Contents

Preface .. v

1 Installing Oracle CODASYL DBMS
 1.1 Oracle CODASYL DBMS on OpenVMS I64 1–1
 1.2 Database Format Changed ... 1–1
 1.3 Using Databases from Releases Earlier Than V7.0 1–2
 1.4 Installation .. 1–2
 1.4.1 Requirements ... 1–2
 1.4.2 Pre-installation Steps 1–2
 1.4.3 Invoking VMSINSTAL .. 1–2
 1.4.4 Stopping the Installation 1–3
 1.4.5 Post-installation Steps 1–3
 1.4.6 VMS$MEM_RESIDENT_USER Rights Identifier Required 1–3

2 Enhancements Provided in ORACLE CODASYL DBMS Release 7.2.0.2
 2.1 Backup File Encryption ... 2–1
 2.1.1 Commands Accepting /ENCRYPT 2–2
 2.1.2 Examples .. 2–2

3 Problems Corrected
 3.1 Bugchecks at KOD$START + 0000080C 3–1
 3.2 Invalid Log File Logical Name Causes RCS to Terminate 3–1
 3.3 Active User Count Incorrect As ABS Starts and Stops 3–2
 3.4 Reduced CPU Usage and Improved Performance of CRC and Checksum Calculations ... 3–2
 3.5 Inconsistent Snapshot Results Using COMMIT TO JOURNAL 3–2
 3.6 Access Violation during DBO/COPY_DATABASE 3–3
 3.7 Incorrect Journal (CurrEof) Displayed by DBO/SHOW STATISTICS 3–3
 3.8 Row Cache Latching Enhancements and Corrections 3–3

4 Known Problems and Restrictions
 4.1 Features Not Yet Available for OpenVMS I64 4–1
 4.2 Oracle CODASYL DBMS and IEEE Floating Point Support 4–1
 4.3 Expect Additional Memory Consumption 4–1
 4.4 ILINK-E-INVOVRINI Error on I64 4–2
 4.5 SYSTEM-F-INSFMEM Fatal Error With SHARED SYSTEM MEMORY or LARGE MEMORY Enabled in Galaxy Environment 4–2
 4.6 Oracle CODASYL DBMS and OpenVMS ODS-5 Volumes 4–3
 4.7 Carryover Locks and NOWAIT Transaction Clarification 4–4
5 New Features and Corrections in Previous Releases

5.1 New Features for Release 7.2.0.1 .. 5–1
5.1.1 Oracle Media Management V2.0 API for Oracle CODASYL DBMS 5–1
5.1.1.1 New LIBRARIAN Qualifier .. 5–1
5.1.1.2 New DBO/LIBRARIAN Command 5–3
5.1.1.3 Opaque Archive Application 5–4
5.1.1.4 DBO Backup Streams ... 5–4
5.1.1.5 Data Stream Naming Considerations 5–5
5.1.1.6 Logical Names To Access LIBRARIAN Application 5–5
5.1.1.7 Limitations .. 5–6
5.2 Corrections in Release 7.2.0.1 5–6
5.2.1 DBO/RECOVER Bugchecks in KUTREC$ABORT 5–6
5.2.2 Monitor Bugchecks at MON$SEND_REPLY + 0000008C 5–7
5.2.3 Memory Leak in Bind/Unbind 5–7
5.2.4 DBO/OPEN Maximum Global Buffer Count Check Corrected 5–8
5.2.5 Reduced CPU Usage and Improved Performance 5–8
5.3 New Features for Release 7.2 5–8
5.3.1 Default Floating Point Format 5–8
5.3.2 HP Compilers on OpenVMS I64 5–9
5.3.3 DBO/SHOW LOCKS Includes Time and Node Name 5–9
5.3.4 Database Server Process Priority Clarification 5–10
5.3.5 DBM$BIND_MAX_DBR_COUNT Documentation Clarification 5–10
5.3.6 Maximum Page and Buffer Size Increases 5–11
5.3.7 No File-System Caching When Writing Database and AIJ Backup Files .. 5–11
5.3.8 Performance: Improved Rollback Performance 5–11
5.3.9 64-bit Statistics .. 5–12
5.3.10 Maximum Global Buffer Count Increased 5–12
5.3.11 MACRO-32 Compiler for OpenVMS I64 5–12
5.3.12 DBO Operator Notification Syntax Change 5–12
5.3.13 Support for ACE (AIJ Cache on Electronic disk) Removed 5–14
5.3.14 Logical DBM$BIND_RW_TX_CHECKPOINT_ADVANCE Removed .. 5–14
5.3.15 TRANSPORT Added to DBO/REPLICATE AFTER 5–14
5.3.16 DBO/BACKUP/MULTITHREAD Support For /DENSITY = SDLT320 .. 5–14
5.3.17 DBO SHOW LOCKS /RESOURCE_TYPE Qualifier 5–14
5.4 Corrections in Release 7.2 .. 5–16
5.4.1 DBO/SHOW STATISTICS Enhanced Navigation Between Row Caches ... 5–16
5.4.2 Bugcheck at KODSUNBIND 5–17
5.4.3 DBO/SHOW LOCKS Limits Relaxed 5–17
5.4.4 Support for Fortran-95 compiler 5–17
5.4.5 Restoring Non-Snapshot Database with Snap=Enabled 5–17
5.4.6 Problems Mixing Stream and Non-Stream DML within the Same Image .. 5–18
Tables

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–1</td>
<td>Encrypt Keywords</td>
<td>2–2</td>
</tr>
<tr>
<td>5–1</td>
<td>Server Process Priority Logical Names</td>
<td>5–10</td>
</tr>
<tr>
<td>5–2</td>
<td>RESOURCE_TYPE keywords</td>
<td>5–15</td>
</tr>
</tbody>
</table>
Purpose of This Manual

This manual contains release notes for Oracle CODASYL DBMS release 7.2.0.2. The notes describe changed and enhanced features, upgrade and compatibility information, new and existing software problems and restrictions, and software and documentation corrections.

Intended Audience

This manual is intended for use by all Oracle CODASYL DBMS users. Read this manual before you install, upgrade, or use Oracle CODASYL DBMS release 7.2.0.2.

Document Structure

This manual consists of the following chapters:

Chapter 1 Describes how to install Oracle CODASYL DBMS release 7.2.0.2.
Chapter 2 Describes new and changed features in Oracle CODASYL DBMS release 7.2.0.2.
Chapter 3 Describes problems fixed in Oracle CODASYL DBMS release 7.2.0.2.
Chapter 4 Describes problems, restrictions, and workarounds known to exist in Oracle CODASYL DBMS release 7.2.0.2.
Chapter 5 Describes new features and fixed problems in previous releases.

Conventions

Oracle CODASYL DBMS is often referred to as DBMS in this manual.

HP OpenVMS Industry Standard 64 for Integrity Servers is often referred to as OpenVMS I64.

OpenVMS refers to both OpenVMS Alpha and OpenVMS I64.
Installing Oracle CODASYL DBMS

All Oracle CODASYL DBMS release 7.2.0.2 kits are full kits. There is no requirement to install any prior release of Oracle CODASYL DBMS prior to installing this release.

1.1 Oracle CODASYL DBMS on OpenVMS I64

In addition to the HP OpenVMS Alpha platform, Oracle CODASYL DBMS is available on the HP OpenVMS Industry Standard 64 for Integrity Servers platform. In general, the Oracle CODASYL DBMS functionality is comparable between the two platforms.

This release provides a full set of Oracle CODASYL DBMS functionality for both platforms, including local and remote database access, as well as native DML and DDL operations. This means that users running on OpenVMS I64 can create Oracle CODASYL DBMS databases, compile, link, and run their database applications natively.

Because the Oracle CODASYL DBMS database format is the same across all supported platforms, you can, for example, back up an Oracle CODASYL DBMS database on an Alpha system, then restore it on an I64 system (the reverse is also true). If necessary, implicit forward conversions are performed to bring the database version to the currently installed level.

With remote access, you can bind to an Oracle CODASYL DBMS database on an Alpha system from an I64 system, or vice versa, as long as the appropriate Oracle CODASYL DBMS software is available on both platforms.

Additionally, if your environment consists of Alpha and I64 systems in a mixed cluster environment, you can access an Oracle CODASYL DBMS release 7.2.0.2 database from either system, or both systems concurrently.

1.2 Database Format Changed

Starting with field test version T7.2-05 of Oracle CODASYL DBMS, the on-disk database format has been incremented to version 721. You must execute a DBO/CONVERT command on those databases created or accessed by prior DBMS 7.2-05 field test kits, as well as DBMS release 7.0 or 7.1.

Prior to upgrading to Oracle CODASYL DBMS release 7.2.0.2, and prior to converting an existing database to the 7.2.0.2 format, Oracle strongly recommends that you perform a full database verification (with the DBO/VERIFY command) along with a full database backup to ensure a valid and protected database copy.
1.3 Using Databases from Releases Earlier Than V7.0

You cannot convert or restore databases from versions earlier than 7.0 directly. The DBO CONVERT command for Oracle CODASYL DBMS V7.2.0.2 supports conversions from V7.0 and V7.1 only.

If you have a V3.3 through V6.1 database, you must convert it to at least V7.0 and then convert it to V7.2.0.2 in two steps. For example, if you have a V4.2 database, install the latest update to DBMS 7.0, convert the database to that version, install DBMS 7.2.0.2 then convert the v7.0 database to V7.2.0.2.

If you attempt to convert or restore a database version prior V7.0 directly to V7.2.0.2, Oracle DBO generates an error.

1.4 Installation

Install this software update using the standard OpenVMS Install Utility.

1.4.1 Requirements

One of the following conditions must be met in order to install this software:

- OpenVMS Alpha version 8.2 or later
- OpenVMS I64 version 8.2-1 or later.

The installation requires approximately 110,000 blocks for OpenVMS Alpha systems.

The installation requires approximately 280,000 blocks for OpenVMS I64.

1.4.2 Pre-installation Steps

If there are any pre-existing versions of Oracle CODASYL DBMS release 7.2 on the target system, you must shut down that Oracle CODASYL DBMS monitor before beginning the installation. If you are installing the multiversion kit, no other Oracle CODASYL DBMS monitors need to be stopped for this installation. If you are installing the standard version of DBMS release 7.2.0.2, you must stop any standard version monitor.

To stop the Oracle CODASYL DBMS 7.2.0.2 monitor, issue the command:

$ @SYS$STARTUP:MONSTOP72.COM

To stop the Oracle CODASYL DBMS standard monitor, issue the command:

$ @SYS$STARTUP:MONSTOP.COM

In an OpenVMS cluster environment, you must execute either procedure on each cluster member where the monitor is started.

1.4.3 Invoking VMSINSTAL

The installation procedure for Oracle CODASYL DBMS is the same for OpenVMS Alpha or OpenVMS I64 systems. The Installation Guide is available on the kit in saveset A.

The full Oracle CODASYL DBMS 7.2 Installation Guide is also available on MetaLink in Adobe Acrobat PDF format.

To begin the installation of Oracle CODASYL DBMS for OpenVMS Alpha, issue the command:

@SYS$UPDATE:VMSINSTAL DBM07202A072 device-name
To begin the installation of Oracle CODASYL for OpenVMS I64, issue the command:

@SYS$UPDATE:VMSINSTAL DBM072021072 device-name

Device-name is the name of the device on which the media is mounted. If the device is a disk drive, you also need to specify a directory. For example:

DKA400:[DBM.KIT]

1.4.4 Stopping the Installation

To stop the installation procedure at any time, press Ctrl/Y. When you press Ctrl/Y, the installation procedure deletes all files it has created up to that point and exits. You can then start the installation again.

If the VMSINSTAL procedure detects any problems during the installation, it notifies you and a prompt asks if you want to continue. You might want to continue the installation to see if any additional problems occur. However, the copy of Oracle CODASYL DBMS installed will probably not be usable.

1.4.5 Post-installation Steps

After installing Oracle CODASYL DBMS release 7.2.0.2, you must convert any database created before release 7.2-0 that you wish to access with this software.

To convert an existing Oracle CODASYL DBMS database to release 7.2.0.2, perform one of the following steps:

- issue the DBO/CONVERT[/NOCOMMIT] command to perform an explicit convert, for example:

 $ DBO/CONVERT PARTS

- back up and restore the database to perform an implicit convert:

 $ DBO/BACKUP/MULTITHREAD PARTS PARTS.DBF
 $ @SYS$LIBRARY:DBMSETVER 7.2
 $ DBO/RESTORE/MULTITHREAD PARTS.DBF

The backup and restore method is a good way to migrate an existing Oracle CODASYL DBMS database from an Alpha system to an I64 system.

1.4.6 VMSSMEM_RESIDENT_USER Rights Identifier Required

Oracle CODASYL DBMS release 7.1 introduced additional privilege enforcement for the database or row cache qualifiers MEMORY_MAPPING=SYSTEM and LARGE_MEMORY. If a database utilizes any of these features then the user account that opens the database must be granted the VMSSMEM_RESIDENT_USER rights identifier. Also, any process attempting to change these attributes, to convert, or restore a database with these attributes enabled must also hold the right.

Oracle recommends that the DBO/OPEN command be used when utilizing these features.
2

Enhancements Provided in ORACLE CODASYL
DBMS Release 7.2.0.2

This chapter describes new and changed features in Oracle CODASYL DBMS release 7.2.0.2.

2.1 Backup File Encryption

Oracle CODASYL DBMS supports encryption of .DBF backup files and .AIJ after-image journal backup files using the new /ENCRYPT qualifier.

Encryption can help increase the level of security on backup data that leaves your security domain or premises. To provide a higher level of security, the backup files are always encrypted with a unique internal key. Even though you may use the same DBO command to back up the same data, the encrypted file differs from the previous backup. This is transparent to the user. The same key is used to decrypt the data.

This feature uses the OpenVMS ENCRYPT component which is included with the operating system starting with OpenVMS V8.2. All encryption algorithms supported by OpenVMS ENCRYPT can be used with DBO. Review the online help and the ENCRYPT documentation for details and supported encryption algorithms. The OpenVMS ENCRYPT component must be installed prior to using the /ENCRYPT qualifier with DBO commands.

The process of encryption takes readable data, called plaintext, and uses a mathematical algorithm to transform the plaintext into an unreadable, unintelligible form, called ciphertext.

To encrypt the plaintext data, the encryption operation requires a key. The key is a variable that controls the encryption operation. The same plaintext, encrypted with different keys, results in different ciphertext. In addition, repeated encryption of the same plaintext with the same key also results in different ciphertext each time.

To gain access to the data in an encrypted file, reverse the encryption process by performing the decryption process. Decryption uses a mathematical encryption algorithm to change ciphertext into the original plaintext.

You can either specify an encryption key value directly in the DBO command line or predefine a key with the DCL ENCRYPT/CREATE_KEY command and use the key name instead in the DBO command line.

Warning

If you cannot remember the encryption key you have effectively lost all data in the encrypted file.
2.1.1 Commands Accepting /ENCRYPT

The /ENCRYPT qualifier is available for the following commands:

- DBO/BACKUP/MULTITHREAD
- DBO/RESTORE/MULTITHREAD
- DBO/RECOVER
- DBO/DUMP/BACKUP/MULTITHREAD
- DBO/BACKUP/AFTER_JOURNAL
- DBO/DUMP/AFTER_JOURNAL
- DBO/OPTIMIZE

Note

After-image journal backup files have to be in the new tape format (/FORMAT=NEW_TAPE) in order to specify the /ENCRYPT qualifier.

The /ENCRYPT qualifier has the following format:

```
Encrypt=[[Value=|Name=],[Algorithm=]]
```

Table 2–1 Encrypt Keywords

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME=key-name</td>
<td>Required if you do not specify key-value. Existing key name previously created and stored in the key storage table with the ENCRYPT /CREATE_KEY command. Specify either the name or the value of a key, but not both.</td>
</tr>
</tbody>
</table>
| VALUE=key-value | Required if you do not specify key-name. Interactively defines a value for the key. Specify one of the following:
 - Character string enclosed in quotation marks ("").
 - 1 to 243 alphanumeric characters. Dollar signs and underscores are valid. Hexadecimal constant using the digits 0 to 9 and A to F.
 Specify either the name or the value of a key, but not both. |
| ALGORITHM=DESCBC | Algorithm used to encrypt the initialization vector and the key you supply. The default is DESCBC. |

For details on the Value, Name and Algorithm parameters review the *Encryption for OpenVMS Installation and Reference Manual*.

2.1.2 Examples

The following example creates a backup file that is encrypted with the specified key value string and the default encryption algorithm.

```
$ DBO/BACKUP/MULTITHREAD/ENCRYPT=(VALUE="My secret key") - MYDB.ROO MYBACKUP.DBF
```
This backup would be restored using a command similar to this example:

```
$ DBO/RESTORE/MULTITHREAD/ENCRYPT={VALUE="My secret key"} -
    MYBACKUP.DBF
```

The following example creates a backup file that is encrypted with the specified key name and the default encryption algorithm.

```
$ ENCRYPT /CREATE_KEY /LOG HAMLET -
    "And you yourself shall keep the key of it"
$ ENCRYPT-S-KEYDEF, key defined for key name = HAMLET
$ DBO/BACKUP/MULTITHREAD/ENCRYPT=NAME=HAMLET MYDB.ROO MYBACKUP.DBF
```

This backup would be restored using a command similar to this example:

```
$ DBO/RESTORE/MULTITHREAD/ENCRYPT=NAME=HAMLET MYBACKUP.DBF
```
This chapter describes software errors corrected in Oracle CODASYL DBMS release 7.2.0.2.

3.1 Bugchecks at KOD$START + 0000080C

BUG 5059527

Beginning in release 7.1.4.3, it was possible to get bugchecks with the following exception:

***** Exception at 0193578C : KOD$START + 0000080C
%COSI-F-BUGCHECK, internal consistency failure

In release 7.1.4.3, the routine KOD$START was modified to check that a Transaction Sequence Number (TSN) was not assigned a value of zero. If a TSN of zero was assigned, then this bugcheck would occur.

This problem was caused by a small race condition in the code responsible for determining the oldest TSN in the database. Occasionally, if multiple processes were accessing the global oldest TSN location at the same time, the code would incorrectly determine that the oldest TSN was zero.

The only way to completely avoid the problem is to use a previous version of Oracle CODASYL DBMS. The incidence can be reduced by setting the number of cluster nodes for the database to a value greater than one. By doing so, performance features that rely on the number of nodes being one, such as row cache, are disabled. Also, if the system is not part of a cluster, then setting the number of cluster nodes to a value greater than one will have no effect.

This problem has been corrected in Oracle CODASYL release 7.2.0.2. The race condition that led to a TSN of zero being assigned has been eliminated.

3.2 Invalid Log File Logical Name Causes RCS to Terminate

Bug 5125792

In prior versions of Oracle CODASYL DBMS, the Row Cache Server (RCS) process could fail to correctly start if the RCS log file could not be created.

For example, if the DBM$BIND_RCS_LOG_FILE logical name was defined with an invalid or inaccessible device or directory specification, the RCS process could fail while starting. The monitor log file would contain the entry “%DBM-F-RCSABORTED, record cache server process terminated abnormally” and user processes would be terminated with the status “%DBM-F-TERMINATE, database recovery failed—access to database denied by monitor”.

Problems Corrected
This problem has been corrected. The Row Cache Server (RCS) process now matches the behavior of the other database server processes (such as the database recovery service (DBR)) and will continue running without a log file if the log file cannot be created.

3.3 Active User Count Incorrect As ABS Starts and Stops

Bug 5134756

In prior versions of Oracle CODASYL DBMS, the statistics counter NUM_ACTIVE was not correctly decremented when the AIJ Backup Server (ABS) process completed a backup. This would lead to an ever-increasing value for the number of users as shown by the DBO /SHOW STATISTICS utility.

This problem has been corrected. The AIJ Backup Server (ABS) process correctly adjusts the active user counter when it exits.

3.4 Reduced CPU Usage and Improved Performance of CRC and Checksum Calculations

Several performance enhancements to CRC and checksum calculations have been implemented in this release of Oracle CODASYL DBMS. CRC and checksum calculations are used during database page reading and writing and for DBO backup and restore operations. The enhancements include:

- More aggressive CPU cache prefetching
- Promotion of memory fetches from longword to quadword
- More aggressive loop unrolling
- Streamlined instruction sequences

3.5 Inconsistent Snapshot Results Using COMMIT TO JOURNAL

BUG 5024150

When the COMMIT TO JOURNAL OPTIMIZATION feature was enabled, it was possible for processes executing READ ONLY transactions to get inconsistent results when reading from the database. The problem could be encountered when the following sequence of events occurred:

1. A READ ONLY transaction starts.
2. A READ WRITE transaction starts.
3. The READ WRITE transaction deletes a record and then commits.
4. The READ WRITE transaction inserts a record reusing the space freed by the previous delete, and commits.
5. The READ ONLY transaction attempts to read the record just deleted from or inserted into the database.

In the above sequence of events, the READ ONLY transaction would conclude that the record was deleted instead of using the contents of the record that were current at the time that the READ ONLY transaction started.

Utilities that use READ ONLY transactions, such as online backups or verifies, could also encounter the problem. Online backups would back up an empty record instead of the old contents. Online verifies would typically return index or invalid pointer errors.
This problem can be avoided by disabling the COMMIT TO JOURNAL OPTIMIZATION option.

This problem has been corrected in Oracle CODASYL DBMS release 7.2.0.2.

3.6 Access Violation during DBO/COPY_DATABASE

An infrequent and intermittent access violation during a DBO/COPY_DATABASE process that only occurred on the VMS Integrity platform has been fixed. The problem occurred in the thread scheduling code and caused the stack to get corrupted and the thread context to be lost. This caused a system access violation. This problem only occurred in a narrow window where two or more threads could interfere with each other.

The following example shows the system access violation occurring while copying a database on the VMS Integrity platform.

```
DBO/COPY/LOG/ONLINE TEST_DATABASE/DIR=DEVICE:[DIRECTORY]-/ROOT=DEVICE:[DIRECTORY] /SNAPSHOT=(ALLOCATION=10)
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=00000000000000B0, PC=FFFFFFFF800C3B00, PS=0000001B
```

This problem has been corrected in Oracle CODASYL DBMS release 7.2.0.2.

3.7 Incorrect Journal (CurrEof) Displayed by DBO/SHOW STATISTICS

BUG 5195930

In release 7.2.0.1, the DBO/SHOW STATISTICS utility would show the physical size of the journal instead the actual current journal end-of-file. For example, the following shows the EOF at 5120 when it should have shown a smaller number:

```
Node: RANDM4 (1/1/1) Oracle DBMS V7.2-011 Perf. Monitor 29-APR-2006 18:00:42.47
Rate: 3.00 Seconds AIJ Journal Information Elapsed: 00:00:39.78
Page: 1 of 2 RANDOM:RNDDB.ROO;1 Mode: Online
--------------------------------------------------------------------------------
Journaling: enabled Shutdown: 60 Notify: disabled State: Accessible
ARB.Count: 300 ARB.Avail: 300 SwtchSched: 0 NxtSwtch: 0
J1 151 5120 5120 Current Accessible
```

The DBO/DUMP/HEADER=JOURNAL command can be used to get the correct journal end-of-file.

This problem has been corrected in Oracle CODASYL DBMS release 7.2.0.2.

3.8 Row Cache Latching Enhancements and Corrections

In prior releases of Oracle CODASYL, it was possible for row cache hash latches to be incorrectly held causing hangs. To help avoid these problems, the two latching mechanisms within the row cache feature have been corrected to help eliminate possible race conditions and errant latches without matching unlatches.

In addition, for those hash latches that experience higher levels of contention, the built-in stall timer used between polls of the latch has been reduced to allow more responsive detection of the latch being released.
Customers are reminded that setting caches to DBO/CACHE/[MODIFY | ADD] /NOREPLACEMENT allows multiple processes to scan internal row cache hash chains simultaneously. This can improve cache search performance for heavily utilized caches.

Finally, a new show statistics screen, “Cache Latch Information”, may provide additional debugging information.
This chapter describes problems and restrictions relating to Oracle CODASYL DBMS release 7.2.0.2 and includes workarounds where appropriate.

4.1 Features Not Yet Available for OpenVMS I64

The following features or capabilities or components are not currently available to run or are known to not run reliably on OpenVMS I64 with this Oracle CODASYL DBMS field test release.

- Ada compiler and Oracle Rdb ADA precompilers
- PL/I compiler and Oracle Rdb PL/I precompilers

4.2 Oracle CODASYL DBMS and IEEE Floating Point Support

Currently, Oracle CODASYL DBMS does not support floating point IEEE formats for either OpenVMS Alpha or OpenVMS I64. Because of the default float point behavior on OpenVMS IA64, if your Oracle CODASYL DBMS metadata contains floating point data items, you must compile your OpenVMS I64 applications with the FLOAT=G_FLOAT compiler switch.

Note

This restriction should not impact the storing or fetching float point items with the DBQ utility.

Oracle will look into lifting or easing this restriction for a future release.

For more information about IEEE floating point and OpenVMS I64, please refer to Section 5.3.1 in this document.

4.3 Expect Additional Memory Consumption

Due to the increased sizes of image files (especially on Integrity servers) and more aggressive buffering and caching schemes and larger I/O size defaults, you should expect to allocate additional page file quota, working set sizes and buffered I/O byte limit quota when using Oracle CODASYL DBMS release 7.2. In particular, when running on Integrity servers, a page file quota of perhaps three times larger may be required for some applications.
4.4 ILINK-E-INVOVRINI Error on I64

When linking an application with multiple modules, the following error message may be returned:

%ILINK-E-INVOVRINI, incompatible multiple initializations for overlaid section
 section: DBM$UWA_B
 module: M1
 file: DKA0:[BLD]M1.OBJ;1
 module: M2
 file: DKA0:[BLD]SYS.OLB;1

On I64 systems, you cannot have a program section that attempts to be initialized a subsequent time where the non-zero portions of the initializations do not match. This is a difference from OpenVMS Alpha and VAX systems where the linker permitted such initializations.

This can be seen when linking multiple FORTRAN DML modules, where some modules use the default (non-stream) UWA, and another uses a "naked" invoke, which only contributes an abbreviated contribution to the DBM$UWA_B psect.

For example, A.FOR contains:

```fortran
PROGRAM AFOR
   INVOKE (SUBSCHEMA = FORTRAN_SUBSCHEMA,
           1   SCHEMA = PARTS,
           2   DATABASE = PARTS)
   CALL BSUB()
END
```

B.FOR contains:

```fortran
SUBROUTINE BSUB
   INVOKE
   RETURN
END
```

On VAX or ALPHA, the above code will link and run correctly, However, on I64, the linker will generate the following:

%ILINK-E-INVOVRINI, incompatible multiple initializations for overlaid section
 section: DBM$UWA_B
 module: AFOR
 file: A.OBJ
 module: BSUB
 file: B.OBJ

4.5 SYSTEM-F-INSFMEM Fatal Error With SHARED SYSTEM MEMORY or LARGE MEMORY Enabled in Galaxy Environment

When GALAXY support is enabled in an OpenVMS Galaxy environment, a %SYSTEM-F-INSFMEM, insufficient dynamic memory error message may be returned when mapping row caches or opening the database. One source of this problem specific to a Galaxy configuration is running out of Galaxy Shared Memory regions. For Galaxy systems, GLX_SHM_REG is the number of shared memory region structures configured into the Galaxy Management Database (GMDB).

While the default value of 64 regions (for OpenVMS versions through at least V7.3-1) might be adequate for some installations, sites using a larger number of databases or row caches when the SHARED MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED features are enabled may find the default insufficient.
If a %SYSTEM-F-INSFMEM, insufficient dynamic memory error is returned when mapping record caches or opening databases, Oracle Corporation recommends that you increase the GLX_SHM_REG parameter by two times the sum of the number of row caches and number of databases that might be accessed in the Galaxy at one time. As the Galaxy shared memory region structures are not very large, setting this parameter to a higher than required value does not consume a significant amount of physical memory. It also may avoid a later reboot of the Galaxy environment. This parameter must be set on all nodes in the Galaxy.

____________________ Galaxy Reboot Required ________________________

Changing the GLX_SHM_REG system parameter requires that the OpenVMS Galaxy environment be booted from scratch. That is, all nodes in the Galaxy must be shut down and then the Galaxy reformed by starting each instance.

To enable Galaxy support, issue the command:

$ DBO/SET GALAXY/ENABLED <db>

To enable SYSTEM SHARED MEMORY, issue to command;

$ DBO/MODIFY/MEMORY_MAPPING=SYSTEM <db>

To enable LARGE MEMORY for record cache, issue the command:

$ DBO/CACHE/MODIFY/LARGE_MEMORY <db> <cache>

4.6 Oracle CODASYL DBMS and OpenVMS ODS-5 Volumes

The OpenVMS Version 7.2 release introduced an Extended File Specifications feature, which consists of two major components:

- A new, optional, volume structure, ODS-5, which provides support for file names that are longer and have a greater range of legal characters than in previous versions of OpenVMS.
- Support for “deep” directory trees.

ODS-5 was introduced primarily to provide enhanced file sharing capabilities for users of Advanced Server for OpenVMS 7.2 (formerly known as PATHWORKS for OpenVMS), as well as DCOM and JAVA applications.

In some cases, Oracle CODASYL DBMS performs its own file and directory name parsing and explicitly requires ODS-2 (the traditional OpenVMS volume structure) file and directory name conventions to be followed. Because of this knowledge, Oracle does not support any Oracle CODASYL DBMS database file components (including root files, storage area files, after-image journal files, record cache backing store files, database backup files, after-image journal backup files, and so forth) that utilize any non-ODS-2 file naming features. For this reason, Oracle recommends that Oracle CODASYL DBMS database components not be located on ODS-5 volumes.

Oracle CODASYL DBMS does support database file components on ODS-5 volumes provided that all of these files and directories strictly follow the ODS-2 file and directory name conventions. In particular, all file names must be specified entirely in uppercase and special characters in file or directory names are forbidden.
4.7 Carryover Locks and NOWAIT Transaction Clarification

In NOWAIT transactions, the BLAST (Blocking AST) mechanism cannot be used. For the blocking user to receive the BLAST signal, the requesting user must request the locked resource with WAIT (which a NOWAIT transaction does not do).

Oracle CODASYL DBMS defines a resource called NOWAIT, which is used to indicate that a NOWAIT transaction has been started. When a NOWAIT transaction starts, the user requests the NOWAIT resource. All other database users hold a lock on the NOWAIT resource so that when the NOWAIT transaction starts, all other users are notified with a NOWAIT BLAST.

The BLAST causes blocking users to release any carryover locks. There can be a delay before the transactions with carryover locks detect the presence of the NOWAIT transaction and release their carryover locks. You can detect this condition by examining the stall messages. If the "Waiting for NOWAIT signal (CW)" stall message appears frequently, the application is probably experiencing a decrease in performance, and you should consider disabling the carryover lock behavior.

4.8 Both Application and Oracle CODASYL DBMS Using SYSSHIBER

In application processes that use Oracle CODASYL DBMS and the $HIBER system service (possibly by RTL routines such as LIB$WAIT), it is important that the application ensures that the event being waited for has actually occurred. Oracle CODASYL DBMS uses $HIBER/$WAKE sequences for interprocess communications particularly when the ALS (AIJ log server) feature is enabled.

The Oracle CODASYL DBMS use of the $WAKE system service can interfere with other users of $HIBER (such as the routine LIB$WAIT) that do not check for event completion, possibly causing a $HIBER to be unexpectedly resumed without waiting at all.

To avoid these situations, consider altering the application to use a code sequence that avoids continuing without a check for the operation (such as a delay or a timer firing) being complete.

The following pseudo-code shows one example of how a flag can be used to indicate that a timed-wait has completed correctly. The wait does not complete until the timer has actually fired and set TIMER_FLAG to TRUE. This code relies on ASTs being enabled.
ROUTINE TIMER_WAIT:
BEGIN
! Clear the timer flag
TIMER_FLAG = FALSE

! Schedule an AST for sometime in the future
STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST)
IF STAT <> SS$NORMAL THEN BEGIN
 LIB$SIGNAL (STAT)
END

! Hibernate. When the $HIBER completes, check to make sure that TIMER_FLAG is set indicating that the wait has finished.
WHILE TIMER_FLAG = FALSE DO BEGIN
 SY$HIBER()
END
END

ROUTINE TIMER_AST:
BEGIN
! Set the flag indicating that the timer has expired
TIMER_FLAG = TRUE

! Wake the main-line code
STAT = SY$WAKE ()
IF STAT <> SS$NORMAL THEN BEGIN
 LIB$SIGNAL (STAT)
END
END

In OpenVMS V7.2, the LIB$WAIT routine has been enhanced through the FLAGS argument (with the LIB$K_NOWAKE flag set) to allow an alternate wait scheme (using the $SYNCH system service) that can avoid potential problems with multiple code sequences using the $HIBER system service.

4.9 Row Cache Not Allowed While Hot Standby Replication is Active

The row cache feature may not be enabled on a Hot Standby database while replication is active. The Hot Standby feature will not start if row cache is enabled.

A new command qualifier, /CACHE=NOENABLED, has been added to the DBO/OPEN command. To open the Hot Standby database prior to starting replication, use the /CACHE=NOENABLED qualifier on the DBO/OPEN command.

4.10 Exclusive Access Transactions May Deadlock with RCS Process

If a record is frequently accessed by long running transactions that request read/write access, reserving the record for exclusive update, and if the record has one or more indexes, you may experience deadlocks between the user process and the row cache server (RCS) process.

There are at least three suggested workarounds to this problem:
1. Reserve the record for CONCURRENT UPDATE.
2. Close the database and disable row cache for the duration of the exclusive transaction
3. Change the checkpoint interval for the RCS process to a time longer than the time required to complete the batch job and then trigger a checkpoint just before the batch job starts. Set the interval back to a smaller interval after the checkpoint completes.
5

New Features and Corrections in Previous Releases

5.1 New Features for Release 7.2.0.1

This section contains new features and technical changes for Oracle CODASYL DBMS release 7.2.0.1.

5.1.1 Oracle Media Management V2.0 API for Oracle CODASYL DBMS

Starting with this release, Oracle CODASYL DBMS supports the Oracle Media Management release 2.0 API. This interface permits backing up to and restoring from data archiving software applications supporting this interface. Examples of such applications include:

- LEGATO NetWorker(R) from LEGATO Systems, Inc. on the World Wide Web at http://www.legato.com/
- Archive Backup Client (ABC) for OpenVMS from STORServer Inc. on the World Wide Web at http://www.storserver.com/

More information on these products is available from the vendors.

5.1.1.1 New LIBRARIAN Qualifier

In order to provide the interface to Oracle Media Management API, a new qualifier, /LIBRARIAN, has been added to following DBO commands:

- DBO /BACKUP /MULTITHREAD
- DBO /BACKUP /AFTER_JOURNAL
- DBO /OPTIMIZE /AFTER_JOURNAL
- DBO /RESTORE /MULTITHREAD
- DBO /DUMP /AFTER_JOURNAL
- DBO /DUMP /BACKUP /MULTITHREAD
- DBO /RECOVER

DBO supports the retrieval using the /LIBRARIAN qualifier only for data that has been previously stored by DBO using the /LIBRARIAN qualifier.

The /LIBRARIAN qualifier accepts the following parameters:

- WRITER_THREADS=n
Specifies \(n \) writer threads to write \(n \) backup data streams to the LIBRARIAN. The database storage areas will be partitioned among the database streams. The streams will be named BACKUP_FILENAME.EXT, BACKUP_FILENAME.EXT02, BACKUP_FILENAME.EXT03, up to BACKUP_FILENAME.EXT99. BACKUP_FILENAME.EXT is the backup file name specified in the DBO command, excluding any specified device, directory, or version number. The default extension name is .DBF. The WRITER_THREADS parameter can only be specified for database backups. The default is one writer thread. The minimum is one thread; the maximum is 99 threads. If the value exceeds 99, the actual number of writer threads will be set to a value equal to the number of database storage areas.

- **READER_THREADS=n**
 Specifies \(n \) reader threads to read all the backup data streams from the LIBRARIAN created for the backup filename. The streams will be named BACKUP_FILENAME.EXT, BACKUP_FILENAME.EXT02, BACKUP_FILENAME.EXT03, up to BACKUP_FILENAME.EXT99. BACKUP_FILENAME.EXT is the backup file name specified in the DBO command, excluding any specified device, directory, or version number. The default extension name is .DBF. The READER_THREADS parameter can only be specified for database restores and dumps of databases stored by DBO in the LIBRARIAN. The default reader thread value of 1 is used for all other DBO commands that read data from the LIBRARIAN. The minimum READER_THREADS value is one; the maximum is 99.

 The number of READER_THREADS specified for a restore should be equal to or less than the number of WRITER_THREADS specified for the database backup. If it is not, the number of reader threads will be set by DBO to be equal to the number of data streams actually stored in the LIBRARIAN by the backup. If the number of READER_THREADS specified is less than the number of WRITER_THREADS, DBO will partition the data streams among the specified reader threads so that all data streams representing the database are restored. Each reader thread may read more than one data stream.

- **TRACE_FILE=file_specification**
 Specifies that the LIBRARIAN application will write trace data to the named file, if specified.

- **LEVEL_TRACE=#**
 Specifies the level number of the trace data written by the LIBRARIAN application (levels 0 through 2) or a higher level as defined by the LIBRARIAN application. Level 0 (trace all error conditions) is the default.

- **LOGICAL_NAMES=(logical_name=equivalence_value,...)**
 This parameter allows the user to specify a list of process logical names which the LIBRARIAN application may use to specify particular catalogs or archives for storing or retrieving backup files, LIBRARIAN debug logical names, and so on. See the LIBRARIAN-specific documentation for the definition of these logical names. The list of process logical names will be defined by DBO prior to the start of the backup or restore operation.
5.1.1.2 New DBO /LIBRARIAN Command

In addition to the /LIBRARIAN qualifier used with existing DBO commands, there is a new DBO /LIBRARIAN command. This command lets you list or delete data streams stored in the LIBRARIAN implementation based on the backup file name used for the DBO backup. The LIST and REMOVE options cannot be used together in the same DBO/LIBRARIAN command.

DBO /LIBRARIAN /LIST=(OUTPUT=disk:[directory]listfile.ext) FILENAME.DBF
DBO /LIBRARIAN /REMOVE=([NO]CONFIRM) FILENAME.DBF

FILENAME.DBF is the backup filename. Any device, directory, or version number specified with the backup file name will be ignored. The backup file name must be the same name previously used for an DBO backup to the LIBRARIAN. A default file type of .DBF is assumed if none is specified.

The following command qualifiers are supported:

- /LIST=(OUTPUT=disk:[directory]listfile.ext)

 The LIST qualifier used alone displays output to the default output device. If the OUTPUT option is used, output will be displayed to the specified file. All data streams existing in the LIBRARIAN that were generated for the specified backup name will be listed. The information listed for each data stream name may include:

 - The backup stream name based on the backup file.
 - Any comment associated with the backup stream name.
 - The creation method associated with the backup stream name. This will always be STREAM to indicate creation by a backup operation.
 - The creation date and time when the stream was backed up to the LIBRARIAN.
 - Any expiration data and time specified for deletion of the stream by the LIBRARIAN.
 - The media sharing mode which indicates if the media can be accessed concurrently or not. This is usually the case for disks but not tapes.
 - The file ordering mode which indicates if files on the media can be accessed in random order or sequential order.
 - Any volume label(s) for the media which contain the backup stream.

 ______________ Implementation Specific ______________

 Not all of these items will be listed depending on the particular LIBRARIAN implementation.

- /REMOVE=([NO]CONFIRM)

 Use this qualifier to delete all data streams existing in the LIBRARIAN that were generated for the specified backup name. This command should be used with caution. You should be sure that a more recent backup for the database exists in the LIBRARIAN under another name before using this command.
The CONFIRM option is the default. It will prompt you to confirm that you want to delete the backup from the LIBRARIAN. You can then reply Y(ES) to do the deletion or N(O) to exit the command without doing the deletion. Specifying NOCONFIRM will cause the deletion to be done without the confirmation prompt.

The following additional optional keywords can be specified with either the /LIST qualifier or the /REMOVE qualifier. They must be specified and have no defaults. These are the same options discussed earlier for the /LIBRARIAN qualifier used with other DBO commands such as /BACKUP/MULTITHREAD and /RESTORE/MULTITHREAD.

- TRACE_FILE=file_specification
- LEVEL_TRACE=n
- LOGICAL_NAMES=(logical_name=equivalence_value,...)

--- Oracle Media Manager Release 2.0 Interface ---

Only applications that conform to Oracle Media Manager V2.0 can be called using the /LIBRARIAN qualifier or the new DBO /LIBRARIAN commands.

5.1.1.3 Opaque Archive Application

The archive application is effectively an opaque black box for DBO commands; the backup file name is the identifier of the stream of data stored in the archive. The utilities and command procedures specific to the particular LIBRARIAN application must be used to associate devices with the stream of data sent to or retrieved from the archive by DBO. Device specific qualifiers such as /REWIND, /DENSITY or /LABEL cannot be used with this interface.

5.1.1.4 DBO Backup Streams

Each writer thread for a backup operation or reader thread for a restore operation manages its own stream of data. Therefore, each thread uses a unique backup file name generated from the backup file name specified on the command line. With the exception of the first file name, a number is incremented and added to the end of the backup file extension specified to the archive representing a unique data stream. This number is the equivalent of the volume number associated with non-LIBRARIAN DBO multithreaded backups and restores.

For example, if the following backup command is issued:

```
$DBO /BACKUP/MULTITHREAD /LIBRARIAN=(WRITER_THREADS=3) /LOG DB FILENAM.DBF
```

These backup file data stream names are specified to the archive:

```
FILENAME.DBF
FILENAME.DBF02
FILENAME.DBF03
```

The names identify the three streams of data stored in the archive by the three writer threads which together represent the stored database. Because each data stream must contain at least one database storage area and a single storage area must be completely contained in one data stream, if the number of writer threads specified is greater than the number of storage areas, it will be set equal to the number of storage areas.
If the following command is issued to restore the database:

$DBO /RESTORE/MULTITHREAD /LIBRARIAN=(READER_THREADS=3) /LOG FILENAM.DBF

These same three data stream backup file names, one name specified by each of the three reader threads, will be generated by DBO and sent to the archive application to retrieve all the data associated with the database.

In this example, the number of reader threads was equal to the number of writer threads specified on the backup. However, these values do not need to be the same. If the number of reader threads is fewer than the number of backup writer threads, one or more restore reader threads will restore more than one data stream. An algorithm is used that assigns the data streams so that each thread will have an approximately equal amount of work to do. If the number of reader threads specified is greater than the number of backup writer threads, the number of reader threads will be set equal to the number of backup writer threads.

5.1.1.5 Data Stream Naming Considerations

Data stream names representing the database are generated based on the backup file name specified for the DBO backup command. You must either use a different backup file name to store the next backup of the database to the LIBRARIAN application or first delete the existing data streams before the SAME backup file name can be reused for the next backup.

To delete the existing data streams stored in the LIBRARIAN implementation, use a LIBRARIAN management utility or the DBO /LIBRARIAN /REMOVE command with just the backup file name to delete all the data streams generated based on that name. If you want to avoid deleting a previous backup to the LIBRARIAN which used the same backup file name, you can incorporate the date or some other unique identifier in the backup file name when you do each backup to make it unique. Many LIBRARIAN implementations allow you to specify an automatic deletion date for each data stream stored in the archives.

5.1.1.6 Logical Names To Access LIBRARIAN Application

The following OpenVMS logical names are for use with a LIBRARIAN application. These logical names need to be defined before the DBO backup or restore command is executed and should not be included with the list of logical names specified with the /LIBRARIAN qualifier.

- **DBO$LIBRARIAN_PATH**

 This logical name must be defined to the file specification for the shareable LIBRARIAN image to be loaded and called by DBO backup and restore operations. The translation must include the file type (.EXE for example) and must not include a version number. The shareable LIBRARIAN shareable image referenced must be an installed (known) image. See the LIBRARIAN implementation documentation for the name and location of this image and how it should be installed.

 $ DEFINE /SYSTEM /EXECUTIVE_MODE -
 DBO$LIBRARIAN_PATH librarian_shareable_image.exe

- **DBO$DEBUG_SBT**

 This logical name is not required. If it is defined to any value, DBO will display debug tracing information messages from modules that make calls to the LIBRARIAN shareable image. This information may be helpful for support analysts from Oracle or your librarian vendor when analyzing
problems. See the LIBRARIAN documentation for any other logical names or setup procedures specific to the particular LIBRARIAN implementation.

5.1.1.7 Limitations

DBO commands used with the /LIBRARIAN qualifier may not specify a list of tape or disk devices. The qualifier accepts a backup file (DBF file) name. Any disk or device specification and version number specified with the backup file name is ignored for the backup file name specified to the archive. For example, device:[directory]FILENAME.DBF;1 is truncated to FILENAME.DBF when the backup file data is stored in or retrieved from the archive.

The /VOLUMES qualifier cannot be used on the DBO/RESTORE/MULTITHREAD command if the /LIBRARIAN qualifier is used. DBO automatically determines the number of data streams stored in the LIBRARIAN implementation based on the backup file name specified for the restore command and sets the volume number to the actual number of stored data streams. This helps to ensure that all data streams which represent the database are retrieved.

5.2 Corrections in Release 7.2.0.1

This section describes software errors corrected in Oracle CODASYL DBMS release 7.2.0.1.

5.2.1 DBO/RECOVER Bugchecks in KUTREC$ABORT

When recovering journals, it was possible for the DBO/RECOVER command to fail with an error similar to the following:

```
%DBO-E-RECFAILED, fatal, unexpected roll-forward error detected at AIJ record 1796212
%COSI-F-BUGCHECK, internal consistency failure
%DBO-F-PATALOSI, Fatal error from the Operating System Interface.
%DBO-F-FTL_RCV, Fatal error for RECOVER operation at 8-DEC-2005 08:04:39.41
```

The bugcheck dump contained the following exception:

```
***** Exception at 0071D198 : KUTREC$ABORT + 000005D8
%COSI-F-BUGCHECK, internal consistency failure
```

Examination of the bugcheck dump showed that there were journal entries that could not be applied:

```
$ SEARCH DBOBUGCHK.DMP "FAIJBL @"
FAIJBL @00C8BD40: MSN = 0. PSN = 0.
FAIJBL @00C8B900: MSN = 0. PSN = 0.
```

This particular problem would only occur when the fast commit
TIME_PER_CHECKPOINT= n feature was being used and the following events occurred:

1. A transaction made updates to the database
2. After the last change was made, but before the transaction was committed, the checkpoint timer expired, causing the checkpoint location to be set to “none”.
3. The process began committing the transaction, but was abnormally terminated after writing a commit entry to the after-image journal and before updating its TSNBLK entry in the database root (.ROO) file.
When the above sequence of events occurred, the database recovery process (DBR) would examine the last checkpoint location and mistakenly determine that the process had not committed the transaction since there was no checkpoint for the failed user. Consequently, the DBR would rollback the transaction. However, the journal would still show that the transaction had committed even though the changes were no longer in the database. If the database was later restored, and the journal was applied using the DBO/RECOVER command, DBO would attempt to apply the changes that were rolled back by the DBR to the database. However, it might not have been possible to apply those changes since the space freed when the DBR rolled back the transaction got reused by other transactions. That would cause the DBO/RECOVER command to fail.

This problem can be avoided by disabling the \texttt{TIME_PER_CHECKPOINT= n} feature.

This problem has been corrected in Oracle CODASYL DBMS release 7.2.0.1.

5.2.2 Monitor Bugchecks at MON\$SEND_REPLY + 0000008C

BUG 4961487

If a database used the AIJ Log Server (ALS) or Row Cache Server (RCS) processes, and the database monitor encountered an error when attempting to start those servers, then the monitor could fail with a bugcheck similar to the following:

```
***** Exception at 000E0BBC : MON\$SEND\_REPLY + 0000007C
%COSI\_P\_BUGCHECK, internal consistency failure
```

Examination of the monitor logfile would show that the monitor could not start a server. For example:

- sending user attach reply to 0000D369:1
- "%DBM_P_CANTCREALS, error creating AIJ Log Server process"
- "-SYSTEM_P_NOSLOT, no PCB available"

After encountering the error, the next attempt to attach to the database would result in the bugcheck.

This problem occurred because the monitor neglected to delete the data structure representing the user that had the failed attach attempt. When the server startup failed, an error processing path was used that did not properly delete the structure. When the monitor again attempted to send messages to waiting users it would attempt to send to the same user again, but that user was not in a state that would allow another message, resulting in the monitor bugcheck.

This is an exceptionally rare problem and would typically only be encountered when the system is low on resources.

This problem has been corrected in Oracle CODASYL DBMS release 7.2.0.1.

5.2.3 Memory Leak in Bind/Unbind

BUG 4866466

Every time a process would attach and detach from a database without exiting the main image, at least 104 bytes of memory would be lost.

The only way to avoid the problem is to periodically run down the main image and restart the application.

This problem has been corrected in Oracle CODASYL DBMS release 7.2.0.1.
5.2.4 DBO/OPEN Maximum Global Buffer Count Check Corrected

In the prior Oracle CODASYL DBMS 7.2 release, the DBO/OPEN command incorrectly limited the maximum allowed global buffer count to 524,288 rather than the expected value of 1,048,576.

This problem has been corrected.

5.2.5 Reduced CPU Usage and Improved Performance

Several performance enhancements have been implemented in this release of Oracle CODASYL DBMS. Most of these changes are either specific to applications running on OpenVMS I64 systems or will have a greater effect on OpenVMS I64 systems. These enhancements include:

- Reduction in use of queue related PAL code and/or PAL system services
- Reduced locking for exclusive database access
- Reduced alignment faults

5.3 New Features for Release 7.2

This section contains new features and technical changes for Oracle CODASYL DBMS release 7.2.

5.3.1 Default Floating Point Format

The Itanium architecture has a 64-bit model and basic system functions similar to the Alpha chip. However, there are some implementation differences between the two platforms that might affect user-written applications.

One of the differences is the availability of hardware-supported floating-point formats. The Itanium architecture implements floating-point arithmetic in hardware using the IEEE floating-point formats, including IEEE single and IEEE double. The Alpha architecture supports both IEEE and VAX floating-point formats in hardware, and OpenVMS compilers generate code using the VAX formats by default, with options (on Alpha) to use IEEE formats. Irrespective of whether it was originally written for VAX or Alpha, an OpenVMS application that uses the default VAX floating-point formats needs to produce equivalent behavior on the Itanium architecture using IEEE formats at the lowest level.

- On OpenVMS VAX and OpenVMS Alpha, VAX float is the default. VAX format data is assumed and VAX floating instructions are used.
- On OpenVMS Alpha, you can specify the compiler option /FLOAT=IEEE. In this case, IEEE format data is assumed and IEEE floating instructions are used.
- On OpenVMS I64, IEEE float is the default. IEEE format data is assumed and IEEE floating instructions are used.
- On OpenVMS I64, you can specify the compiler option /FLOAT=D_FLOAT or /FLOAT=G_FLOAT.

When you compile an OpenVMS application that specifies an option to use VAX floating-point on the Itanium architecture, the compiler automatically generates code for converting floating-point formats. Whenever the application performs a sequence of arithmetic operations, this code does the following:

1. Converts VAX floating-point formats to either IEEE single or IEEE double floating-point formats.
2. Performs arithmetic operations in IEEE floating-point arithmetic.
3. Converts the resulting data from IEEE formats back to VAX formats.

Note that where no arithmetic operations are performed (VAX float fetches followed by stores), conversions will not occur. The code handles such situations as moves. VAX floating-point formats have the same number of bits and precision as their equivalent IEEE floating-point formats. For most applications, the conversion process will be transparent. In a few cases, arithmetic calculations might have different results because of the following differences between VAX and IEEE formats:

- Values of numbers represented
- Rounding rules
- Exception behavior

For more information, Oracle recommends reviewing the white paper “OpenVMS floating-point arithmetic on the Intel Itanium architecture” available from HP.

5.3.2 HP Compilers on OpenVMS I64

The following compilers on OpenVMS I64 have been used with this release. It is expected that later compiler versions (and perhaps earlier ones) will continue to function correctly. Please contact HP for additional information.

- HP C V7.1-012
- HP COBOL V2.8-1414
- HP Fortran V8.0-48071
- I64 BASIC V1.6-000
- HP Pascal I64 V5.9-98-50F9M

5.3.3 DBO/SHOW LOCKS Includes Time and Node Name

Bug 4761828

The output of the DBO/SHOW LOCKS command has been enhanced to include the current date and time and the system node name in the header line as shown in the following example:

$ DBO /SHOW LOCKS

================================== SHOW LOCKS Information at 26-NOV-2005 09:29:01.21 on node RDBI64
==================================

Resource Name: AIJ journal control
Granted Lock Count: 7, Parent Lock ID: 180007FA, Lock Access Mode: Executive, Resource Type: Global, Lock Value Block: 00000013 00000000 00000000 00000000

. .

New Features and Corrections in Previous Releases 5–9
5.3.4 Database Server Process Priority Clarification

By default, the database servers (ABS, ALS, DBR, LCS, LRS, RCS) created by the DBMS monitor inherit their OpenVMS process scheduling base priority from the DBMS monitor process. The default priority for the DBMS monitor process is 15.

Individual server priorities can be explicitly controlled via system-wide logical names as described in Table 5–1.

<table>
<thead>
<tr>
<th>Logical Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBM$BIND_ABS_PRIORITY</td>
<td>Base Priority for the ABS Server process</td>
</tr>
<tr>
<td>DBM$BIND_ALS_PRIORITY</td>
<td>Base Priority for the ALS Server process</td>
</tr>
<tr>
<td>DBM$BIND_DBR_PRIORITY</td>
<td>Base Priority for the DBR Server process</td>
</tr>
<tr>
<td>DBM$BIND_LCS_PRIORITY</td>
<td>Base Priority for the LCS Server process</td>
</tr>
<tr>
<td>DBM$BIND_LRS_PRIORITY</td>
<td>Base Priority for the LRS Server process</td>
</tr>
<tr>
<td>DBM$BIND_RCS_PRIORITY</td>
<td>Base Priority for the RCS Server process</td>
</tr>
</tbody>
</table>

When the Hot Standby feature is installed, the DBMIALJSERVER account is created specifying an account priority of 15. The priority of AIJ server processes on your system can be restricted with the system-wide logical name DBM$BIND_AIJSRV_PRIORITY. If this logical name is defined to a value less than 15, an AIJ server process will adjust its base priority to the value specified when the AIJ server process starts. Values from 0 to 31 are allowed for DBM$BIND_AIJSRV_PRIORITY, but the process is not able to raise its priority above the DBMIALJSERVER account value.

For most applications and systems, Oracle discourages changing the server process priorities.

5.3.5 DBM$BIND_MAX_DBR_COUNT Documentation Clarification

The following is an updated description for the DBM$BIND_MAX_DBR_COUNT logical.

When an entire database is abnormally shut down (for example, due to a system failure), the database must be recovered in a node failure recovery mode. This recovery is performed by another monitor in the cluster if the database is opened on another node or is performed the next time the database is opened.

The DBM$BIND_MAX_DBR_COUNT logical name and the DBR_BIND_MAX_DBR_COUNT configuration parameter define the maximum number of database recovery (DBR) processes to be simultaneously invoked by the database monitor for each database during a node failure recovery. This logical name and configuration parameter apply only to databases that do not have global buffers enabled. Databases that utilize global buffers have only one recovery process started at a time during a node failure recovery.

In a node failure recovery situation with the Row Cache feature enabled (regardless of the global buffer state), the database monitor starts a single database recovery (DBR) process to recover the Row Cache Server (RCS) process and all user processes from the oldest active checkpoint in the database.
Per-Database Value

The DBM$BIND_MAX_DBR_COUNT logical name specifies the maximum number of database recovery processes to run at once for each database. For example, if there are 10 databases being recovered and the value for the DBM$BIND_MAX_DBR_COUNT logical name is 8, up to 80 database recovery processes would be started by the monitor after a node failure.

The DBM$BIND_MAX_DBR_COUNT logical name is translated when the monitor process opens a database. Databases must be closed and reopened for a new value of the logical to become effective.

5.3.6 Maximum Page and Buffer Size Increases

In previous releases, the maximum allowed database buffer size was 64 blocks and the maximum allowed database page size was 32 blocks. These limits have been increased. The current maximum allowed database buffer size is 128 blocks and the maximum allowed database page size is 63 blocks.

Be aware that using larger database buffer sizes will require additional virtual memory.

5.3.7 No File-System Caching When Writing Database and AIJ Backup Files

It is expected that the disk-based output file from a database or after-image journal backup operation may be relatively large, sequentially accessed, and not read in the near future. In order to avoid polluting the file system cache and to streamline file write operations, caching by the operating system is now explicitly disabled when writing these files. There is no effect on caches implemented in storage devices or controllers.

5.3.8 Performance: Improved Rollback Performance

This release of Oracle CODASYL DBMS introduces optimizations for rolling back transactions. These improvements affect the performance of ROLLBACK statements issued by an application and also the database recovery (DBR) process. A summary of the most significant changes are listed below:

• When reading the recovery-unit (RUJ) file, I/O operations are now done using 256-block buffers instead of reading one block at a time as was done in previous versions.

• Multiple buffers are now used to read the journal. While the contents of one buffer are being processed, data is being read into the next buffer asynchronously.

• When writing to the journal, RUJ data is copied directly into the RUJ I/O buffer from the storage area data page instead of being copied into an intermediate buffer and then to the RUJ buffer.

• When reading from the journal, journal entries are processed directly from the RUJ I/O buffer instead of being copied to an intermediate buffer first.

• When rolling back a transaction, the content of the RUJ buffer is scanned to determine what data pages will be rolled back, and I/Os are started to those pages immediately. That is, asynchronous prefetches (APF) are issued for pages that will be rolled back. As journal entries are processed, new prefetches are started for subsequent journal entries as soon as buffers
are available. This significantly reduces the time spent waiting for I/O completion.

- In previous releases, if a process failed and a DBR was started to recover the user, the DBR would scan the journal to locate the last entry in the journal. For large transactions, the scanning operation could take a considerable amount of time. In this release, the location of the last journal entry is maintained in shared memory. Now, when a DBR process is started it can immediately locate the last entry in the journal without having to scan the journal.

5.3.9 64-bit Statistics

In prior versions of Oracle CODASYL DBMS, statistics counters were maintained in 32-bit longword integers. This limited counters to a maximum value of 4,294,967,294. This limit could be exceeded and would cause counters to wrap back to zero.

Oracle CODASYL DBMS statistics counters have now been promoted to 64-bit quadword integers. This change affects the binary statistics output file format as well. Longword statistics counters have been promoted to quadwords.

Most field displays within the DBO/SHOW STATISTICS utility have not been widened and may overflow if the internal counter value exceeds the decimal display width.

5.3.10 Maximum Global Buffer Count Increased

Prior versions of Oracle CODASYL DBMS limited the total number of global buffers per database to 524,288. This limit has been relaxed. The maximum global buffer count allowed for Oracle CODASYL DBMS Release 7.2 is 1,048,576.

5.3.11 MACRO-32 Compiler for OpenVMS I64

For OpenVMS I64 only, you must use a MACRO-32 Compiler for OpenVMS I64 to compile any DBMS application compiled through the DML interface.

When compiling a host language DBMS module, the DML command automatically generates and compiles VAX MACRO code and appends the object module to object module of the host language.

On OpenVMS I64, you can specify the DML /NODELETE qualifier to review macro code generated for a module.

5.3.12 DBO Operator Notification Syntax Change

The DBO syntax to enable or disable system notification for certain database events was changed in DBMS release 7.1.0. Due to an omission, this new syntax was never documented.

In versions of DBMS prior to 7.1.0, the DBO operator notification facility was used to provide notification of after-image journal changes or problems that may occur during normal database activity. (Refer to the Oracle CODASYL DBMS Database Administration Reference Manual for more information). The syntax for the DBO/CREATE and DBO/MODIFY commands reflected this association between notifications and journaling:

Old Syntax:

$ DBO/CREATE/JOURNAL_OPTIONS=((NO)NOTIFY=(operator-name) db-name
$ DBO/MODIFY/JOURNAL_OPTIONS=((NO)NOTIFY=(operator-name) db-name

5–12 New Features and Corrections in Previous Releases
where operator-name was a list of one or more standard OpenVMS operator classes:

- CENTRAL
- CLUSTER
- CONSOLE
- DISKS
- OPER1
- OPER2
- OPER3
- OPER4
- OPER5
- OPER6
- OPER7
- OPER8
- OPER9
- OPER10
- OPER11
- OPER12
- SECURITY

Starting with DBMS 7.1.0, operator notification has been expanded to include non-journal related events (refer to the DBMS release 7.1-0 Release Notes for more details), including:

- Bugcheck notification
- Corrupt Page Table Additions
- Storage Area Extensions
- AIJ Fullness
- Server startup and termination messages

The old syntax is now obsolete. The syntax for enabling or disabling system notification has been changed to correspond to this new database-wide behavior.

New Syntax:

$ DBO/CREATE/ALERT_OPERATOR=(ENABLED=operator-name) db-name
$ DBO/CREATE/ALERT_OPERATOR=(DISABLED=operator-name) db-name
$ DBO/MOD/ALERT_OPERATOR=(ENABLED=operator-name) db-name
$ DBO/MOD/ALERT_OPERATOR=(DISABLED=operator-name) db-name

The ENABLED and DISABLED keywords can be combined within the same DBO command. The list of valid operator-names remains unchanged.
5.3.13 Support for ACE (AIJ Cache on Electronic disk) Removed

Prior versions of Oracle CODASYL DBMS provided support for a file called an AIJ cache on an electronic disk (also known as ACE) to use as a temporary cache for AIJ write operations. At one point in time, these devices provided a performance benefit for some classes of applications that heavily used the after-image journal.

With changes in technologies (in particular, improved I/O interfaces and various write-back caching schemes), the benefits of the ACE feature have declined to the point where it is no longer an effective performance advantage. This support has been removed in Oracle CODASYL DBMS release 7.2.

The database attribute JOURNAL_OPT=(CACHE...) is now ignored by the DBO /CREATE and DBO/MODIFY commands.

5.3.14 Logical DBM$BIND_RW_TX_CHECKPOINT_ADVANCE Removed

BUG 1584167

Prior to DBMS release 7.1.2, if the logical DBM$BIND_RW_TX_CHECKPOINT_ADVANCE was not defined to be 1, read/write transactions that did not make any database modifications would not advance their fast commit checkpoint location. In release 7.1.2, in response to BUG 2439694, the checkpointing code was restructured such that checkpoints may advance at the end of any transaction, whether or not the transactions made any database modifications. That change made the logical DBM$BIND_RW_TX_CHECKPOINT_ADVANCE no longer necessary. It has been removed.

5.3.15 TRANSPORT Added to DBO/REPLICATE AFTER

BUG 4109344

The TRANSPORT qualifier has been added to the DBO/REPLICATE AFTER START and CONFIGURE commands. This new qualifier allows the network transport to be specified. The valid values are DECNET and TCPIP. The specified network transport is saved in the database. For example:

$ DBO/REPLICATE AFTER CONFIGURE -
 /TRANSPORT=TCPIP /STANDBY=REMNOD::DEV:[DIR]STANDBY_DB M_TESTDB

In previous releases, you had to define the system-wide logical DBO$BIND_HOT_NETWORK_TRANSPORT in order to use TCP/IP as the network transport for Hot Standby.

5.3.16 DBO/BACKUP/MULTITHREAD Support For /DENSITY = SDLT320

The DBO/BACKUP/MULTITHREAD/DENSITY command now supports the SDLT320 keyword for use with SuperDLT320 tape drives.

5.3.17 DBO SHOW LOCKS /RESOURCE_TYPE Qualifier

Previously, the DBO /SHOW LOCKS command would display all lock resource types. This could sometimes result in a significant amount of output and could make it cumbersome to locate locks for specific types of resources.

This situation has been improved with the /RESOURCE_TYPE=(restyp...) qualifier. When this qualifier is present on the command line, only the specific resource types will be displayed. This permits, for example, only PAGE or RECORD lock types to be selected. This functionality is intended primarily as a debugging tool. Knowledge of the lock types and functionality of Oracle
CODASYL DBMS is assumed. Not all lock types will exist on all systems and versions of DBMS.

The following keywords are allowed with the /RESOURCE_TYPE qualifier.

Table 5–2 RESOURCE_TYPE keywords

<table>
<thead>
<tr>
<th>Internal Lock Type Name</th>
<th>Keyword(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS</td>
<td>ACCESS</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>AIJDB</td>
<td>AIJDB</td>
</tr>
<tr>
<td>AIJFB</td>
<td>AIJFB</td>
</tr>
<tr>
<td>AIJHWM</td>
<td>AIJHWM, AIJ_HIGH_WATER_MARK</td>
</tr>
<tr>
<td>AIJLOGMSG</td>
<td>AIJ_LOG_MESSAGE</td>
</tr>
<tr>
<td>AIJLOGSHIP</td>
<td>AIJ_LOG_SHIPPING</td>
</tr>
<tr>
<td>AIJOPEN</td>
<td>AIJ_OPEN</td>
</tr>
<tr>
<td>AIJSWITCH</td>
<td>AIJ_SWITCH</td>
</tr>
<tr>
<td>AIJ</td>
<td>AIJ</td>
</tr>
<tr>
<td>ALS</td>
<td>ALS_ACTIVATION</td>
</tr>
<tr>
<td>BCKAIJ</td>
<td>AIJ_BACKUP, BCKAIJ</td>
</tr>
<tr>
<td>BCKAIJ_SPD</td>
<td>AIJ_BACKUP_SUSPEND</td>
</tr>
<tr>
<td>BUGCHK</td>
<td>BUGCHECK</td>
</tr>
<tr>
<td>CHAN</td>
<td>CHAN, FILE_CHANNEL</td>
</tr>
<tr>
<td>CLIENT</td>
<td>CLIENT</td>
</tr>
<tr>
<td>CLOSE</td>
<td>CLOSE</td>
</tr>
<tr>
<td>CLTSEQ</td>
<td>CLTSEQ</td>
</tr>
<tr>
<td>CPT</td>
<td>CORRUPT_PAGE_TABLE, CPT</td>
</tr>
<tr>
<td>DASHBOARD</td>
<td>DASHBOARD_NOTIFY</td>
</tr>
<tr>
<td>DBK_SCOPE</td>
<td>DBKEY_SCOPE</td>
</tr>
<tr>
<td>DBR</td>
<td>DBR_SERIALIZATION</td>
</tr>
<tr>
<td>DB</td>
<td>DATABASE</td>
</tr>
<tr>
<td>FIB</td>
<td>FAST_INCREMENTAL_BACKUP, FIB</td>
</tr>
<tr>
<td>FILID</td>
<td>FILID</td>
</tr>
<tr>
<td>FRZ</td>
<td>FREEZE</td>
</tr>
<tr>
<td>GBL_CKPT</td>
<td>GLOBAL_CHECKPOINT</td>
</tr>
<tr>
<td>GBPT_SLOT</td>
<td>GLOBAL_BPT_SLOT</td>
</tr>
<tr>
<td>KROOT</td>
<td>KROOT</td>
</tr>
<tr>
<td>LOGFIL</td>
<td>LOGFIL</td>
</tr>
<tr>
<td>MEMBIT</td>
<td>MEMBIT</td>
</tr>
<tr>
<td>MONID</td>
<td>MONID, MONITOR_ID</td>
</tr>
<tr>
<td>MONITOR</td>
<td>MONITOR</td>
</tr>
<tr>
<td>NOWAIT</td>
<td>NOWAIT</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 5–2 (Cont.) RESOURCE_TYPE keywords

<table>
<thead>
<tr>
<th>Internal Lock Type Name</th>
<th>Keyword(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLN</td>
<td>DBKEY, RECORD, PLN</td>
</tr>
<tr>
<td>PNO</td>
<td>PAGE, PNO</td>
</tr>
<tr>
<td>QUIET</td>
<td>QUIET</td>
</tr>
<tr>
<td>RCACHE</td>
<td>RCACHE</td>
</tr>
<tr>
<td>RCSREQUEST</td>
<td>RCS_REQUEST</td>
</tr>
<tr>
<td>RCSWAITRQST</td>
<td>RCS_WAIT_REQUEST</td>
</tr>
<tr>
<td>REL_AREAS</td>
<td>RELEASE_AREAS</td>
</tr>
<tr>
<td>REL_GRIC_REQST</td>
<td>RELEASE_GRIC_REQUEST</td>
</tr>
<tr>
<td>ROOT_AREA</td>
<td>DUMMY_ROOT_AREA</td>
</tr>
<tr>
<td>RO_L1</td>
<td>L1_SNAP_TRUNCATION</td>
</tr>
<tr>
<td>RTUPB</td>
<td>RTUPB</td>
</tr>
<tr>
<td>RUJBLK</td>
<td>RUJBLK</td>
</tr>
<tr>
<td>RW_L2</td>
<td>L2_SNAP_TRUNCATION</td>
</tr>
<tr>
<td>SAC</td>
<td>SNAP_AREA_CURSOR</td>
</tr>
<tr>
<td>SEQBLK</td>
<td>SEQBLK</td>
</tr>
<tr>
<td>STAREA</td>
<td>STORAGE_AREA, PAREA</td>
</tr>
<tr>
<td>STATRQST</td>
<td>STATISTICS_REQUEST</td>
</tr>
<tr>
<td>TRM</td>
<td>TERMINATION</td>
</tr>
<tr>
<td>TSNBLK</td>
<td>TSNBLK</td>
</tr>
<tr>
<td>UTILITY</td>
<td>UTILITY</td>
</tr>
</tbody>
</table>

The RESOURCE_TYPE qualifier is incompatible with the MODE, LIMIT, LOCK and PROCESS qualifiers.

5.4 Corrections in Release 7.2

This section describes software errors corrected in Oracle CODASYL DBMS release 7.2.

5.4.1 DBO /SHOW STATISTICS Enhanced Navigation Between Row Caches

Bugs 4727723 and 3738511

Previously, when you used the DBO /SHOW STATISTICS “Row Cache Utilization”, “Hot Row Information”, “Row Cache Status”, “Row Cache Queue Length”, and “Row Length Distribution” displays, it was difficult to move between displays for multiple row caches.

This problem has been corrected. The end bracket (]) and begin bracket ([) keys can be used to scroll between row caches on these displays.
5.4.2 Bugcheck at KOD$UNBIND

Starting with Oracle CODASYL DBMS release 7.1.1.1, if a user attempted to UNBIND from an application or DBQ session without first terminating the transaction (COMMIT or ROLLBACK), a bugcheck would be generated and the process would be terminated.

This problem has now been fixed. Now, DBMS will raise a DBM-F-TRAN_IN_PROG exception, indicating that there is a transaction in progress, and allow the application to deal with the error.

5.4.3 DBO /SHOW LOCKS Limits Relaxed

Previously, the /LOCK= and /PROCESS= qualifiers of the DBO /SHOW LOCKS command were limited to 32 specified values.

This problem has been corrected. The /LOCK= and /PROCESS= qualifiers of the DBO /SHOW LOCKS command now accept up to 256 values each.

5.4.4 Support for Fortran-95 compiler

Until recently Oracle CODASYL DBMS only supported (and was supported by) HP's FORTRAN–77 compiler on OpenVMS Alpha. The DBMS FORTRAN precompiler did not function with either the later FORTRAN-90 (F90) or FORTRAN-95 (F95) compilers.

At first, when the F90 compiler started shipping, FORTRAN–77 was installed as the default and DBMS customers did not notice a problem. However, when the F95 compiler began shipping, it was installed as the default. As such, the FORTRAN command did not recognize the the /DML qualifier.

To get around this problem, you needed to specify the /OLD_F77 qualifier on the FORTRAN command line in order to compile DBMS FORTRAN applications (for example, FORTRAN/DML/OLD_F77...). The /OLD_F77 qualifier signified that you wanted to use the F77 compiler.

This problem has now been fixed. Starting with HP FORTRAN 8.0, DBMS 7.2 supports the F95 compiler and you no longer need to supply the /OLD_F77 qualifier.

The necessary changes to DBMS were also included in the DBMS V7.1-2 and V7.0-61 (and later) releases.

______________________________ Note ______________________________

NOTE: DBMS still only supports the fixed-form source model, not the free-form model available with the F90 compiler. Oracle will consider easing this restriction in a future release.

5.4.5 Restoring Non-Snapshot Database with Snap=Enabled

In Oracle CODASYL DBMS release 7.0 or 7.1, if you attempted to restore a non-snapshot database with the global qualifier SNAPSHOTS=ENABLED, you would receive the following warning:

$ DBO/RESTORE/SNAP=ENABLED PARTS
%DBO-W-NODBSNAPS, No snapshots allowed on database, /SNAP qualifiers ignored
However, internally, the database would be set to "Area does not have snapshots", but snapshots would be "enabled" (SNAPS_ALLOWED = 00 and SNAPS_ENABLED = 01). This inconsistency caused a dbmbugchk at PIO$READY when trying to start a read/write transaction.

This problem only affected single-threaded restores and has been corrected in this release.

The only workaround would be to:

• restore the current database backup without the SNAPSHOT qualifier;
• back up the damaged database and restore explicitly disabling snapshots (DBO/RESTORE/SNAPSHOTS=NOENABLED).

5.4.6 Problems Mixing Stream and Non-Stream DML within the Same Image

BUG 4121994

In previous versions of Oracle CODASYL DBMS, problems could arise running applications comprised of stream and non-stream modules linked together into the same image. The applications could generate run-time wrong results.

Specifically, starting with release 7.0.5.1, a “%DBM-F-ID_MAP, ID number mapping” run-time error may be returned.

This problem has now been fixed. You can mix stream and non-stream DML modules in the same image.

__________ Applies only to embedded DML applications __________

This fix only applies to modules containing embedded DML. There is still a long-standing restriction mixing stream and non-stream modules containing callable DBQ. Oracle will consider removing this restriction in a future release.

Example:

$ CREATE MAIN.FOR
$DBCK
C MAIN.FOR:
PROGRAM MAIN
external START_DEFAULT
external FETCH_DEFAULT
external END_DEFAULT
external START_STREAM
external FETCH_STREAM
external END_STREAM

CALL START_DEFAULT ()
CALL START_STREAM ()
CALL FETCH_DEFAULT ()
CALL FETCH_STREAM ()
CALL FETCH_DEFAULT ()
CALL END_DEFAULT ()
CALL END_STREAM ()
END

$EOD
$ CREATE STREAM.FOR
$DECK
C
--- ---
C
STREAM :
--- ---
C
SUBROUTINE START_STREAM ()

INVOKE (SCHEMA=PARTS,
1 SUBSCHEMA=SUB2,
2 DATABASE=PARTS,
3 STREAM = 11)

PRINT *, 'READY (STREAM)'
READY (CONCURRENT, UPDATE)
RETURN
END

C
--- ---
C
SUBROUTINE FETCH_STREAM ()

INVOKE (SCHEMA=PARTS,
1 SUBSCHEMA=SUB2,
2 DATABASE=PARTS,
3 STREAM = 11)

PRINT *, 'FETCH NEXT EMPLOYEE (STREAM)'
FETCH (NEXT, RECORD = EMPLOYEE)
PRINT *,EMP_ID
RETURN
END

C
--- ---
C
SUBROUTINE END_STREAM ()

INVOKE (SCHEMA=PARTS,
1 SUBSCHEMA=SUB2,
2 DATABASE=PARTS,
3 STREAM = 11)

PRINT *, 'ROLLBACK (STREAM)'
ROLLBACK(STREAM)
RETURN
END

C
--- ---
C
$EOD

$ CREATE DEFAULT.FOR
$DECK
C
--- ---
C
DEFAULT STREAM
--- ---
C
SUBROUTINE START_DEFAULT ()

INVOKE (SCHEMA=PARTS,
1 SUBSCHEMA=SUB1,
2 DATABASE=PARTS)

PRINT *, 'READY (DEFAULT)'
READY (CONCURRENT, UPDATE)
RETURN
END

C
--- ---
C
SUBROUTINE FETCH_DEFAULT ()

New Features and Corrections in Previous Releases 5–19
INVOKE (SCHEMA=PARTS,
1 SUBSCHEMA=SUB1,
2 DATABASE=PARTS)
PRINT *,'FETCH NEXT CLASS (DEFAULT)'
FETCH (NEXT, RECORD = CLASS)
PRINT *,CLASS_CODE
RETURN
END
C
SUBROUTINE END_DEFAULT ()
INVOKE (SCHEMA=PARTS,
1 SUBSCHEMA=SUB1,
2 DATABASE=PARTS)
PRINT *,'ROLLBACK (DEFAULT)'
ROLLBACK
RETURN
END
EOD
$!---$
$ CREATE SUB1.DDL$
$DECK$
SUBSCHEMA NAME IS SUB1 FOR PARTS SCHEMA
REALM MAKE
 IS MAKE
REALM BUY
 IS BUY
RECORD NAME IS CLASS
 ITEM CLASS_CODE TYPE IS CHARACTER 2
 ITEM CLASS_DESC TYPE IS CHARACTER 20
 ITEM CLASS_STATUS TYPE IS CHARACTER 1
RECORD NAME IS PART
 ITEM PART_ID TYPE IS CHARACTER 8
 ITEM PART_DESC TYPE IS CHARACTER 50
 ITEM PART_STATUS TYPE IS CHARACTER 1
 ITEM PART_PRICE TYPE IS FLOATING
 ITEM PART_COST TYPE IS FLOATING
 ITEM PART_SUPPORT TYPE IS CHARACTER 2
SET NAME IS ALL_CLASS
SET NAME IS ALL_PARTS
SET NAME IS CLASS_PART
EOD
$!---$
$ CREATE SUB2.DDL$
$DECK$
SUBSCHEMA NAME IS SUB2 FOR PARTS SCHEMA
REALM PERSONNEL
 IS PERSONNEL
RECORD NAME IS EMPLOYEE
 ITEM EMP_ID TYPE IS CHARACTER 5
 ITEM EMP_LAST_NAME TYPE IS CHARACTER 20
 ITEM EMP_FIRST_NAME TYPE IS CHARACTER 10
 ITEM EMP_PHONE TYPE IS CHARACTER 7
 ITEM EMP_LOC TYPE IS CHARACTER 5

5–20 New Features and Corrections in Previous Releases
If you build and run MAIN.EXE, you should see the following incorrect results:

READY (DEFAULT)
READY (STREAM)
FETCH NEXT CLASS (DEFAULT)
FETCH NEXT EMPLOYEE (STREAM)
12333
FETCH NEXT CLASS (DEFAULT)
ROLLBACK (DEFAULT)
ROLLBACK (STREAM)

Note, that there is no CLASS record returned from the FETCH_DEFAULT module. In this example, if you were to switch the order of START_DEFAULT and START_STREAM calls in MAIN.FOR, you would get a totally different (and correct) answer.

READY (STREAM)
READY (DEFAULT)
FETCH NEXT CLASS (DEFAULT)
BU
FETCH NEXT EMPLOYEE (STREAM)
75624
FETCH NEXT CLASS (DEFAULT)
BT
ROLLBACK (DEFAULT)
ROLLBACK (STREAM)