Deploying Active-Active Data Centers Using Oracle Database Solutions

Ashish Ray, Director of Product Management, Oracle
Lawrence To, Consulting Member of Technical Staff, Oracle
The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Agenda

• Active-Active Data Centers
 • Introduction
 • Characteristics
 • Requirements

• Solutions for the Oracle Database
 • Oracle RAC Extended Clusters
 • Oracle Data Guard
 • Oracle Streams

• Summary
 • Summarizing Oracle Active-Active Solutions
Active-Active Systems

Definition

• Network of independent processing systems, connected to databases kept synchronized in a geographically distributed configuration, and managed through a unified interface

• Benefits:
 ✓ High Utilization
 ✓ High Availability
 ✓ High Flexibility
Active-Active

Data Centers and Databases

- Active-active data centers – ones which host copies of the same database that are actively accessed by various apps
- The copies are kept synchronized through some means

Not active-active databases

Data Center A
- DB-a
- DB-b-copy

Data Center B
- DB-a-copy

Active-active databases

Data Center A
- DB-a
- DB-b

Data Center B
- DB-a-copy
- DB-b-copy

- Database copies not accessed
- Some utilization of data center assets

- Database copies actively accessed
- Full utilization of data center assets
From a Data Perspective …

- Globally deployed data-synchronized active data centers
Active-Active Deployment

Key Decision Metrics

1. How far apart could the sites be?
2. How is the data kept synchronized?
3. How is high availability maintained?
4. How easily can the configuration be managed?
Active-Active Deployment

Decision Metric – Site Distance

- Issues to consider:
 1. How far apart could the data centers be located?
 2. What replication technology should be used?
Active-Active Deployment

Site Distance Issues

• Benefits of geographically separated data centers
 • 24x7 work cycle – follow-the-sun model
 • Local access – better performance
 • High Availability – protection from regional disasters
 • Utilization – leverage data centers after M&A

✓ Design decisions
 ➢ Choosing right network – latency, bandwidth implications
 ➢ Choosing right replication protocol – distance limitations
Active-Active Deployment

Replication Technologies

• **Host-based Replication**
 1. Specialized for a specific data source – e.g. a database
 2. Target storage can be open – fits active-active requirement
 3. Better / optimized protection from data corruptions
 4. Selected data changes transferred – better network utilization
 5. No distance limitation

• **Storage Array-based Mirroring**
 1. Works for all data – e.g. both database and file systems
 2. No access to target storage – doesn’t work well for active-active
 3. Data corruptions will propagate between storage systems
 4. All data changes transferred – worse network utilization
 5. Some distance limitation

Host-Based Replication – External or Internal to the Database?

• External replication: database integration lagging, separate process / admin overhead, synchronous replication not possible, may also support other databases
• Internal replication: built-in integration, unified admin interface, zero data loss through synchronous replication, typically supports the host database only
Active-Active Deployment

Decision Metric – Data Synchronization

- Issues to consider:
 1. Could all databases be available read/write?
 2. If reads occur anywhere, how to handle data latency?
 3. If writes occur anywhere, how to handle data conflicts?
Active-Active Deployment

Data Synchronization Issues – Database Utilization

- Bi-Directional Multi-Master Configuration
 - Both reads & writes directed to any system

- Hub & Spoke Configuration
 - All writes to hub, local reads & writes to spokes

✓ Design decision

 Keeping the distributed systems in sync with each other

- Master-Slave Configuration
 - Writes directed to a designated Master system
 - Any system can perform Reads

✓ Design decision

 Keeping the reader systems in sync with the master
Active-Active Deployment

Data Synchronization Issues – Data Latency

• If writes and reads occur at two different systems – by how much should “readers” lag the “writers”?
 • Some reader-applications need latest data – e.g. real-time reporting
 • Some applications can work with stale data – e.g. workflow apps
 • Hybrid: work with stale data, but only till a specified limit on the staleness

• Synchronous Replication
 1. Primary I/O gated till data transfer + secondary I/O are complete
 2. Impact of network latency on primary processing
 3. In disasters: zero data loss
 4. Assurance: data freshness

• Asynchronous Replication
 1. Data transfer to secondary systems detached from primary I/O
 2. Minimal impact of network latency on primary processing
 3. In disasters: some data loss
 4. Assurance: performance

Smarter synchronous replication: optimize data transfer such that not all primary I/O-s are blocked – minimize impact on performance
Active-Active Deployment

Data Synchronization Issues – Data Conflicts

Concurrent updates of same data at different locations

- Application Design Considerations – How to Prevent Data Conflicts?
 - Is the schema too complex? Is this a packaged app and can’t be customized?
- Technology Considerations – How to Detect and Resolve Conflicts?
 - Does the technology provide the required capabilities?
Active-Active Deployment

Data Synchronization – Preventing Data Conflicts

- Use logical partitioning to designate “master” dataset
 - Localized Partitioning
 - Data specific to a region gets updated only at the local database (e.g. APAC data for a global financial company)
 - Application Partitioning
 - Data specific to an application gets updated at a specified database (e.g. shopping cart app vs. inventory app)
 - Data Partitioning
 - Designated data gets updated only at a designated database (e.g. a hash-based mechanism to route data to a designated database)
- Application must be able to deal with “eventual consistency”
 - Application accessing the APAC database will have the latest APAC data but not necessarily the latest EMEA data
Active-Active Deployment

Data Synchronization – Detecting & Resolving Data Conflicts

• Detection Requirements
 • An efficient logical replication mechanism based on primary/unique keys
 • While applying changes from a remote database, a way to compare before-image of the changes with existing data of the local database
 • Note: avoid system-generated primary keys – will cause unnecessary conflicts
 • An efficient comparison tool to validate data consistency on-demand

• Resolution Requirements
 • Flexible means to resolve conflicts - some could be built-in – e.g. higher value wins, lower value wins, overwrite local data, discard incoming data
 • Should be extensible with specialized “handler” code to satisfy complex business requirements
Active-Active Deployment

Decision Metric – High Availability

• Issues to consider:
 1. How to maintain uptime despite unplanned outages?
 2. How to maintain uptime despite planned maintenance?
 3. How to protect from data corruptions?

✓ Design decisions
 ➢ Determine the HA metrics:
 ▪ Recovery Point Objective (RPO) – how much data loss can be afforded?
 ▪ Recovery Time Objective (RTO) – how fast should you be back online?
Active-Active Deployment

High Availability Issues – System Failures

- Individual system failures should not impact the rest of the configuration
 - E.g. site / network / server …

- Required:
 - Loosely-coupled configuration
 - Fault isolation
 - Ability to reconnect users to surviving systems
 - Ability to resynchronize after system reinstated

- What if zero data loss is required?
 - Consider using a separate disaster recovery (DR) solution in synchronous replication mode
 - Users could reconnect to that system after DR failover
Active-Active Deployment

High Availability Issues – Scheduled Maintenance

- Similar principle: individual system maintenance should not impact rest of the configuration
 - HW & SW upgrades / patching
 - Platform migration
 - Data Center migration

- Required:
 - Loosely-coupled configuration
 - Ability to reconnect users to other systems while master system unavailable
 - Seamless resynchronization once maintenance complete
Active-Active Deployment

Decision Metric – Manageability

- Is the configuration
 - *Simple* to set up, operate and administer?
 - *Flexible* to adapt to new business requirements?
 - *Scalable* to meet business growth?
 - *Integrated* out-of-the-box?

 ✓ *Design decisions*

 - Determine operational Service Level Objectives:
 - Automatic management with minimal manual intervention
 - Capability of alerts / fine-grained monitoring
 - Extensibility and integration with minimal impact

<table>
<thead>
<tr>
<th>Creating</th>
<th>Monitoring</th>
<th>Extending</th>
</tr>
</thead>
</table>

Manageability

ORACLE
Active-Active Deployment

Manageability Issues – Create, Monitor, Extend

- Creating the initial configuration
 - What methods are available to create initial setup?
 - What’s used – replica of existing database / subset / transformed?
 - Is any downtime incurred during the creation?

- Monitoring the configuration
 - Is fine-grained monitoring available?
 - How easy it is to identify bottlenecks?
 - How does one measure latency, esp. if it is tied to SLAs?
 - How are suitable alerts raised and handled?

- Extending the configuration globally?
 - Is there any impact on existing systems while creating new sites?
 - Is there any limit on the number of sites supported?
 - Does the configuration scale as new sites are added?
 - Does the configuration allow appropriate heterogeneity?
Next … Oracle Active-Active Solutions

• Evaluating
 • Oracle RAC Extended Clusters
 • Oracle Data Guard
 • Oracle Streams

• with respect to …
Agenda

• Active-Active Data Centers
 • Introduction
 • Characteristics
 • Requirements

• Solutions for the Oracle Database
 • Oracle RAC Extended Clusters
 • Oracle Data Guard
 • Oracle Streams

• Summary
 • Summarizing Oracle Active-Active Solutions
Oracle RAC Extended Clusters
RAC Extended Cluster

What Is It?

- An Oracle Real Application Clusters (RAC) configuration deployed over two sites separated within metro distance (~25 Km)
- Both sites are fully active (read / write), but tightly coupled to access the same clustered database
- If one site goes down, users at the other site are unaffected
- Easy way to extend the High Availability benefits of a traditional RAC configuration
Traditional RAC Configuration

Application Access

N1

N2

N3

N4

Application Access

Same Data Center
RAC Extended Cluster Configuration

Data Center A

Application Access

N1

Extended Cluster

N2

N3

N4

Data Center B

Cluster Interconnect

Remote Mirroring

One Database

Application Access

One Database
RAC Extended Cluster

Distance & Data Synchronization

- Ideal for metro distances (25 Km or less)
 - RAC Cache Fusion message traffic and Disk I/O traffic now have to traverse the inter-site network => additional network latency
 - Redundant, high bandwidth network required
 - <10 KM, direct cables; >10 KM, need Dark fibre / DWDM
 - Performance impact analysis is required

- Both sites could be fully active (read/write)
 - One database => no data conflicts, no data latency
 - ASM mirroring recommended
 - Can’t use storage-array mirroring – no access to mirrored volumes
RAC Extended Cluster

High Availability

- Limited protection from site failures
 - Zero data loss on site failures
 - Users at one site may continue despite failure of other site
 - With RAC Fast Application Notification (FAN), users of failed site may be directed to the other site within a few seconds and rebalanced after a node and instance and reinstated
 - Follow MAA best practices to minimize failover times
 - Tune `FAST_START_INSTANCE_RECOVERY_TARGET`
 - Set `FAST_START_PARALLEL_ROLLBACK=HIGH`
 - Optimize I/O
 - Protection for metro-distance only (no protection from regional disasters, database-wide or cluster-wide problems)
- Limited support for data corruption protection
 - ASM allows reading from secondary extents if primary extent corrupted, and also replacing corrupted extent with a valid mirror copy
 - Corruptions may be propagated to mirror site
- Limited support for planned maintenance
 - Rolling application of one-off database software patches, CPUs, CRS and ASM
 - Rolling hardware upgrades, but requires identical platform architecture
 - No support for rolling database upgrades
RAC Extended Cluster

Manageability

• Managed as a single unified RAC configuration through Oracle Enterprise Manager
 • Leverages RAC administration / monitoring capabilities of EM
 • Additional work required for network setup and monitoring
 • Performance and outage testing is a required
 • Additional setup and administration of third site (voting disk)
• No downtime to add nodes / instances / disks at either cluster sites
 • Leverages RAC scalability capabilities
 • Scales reads and writes with correct design and tuning
• Supports only two sites for the cluster
RAC Extended Cluster

Enhancements

- **ASM Fast Mirror Resync**
 - ASM keeps track of changes directed to a failed disk for a time duration configured through the `DISK_REPAIR_TIME` parameter
 - When failed disks replaced, they are quickly synchronized
 - No need to rebuild an ASM failure group after transient storage errors

- **ASM Preferred Read Failure Groups**
 - ASM may be configured to read from a secondary extent if that extent is local to the node, instead of reading from the primary extent which may be farther from the node
 - Uses `ASM_PREFERRED_READ_FAILURE_GROUPS` parameter to specify a list of failure group names as the preferred read disk
RAC Extended Cluster for Active-Active

Bottom Line

- Ideally suited for prospective / existing RAC users who want to build a single clustered database spanning data centers located within metro distance

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sites are fully active</td>
<td>Does NOT provide full HA / DR / Data Protection (Data Guard needed)</td>
</tr>
<tr>
<td>Additional HA compared to traditional RAC</td>
<td>Customers need to be aware of the design limitations</td>
</tr>
</tbody>
</table>
Oracle Data Guard
Oracle Data Guard

What Is It?

• Data Availability & Data Protection solution for Oracle
• Automates the creation and maintenance of one or more synchronized copies (standby) of the production (or primary) database
• If the primary database becomes unavailable, a standby database can easily assume the primary role
• Feature of Oracle Database Enterprise Edition (EE)
 • Basic feature available at no extra cost
 • Active Data Guard (Oracle Database 11g) is extra license option
 • Primary and standby databases need to be licensed EE
Data Guard Architecture

With Oracle Active Data Guard in Oracle Database 11g
• Physical Standby Database is a block-for-block copy of the primary database
• Uses the database recovery functionality to apply changes
• While apply active, can be opened in read-only mode for reporting/queries*
• Can also be used for fast* backups, further offloading the production database

* Requires additional license for Active Data Guard
Data Guard SQL Apply

- Logical Standby Database is an open, independent, active database
 - Contains the same logical information (rows) as the production database
 - Physical organization and structure can be very different
 - Can host multiple schemas
- Can be queried for reports while redo data is being applied via SQL
- Can create additional indexes and materialized views for better query performance
Active-Active Databases with Data Guard

Redo Apply or SQL Apply?

<table>
<thead>
<tr>
<th>Redo Apply</th>
<th>SQL Apply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active-Active requires Active Data Guard (Oracle Database 11g)</td>
<td>Active-Active supported with SQL Apply starting with Oracle9i Release 2</td>
</tr>
<tr>
<td>Physical standby database can only be opened for reads</td>
<td>Local writes allowed for unprotected / skipped tables on logical standby database</td>
</tr>
<tr>
<td>No local writes, hence no data-conflicts</td>
<td>No data-conflict handling for local writes</td>
</tr>
<tr>
<td>Higher performance</td>
<td>Involves extra transformation to SQL</td>
</tr>
<tr>
<td>Supports all datatypes</td>
<td>Doesn’t support certain datatypes</td>
</tr>
</tbody>
</table>
Reader Farm with Active Data Guard

Scale-out query performance to web-scale

Single Node

- updates

Production Database

Active Data Guard Reader Farm

- queries
- Standby Databases
Data Guard

Distance & Data Synchronization

- No distance limitation
 - Leverages Oracle Net Services & TCP/IP for redo block transport
 - Asynchronous redo transport – minimal impact for 1000’s of miles
 - Smart synchronous redo transport – transmits only redo blocks, may span hundreds of miles with minimal impact on application throughput

- Standby sites could at best be open read-only
 - Standby databases kept in sync through redo block transport
 - Redo Apply can support high throughput (e.g. 50 MB/sec redo rate)
 - May configure SYNC or ASYNC for redo transport
 - Updates occur only on the primary => no data conflicts
 - Synchronous redo transport + real-time apply => minimal read latency (few seconds)
Data Guard

High Availability

• Protection from site & network failures
 • With Fast-Start Failover users of failed site are automatically directed to the standby site within a few seconds
 • Old primary database is automatically reinstated as new standby
 • Zero data loss on site failures with synchronous redo transport
 • Effective protection from regional disasters
 • Standby automatically synchronized with primary after fixing temporary network failures

• Protection from data corruptions
 • Corruptions not propagated to standby site: benefits of fault isolation from Data Guard’s loosely coupled architecture
 • Upon data corruptions at primary, best to failover to valid standby and continue
 • Oracle Database 11g enhancement: detection of lost writes with Data Guard

• Extensive support for planned maintenance
 • Rolling application of one-off database software patches
 • Rolling database upgrades
 • Rolling hardware upgrades, data center migration
 • Some heterogeneous platforms* (e.g. Windows -> Linux, PA-RISC -> Itanium)

* Ref. MetaLink Note 413484.1
Data Guard

Manageability

• Managed as a unified configuration through Oracle Enterprise Manager, or Data Guard Broker CLI (DGMGRL)
 • Simple interface for several complex operations (e.g. switchover)

• Fine-grained monitoring
 • E.g. track standby data latency with respect to the primary - transport lag, apply lag from `V$DATAGUARD_STATS`

• No downtime during creation / addition of standby databases
 • Standby databases created with online RMAN backups of the primary
 • Easy way to scale read-access for web-facing applications
 • Up to nine standby databases may be directly linked with the primary (ref. MetaLink Note 409013.1)
Data Guard for Active-Active

Bottom Line

- Ideally suited for customers primarily interested in HA + DR, but who also want to maximize their DR resource utilization

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best HA + DR + data protection solution</td>
<td>Standby databases may be effectively utilized only for reads</td>
</tr>
<tr>
<td>Simple</td>
<td>Limited support for heterogeneous platforms</td>
</tr>
</tbody>
</table>
Oracle Streams
Oracle Streams

What Is It?

- Simple solution for information sharing
- Provides
 - Uniquely flexible information sharing
 - Active/Active replication
 - Real-time ETL for data warehouses
 - Availability during database migration
 - Availability during application upgrade
 - Message queuing
 - Event management and notification
Streams Architecture

Powerful Solution for Information Sharing

- All sites active and updateable
- Automatic conflict detection & optional resolution
- Supports data transformations
- Database platform / release / schema structure can differ
- Some datatypes are not supported
Streams – Ideal for Active-Active Deployment

• Asynchronous message-driven architecture
 • Loosely coupled, fault isolated
 • All sites updateable, data conflict detection / resolution
• Numerous ways to extend based on business rules
 • Interface through PL/SQL APIs
 • Ability to deploy custom code at various interfaces
• High performance log-based capture of changes
 • No need to define custom triggers
 • No need to create additional files outside the database
• Supports a wide variety of active-active configurations
 • N-way multi-master, bi-directional, hub & spoke, etc.
 • Logical change capture allows significant heterogeneity
Streams

Distance & Data Synchronization

- No distance limitation
 - Leverages Oracle Net Services & TCP/IP for propagating changes
 - Asynchronous propagation allows deployment across 1000’s of miles
 - Synchronous redo transport also possible through downstream capture

- All Streams sites can be fully active (read/write)
 - Databases kept in synch through capture & apply of logical changes
 - Automatically detects various data conflicts during apply – update, uniqueness, delete, foreign key
 - Provides pre-built conflict handlers to resolve update conflicts – **OVERWRITE**, **DISCARD**, **MAXIMUM**, **MINIMUM**
 - Also allows creation of custom conflict handlers to resolve data conflicts

- **DBMS_COMPARISON**
 - New package in Oracle Database 11g to compare tables, views, materialized views across replicated databases, and converge them so they are consistent
Streams

Data Synchronization – Best Practices

• If replicating DDL, perform DDL from single database
 • Consider impact of specific DDL across multiple databases
 • Example: Compiling procedures, functions

• For key columns generated from sequences:
 • Manage separate sequence ranges across databases
 • Change start and increment by settings
 • Odd/even
 • Last digit indicates database (modulo)
 • Use unique string in combination with sequence as key

• Avoid replication cycles by setting Streams Tag
 • Tag is null by default
 • Changes made by Streams Apply process have non-NULL tags
 • Rules indicate if tagged LCRs are replicated
 • Tag can be set in local user session to avoid replication of specific session changes
Streams

High Availability

- Protection from site & network failures
 - Users at other sites may continue despite failure of one or more sites
 - Users of failed sites could be directed to the valid sites within a few seconds
 - Real-time asynchronous change propagation ensures minimal data loss
 - Automatic re-synchronization after restoring failed systems or fixing temporary network failures

- Protection from data corruptions
 - Corruptions not propagated to replicated site: benefits of fault isolation from Stream’s loosely coupled architecture
 - Upon data corruptions at source, best to redirect to a valid target and continue

- Best support for planned maintenance
 - Rolling application of all database software and CPU patches
 - Rolling database upgrades
 - Rolling hardware upgrades, data center migration
 - Heterogeneous OS platforms, database releases and character sets
 - Rolling application upgrades in some cases
Streams

Manageability

• Managed as a unified configuration through Oracle Enterprise Manager, or through extensive PL/SQL APIs
 • `DBMS_STREAMS_ADM` package provides various `MAINTAIN_*` procedures that significantly simplify setting up a Streams configuration
 • Operational investment to handle conflicts and for advanced tuning

• Fine-grained monitoring
 • Streams Performance Advisor (new in Oracle Database 11g) allows monitoring of various Streams components (`DBMS_STREAMS_ADVISOR_ADM` and `UTL_SPADV` packages)

• No downtime during creation / addition of Streams targets
 • Replicated databases may be created using RMAN (including from a physical standby), Data Pump, Transportable Tablespace
 • No theoretical limit on the number of destinations supported by a source, but need to monitor performance for complex configurations
Streams for Active-Active

Bottom Line

- Ideally suited for customers who want a flexible way to distribute data across geographical boundaries, with maximum utilization of all databases

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best support for active-active databases</td>
<td>Not application transparent – doesn’t support certain datatypes</td>
</tr>
<tr>
<td>Flexible</td>
<td>Some performance dependency on transaction profiles</td>
</tr>
</tbody>
</table>

Agenda

• Active-Active Data Centers
 • Introduction
 • Characteristics
 • Requirements

• Solutions for the Oracle Database
 • Oracle RAC Extended Clusters
 • Oracle Data Guard
 • Oracle Streams

• Summary
 • Summarizing Oracle Active-Active Solutions
Implementing Active-Active Databases with Oracle Solutions

• Deploying active-active sites?
 • Oracle’s recommended solution: Oracle Streams
 • Best support for global, update-everywhere topologies
 • May be complemented with Data Guard for best disaster protection
 • Data Guard is the best choice for reader farms
 • RAC Extended Clusters is applicable in selected configurations

• Recommended strategy
 ✓ Understand current and future requirements
 ✓ Understand active-active design issues
 ✓ Understand relative capabilities of each solution
 ✓ Choose the one that is the best fit
 ✓ Test, test, test!
Global Automotive Manufacturer

Using Streams + Data Guard for Global Active-Active Deployment

- 1 TB central engineering repository (hub) maintained at HQ
- Replicas (spokes) at factories worldwide for fast, reliable, local access
- Replicas synchronized with Streams
- Physical standby for protecting central repository

- $100,000 - $200,000/hr per site savings in downtime costs
- Fully bi-directional, automatic conflict detection and resolution
- Minimum subset of data replicated across WAN (about 1/3 out of 200 tables)
HA Sessions, Labs, Demos From Oracle Development

Mon, Sep 22
• 2:30 pm - Database 11g: Next-Gen HA, Moscone South 103

Tue, Sep 23
• 9:00 am - Active-Active Data Centers, Moscone South 103
• 11:30 am - Sharding with Oracle, Moscone South 302
• 11:30 am - HA with Oracle VM, Moscone West 3024
• 1:00 pm - Active Data Guard, Moscone South 104

Wed, Sep 24
• 9:00 am - Fusion Middleware Grid HA, Marriott Nob Hill AB
• 11:30 am - RMAN Best Practices, Moscone South 103
• 1:00 pm - Database in the Cloud, Moscone South 305
• 5:00 pm - Data Guard & Real Application Testing, Moscone 102

Wed, Sep 24 (contd.)
• 5:00 pm - EM in Secure MAA, Moscone West 2001
• 5:00 pm - E-Business Suite HA, Moscone West 2002/04

Thu, Sep 25
• 9:00 am - Oracle Secure Backup, Moscone South 102
• 10:30 am - Streams Replication, Moscone South 102
• 12:00 pm - Rolling Database Upgrades, Moscone South 103
• 1:30 pm - Streams Performance, Moscone South 102
• 3:00 pm - Oracle Grid Computing, Moscone South 303
• 3:00 pm - E-Business Suite R12 MAA, Moscone West 2007
• 3:00 pm - Siebel MAA, Moscone South 308
• 3:00 pm - Fusion SOA HA & Scalability, Marriott Salon 14/15

Hands On Labs - Thu, Sep 25
• 10:30 - 11:30 am, 12:00 - 1:00 pm - Active Data Guard, Marriott Golden Gate A3

DEMOgrounds, Mon-Thu
• Active Data Guard, Streams, Oracle Secure Backup, RMAN/Flashback, MAA
For More Information

search.oracle.com

or

oracle.com