASSM and OATM tablespace model.
 – Increase INITRANS to alleviate ITL contention
 – Increase sequence caches
 – Work with support/consulting to evaluate if table/index partitioning will help
 – If the program allows, more frequent commits (batch size) can help by reducing the CR (consistent read) work required
Tuning the Database Tier –
Common corrective actions to maximize scalability

• If the bottleneck is RAC related ...

 \((gc\%, \ global\%, \ etc...)\)

 – First do all the steps mentioned previously...
 – Check interconnect configuration -- Use Jumbo frames.
 – Do not use parallel query/dml across nodes
 • Use instance_groups & parallel_instance_groups settings
 – Review Parallel Concurrent Processing & Application Affinity config
 • 12.1.3 introduced option to define node affinity at the program level – Concurrent -> Program -> Define
 – Perform RAC focused AWR analysis …
Tuning the Database Tier –
Common corrective actions to maximize scalability

• RAC AWR Analysis
 1. Verify SQL execution is optimized – 10046 trace/SQL Monitoring
 2. Collect AWR data from all instances
 - awrgrpt.sql and awrgdrpt.sql (cluster-wide base and diff reports)
 3. Verify IO, CPU utilization and Interconnect messaging performance are within acceptable limits
 4. Drill down on cluster wait events + “SQL order by Cluster Waits”
 5. Correlate SQL executions on all instances accessing/modifying top segments in Segment Statistics by
 • Global Cache Buffer Busy & Buffer Busy Waits
 • CR/Current Blocks Received
 • Logical Reads
To get full value from tracing...

- Raw trace must be
 - A complete, non-truncated trace file
 *** DUMP FILE SIZE IS LIMITED TO 12345 BYTES***
 - From before the user action began To the point the DB session ends**
- Tkprof output MUST have
 - Runtime Execution Plans and Row Counts & Row Source Stats
 - Run Time Execution Plan = “Row Source Operation” != “Explain Plan”
- Best practices, detailed how-to steps & recommended tracing patches documented
 - MOS Doc 1121043.1
 - Also review Appendix B – Getting In-Memory partial runtime stats
Tuning the Database Tier – Good TKPROF

<table>
<thead>
<tr>
<th>call</th>
<th>count</th>
<th>cpu</th>
<th>elapsed</th>
<th>disk</th>
<th>query</th>
<th>current</th>
<th>rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parse</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Execute</td>
<td>7674758</td>
<td>780.79</td>
<td>728.70</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fetch</td>
<td>7674758</td>
<td>6328.78</td>
<td>6757.80</td>
<td>225987</td>
<td>153846532</td>
<td>0</td>
<td>7674758</td>
</tr>
<tr>
<td>total</td>
<td>15349517</td>
<td>7009.58</td>
<td>7486.52</td>
<td>225987</td>
<td>153846533</td>
<td>0</td>
<td>7674758</td>
</tr>
</tbody>
</table>

Misses in library cache during parse: 1
Misses in library cache during execute: 1
Optimizer mode: ALL_ROWS
Parsing user id: 173 (recursive depth: 2)

<table>
<thead>
<tr>
<th>Rows</th>
<th>Row Source Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7674758</td>
<td>SORT AGGREGATE (cr=153846532 pr=225987 pw=0 time=7174772779 us)</td>
</tr>
<tr>
<td>7675089</td>
<td>NESTED LOOPS (cr=153846532 pr=225987 pw=0 time=6919378560 us)</td>
</tr>
<tr>
<td>7675089</td>
<td>SORT UNIQUE (cr=123146176 pr=162809 pw=0 time=6083080435 us)</td>
</tr>
<tr>
<td>55878643</td>
<td>TABLE ACCESS BY INDEX ROWID AR_TRX_COGS_GT (cr=123146176 pr=162809 pw=0 time=5577872837 us)</td>
</tr>
<tr>
<td>136390387</td>
<td>INDEX RANGE SCAN AR_TRX_COGS_N1 (cr=23439707 pr=37706 pw=0 time=2136416980 us) (object id..</td>
</tr>
<tr>
<td>7675089</td>
<td>TABLE ACCESS BY INDEX ROWID RA_CUSTOMER_TRX_LINES_ALL (cr=30700356 pr=63178 pw=0 time=539908369 us)</td>
</tr>
<tr>
<td>7675089</td>
<td>INDEX UNIQUE SCAN RA_CUSTOMER_TRX_LINES_U1 (cr=23025267 pr=2820 pw=0 time=196155435 us) (object ..</td>
</tr>
</tbody>
</table>
Tuning the Database Tier

• Why upgrade EBS to Oracle 11g
 – Internal tests show 10-20% improvement in EBS batch & reporting workloads
 – Significant RAC Performance improvements
 – Oracle internal’s production EBS system on 11gR1;
 • 11gR2 scheduled for the summer
 – Lower cost with Advanced compression, better/automated diagnostics, lower-risk upgrade with SPM/RAT/SPA …
 – Best Practices/Tips white papers
 • twp_upgrading_10g_to_11g_what_to_expect_from_optimizer.pdf
11g SQL Tracing Enhancements

– New tracing parameter PLAN_STAT
 • first_execution | all_executions | adaptive*
– Connection pool problem to get row source stats is solved
– Key tracing patches* listed on MOS Doc 1121043.1
– Turn trace on for just 1 or a list of sql_id’s
– With real-time row source stats monitoring from v$sql_plan_statistics
 – no more waiting hours for a complete trace to get the right trace data

– Expanded event syntax :
 - alter session set events ‘sql_trace [sql:a5ks9fhw2v9s1|56bs32ukywdsq] …
 - sql_trace wait=true | false, bind=true | false, planstat=never | first_execution | all_executions | adaptive level = 1| 4| 8| 12 | 16
11g Automatic SQL Monitoring & Tuning

Monitored SQL Execution Details

Overview
- **SQL ID**: 34h5Qpv0wxpm
- **Execution Started**: Sun Aug 23, 2009 12:43:09 PM
- **Last Refresh Time**: Sun Aug 23, 2009 12:50:29 PM
- **Execution ID**: 16777216
- **User**: DBTEST
- **Fetch Calls**: 0

Time & Wait Statistics
- **Duration**: 7.3m
- **Database Time**: 1.9h
- **PL/SQL & Java**: 0.0s
- **Wait Activity %**: 100%

IO Statistics
- **Buffer Gets**: 71M
- **IO Requests**: 1479K
- **IO Bytes**: 486GB
- **Cell Offload Efficiency**: -44.93%

Details

- **Plan Hash Value**: 3296879776

Operation Details

<table>
<thead>
<tr>
<th>Operation</th>
<th>Name</th>
<th>Estim Cost</th>
<th>Timel</th>
<th>Exec</th>
<th>Act</th>
<th>Mem</th>
<th>Tel</th>
<th>IO Req</th>
<th>Cell</th>
<th>CPU Activity %</th>
<th>Wait Activity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE TABLE STATEMENT</td>
<td></td>
</tr>
<tr>
<td>PX COORDINATOR</td>
<td></td>
</tr>
<tr>
<td>PX SEND QC (RANDOM)</td>
<td>TQ10000</td>
<td>724M</td>
<td>151K</td>
<td>16</td>
<td>1667</td>
<td>442MB</td>
<td>1021K</td>
<td>79</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOAD AS SELECT</td>
<td></td>
</tr>
<tr>
<td>PX BLOCK ITERATOR</td>
<td></td>
</tr>
<tr>
<td>TABLE ACCESS STORAGE FULL</td>
<td>ROLLUP_TBL_H</td>
<td>724M</td>
<td>151K</td>
<td>16</td>
<td>750M</td>
<td>457K</td>
<td>11</td>
<td>21</td>
<td>2.39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11g Performance Enhancements

• Optimizer improvements
 – SPM (SQL Plan Management) – quick relief while permanent solution arrives
 – Better density estimates for skewed data
 – Faster, more accurate statistics with AUTO_SAMPLE_SIZE
 – Extended statistics - address predicate correlation
 – Adaptive cursor sharing – to address bind peaking issues

• Some others...
 – Interval partitioning, Additional partitioning schemes
 – Text indexing performance enhancements
 – RAC scales better & AWR is more RAC aware
 – Many others..
References
References

- R12.1 documentation roadmap (790942.1)
- “Oracle E-Business Suite Release 12.1 Info center” (806593.1)
- Database preparation guidelines for R12.1 upgrade (761570.1)
- Patching FAQs (459156.1, 225165.1)
- Using staged or shared APPL_TOP and distributed AD (734025.1, 384248.1, 236469.1)
- OAM “Patch Wizard” overview and FAQ (976188.1, 976688.1)
- AD Command Line Options for Release R12 (1078973.1)
- EBS 12.1.3 Data Model Comparison Report (1290886.1)
- Recommended Performance Fixes (244040.1)
- R12 Upgrade Sizing & Best Practices (399362.1)
Oracle Products Available Online

Oracle Store

Buy Oracle license and support online today at oracle.com/store
Hardware and Software
Engineered to Work Together
San Francisco 2011
October 2–6
Register and Exhibit Now! oracle.com/openworld