Oracle Advanced Analytics
Database Option
Extending the Database to an Analytical Database

Charlie Berger, MS Eng, MBA
Sr. Director Product Management, Data Mining and Advanced Analytics
charlie.berger@oracle.com www.twitter.com/CharlieDataMine
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Oracle Advanced Analytics Database Option
Fastest Way to Deliver Scalable Enterprise-wide Predictive Analytics

Key Features

- In-database data mining algorithms and open source R algorithms
- SQL, PL/SQL, R languages
- Scalable, parallel in-database execution
- Workflow GUI and IDEs
- Integrated component of Database
- Enables enterprise analytical applications
Oracle Advanced Analytics Database Evolution

- **1998**
 - 7 Data Mining "Partners"

- **1999**
 - Oracle acquires Thinking Machine Corp’s dev. team + "Darwin" data mining software

- **2002**
 - Oracle Data Mining 9.2i launched – 2 algorithms (NB and AR) via Java API

- **2004**
 - Oracle Data Mining 10g & 10gR2 introduces SQL dm functions, 7 new SQL dm algorithms and new Oracle Data Miner “Classic” wizards driven GUI

- **2005**
 - ODM 11g & 11gR2 adds AutoDataPrep (ADP), text mining, perf. improvements
 - Integration with "R" and introduction/addition of Oracle R Enterprise
 - Product renamed “Oracle Advanced Analytics (ODM + ORE)"

- **2008**
 - New algorithms (EM, PCA, SVD)
 - Predictive Queries
 - SQLDEV/Oracle Data Miner 4.0 SQL script generation and SQL Query node (R integration)

- **2011**
 - OAA/ORE 1.3 + 1.4

- **2014**
 - Oracle Adv. Analytics for Hadoop Connector launched with scalable BDA algorithms
 - Integration with "R" and introduction/addition of Oracle R Enterprise
 - Product renamed “Oracle Advanced Analytics (ODM + ORE)"
Oracle Advanced Analytics
Performance and Scalability with Low Total Cost of Ownership

Data remains in the Database
- Scalable, parallel Data Mining algorithms in SQL kernel
- Fast parallelized native SQL data mining functions, SQL data preparation and efficient execution of R open-source packages
- High-performance parallel scoring of SQL data mining functions and R open-source models

Fastest way to deliver enterprise-wide predictive analytics
- Integrated GUI for Predictive Analytics
- Database scoring engine

Lowest TCO
- Eliminate data duplication
- Eliminate separate analytical servers
- Leverage investment in Oracle IT
Predictive Analytics & Data Mining

Typical Use Cases

• Targeting the right customer with the right offer
• How is a customer likely to respond to an offer?
• Finding the most profitable growth opportunities
• Finding and preventing customer churn
• Maximizing cross-business impact
• Security and suspicious activity detection
• Understanding sentiments in customer conversations
• Reducing medical errors & improving quality of health
• Understanding influencers in social networks
More Data Variety—Better Predictive Models

- Increasing sources of relevant data can boost model accuracy

Model with “Big Data” and hundreds -- thousands of input variables including:
- Demographic data
- Purchase POS transactional data
- “Unstructured data”, text & comments
- Spatial location data
- Long term vs. recent historical behavior
- Web visits
- Sensor data
- etc.

Naïve Guess or Random

Model with 20 variables

Model with 75 variables

Model with 250 variables
Oracle Advanced Analytics Database Architecture
Component of Oracle Database—SQL Functions

Oracle Database Enterprise Edition

Oracle Advanced Analytics
Native SQL Data Mining/Analytic Functions + High-performance
R Integration for Scalable, Distributed, Parallel Execution
BI to OLAP to Data Mining/Predictive Spectrum

<table>
<thead>
<tr>
<th>BI Query & Reporting</th>
<th>OLAP</th>
<th>Data Mining/Predictive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction of detailed and roll up data</td>
<td>Summaries, trends and aggregate forecasts</td>
<td>Knowledge discovery of hidden patterns at detailed level</td>
</tr>
<tr>
<td>“Information”</td>
<td>“Analysis”</td>
<td>“Insight & Prediction”</td>
</tr>
<tr>
<td>Who purchased mutual funds in the last 3 years?</td>
<td>What is the average income of mutual fund buyers, by region, by year?</td>
<td>Who will buy a mutual fund in the next 6 months and why?</td>
</tr>
</tbody>
</table>
What is Data Mining?

Automatically sifting through large amounts of data to find previously hidden patterns, discover valuable new insights and make predictions

- Identify most important factor *(Attribute Importance)*
- Predict customer behavior *(Classification)*
- Predict or estimate a value *(Regression)*
- Find profiles of targeted people or items *(Decision Trees)*
- Segment a population *(Clustering)*
- Find fraudulent or “rare events” *(Anomaly Detection)*
- Determine co-occurring items in a “baskets” *(Associations)*
Data Mining Provides Better Information, Valuable Insights and Predictions

Cell Phone Churners vs. Loyal Customers

Segment #1
IF CUST_MO > 14 AND INCOME < $90K, THEN Prediction = Cell Phone Churner
Confidence = 100%
Support = 8/39

Segment #3
IF CUST_MO > 7 AND INCOME < $175K, THEN Prediction = Cell Phone Churner
Confidence = 83%
Support = 6/39

Source: Inspired from *Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management* by Michael J. A. Berry, Gordon S. Linoff
Oracle Advanced Analytics—**Best Practices**

Nothing is Different; Everything is Different

1. Start with a Business Problem Statement
2. Don’t Move the Data
3. Assemble the “Right Data” for the Problem
4. Create New Derived Variables
5. Be Creative in Analytical Methodologies
6. Quickly Transform “Data” to “Actionable Insights”
7. Automate and Deploy Enterprise-wide
Oracle Data Miner “Workflow” GUI for Data Analysts

SQL Developer 4.0 Extension

Free OTN Download

• Easy to Use
 – Oracle Data Miner GUI for data analysts
 – “Work flow” paradigm

• Powerful
 – Multiple algorithms & data transformations
 – Runs 100% in-DB
 – Build, evaluate and apply models

• Automate and Deploy
 – Save and share analytical workflows
 – Generate SQL scripts for deployment
Predicting Behavior
Identify “Likely Behavior” and their Profiles

Consider:
- Demographics
- Past purchases
- Recent purchases
- Customer comments & tweets
Start with a Business Problem Statement

Common Examples

• Predict employees that voluntarily churn
• Predict customers that are likely to churn
• Target “best” customers
• Find items that will help me sell more most profitable items
• What is a specific customer most likely to purchase next?
• Who are my “best customers”?
• How can I combat fraud?
• I’ve got all this data; can you “mine” it and find useful insights?
Start with a Business Problem Statement

Clearly Define Problem

“If I had an hour to solve a problem I'd spend 55 minutes thinking about the problem and 5 minutes thinking about solutions.”

— Albert Einstein
Be Specific in Problem Statement

<table>
<thead>
<tr>
<th>Poorly Defined</th>
<th>Better</th>
<th>Data Mining Technique</th>
</tr>
</thead>
</table>
| Predict employees that leave | • Based on past employees that voluntarily left:
 • Create New Attribute **EmplTurnover → 0/1** | ![Diagram](image1.png) |
| Predict customers that churn | • Based on past customers that have churned:
 • Create New Attribute **Churn → YES/NO** | ![Diagram](image2.png) |
| Target “best” customers | • Recency, Frequency Monetary (RFM) Analysis
 • Specific Dollar Amount over Time Window:
 • Who has spent $500+ in most recent 18 months | ![Diagram](image3.png) |
| How can I make more $$? | • What helps me sell soft drinks & coffee? | ![Diagram](image4.png) |
| Which customers are likely to buy? | • How much is each customer likely to spend? | ![Diagram](image5.png) |
| Who are my “best customers”? | • What descriptive “rules” describe “best customers”? | ![Diagram](image6.png) |
| How can I combat fraud? | • Which transactions are the most anomalous?
 • Then roll-up to physician, claimant, employee, etc. | ![Diagram](image7.png) |
<table>
<thead>
<tr>
<th>Function</th>
<th>Algorithms</th>
<th>Applicability</th>
</tr>
</thead>
</table>
| Classification | Logistic Regression (GLM)
 Decision Trees
 Naive Bayes
 Support Vector Machines (SVM) | Classical statistical technique
 Popular / Rules / transparency
 Embedded app
 Wide / narrow data / text |
| Regression | Linear Regression (GLM)
 Support Vector Machine (SVM) | Classical statistical technique
 Wide / narrow data / text |
| Anomaly Detection | One Class SVM | Unknown fraud cases or anomalies |
| Attribute Importance | Minimum Description Length (MDL)
 Principal Components Analysis (PCA) | Attribute reduction, Reduce data noise |
| Association Rules | Apriori | Market basket analysis / Next Best Offer |
| Clustering | Hierarchical k-Means
 Hierarchical O-Cluster
 Expectation-Maximization Clustering (EM) | Product grouping / Text mining
 Gene and protein analysis |
| Feature Extraction | Nonnegative Matrix Factorization (NMF)
 Singular Value Decomposition (SVD) | Text analysis / Feature reduction |
Oracle Advanced Analytics
Wide Range of In-Database Data Mining and Statistical Functions

• **Data Understanding & Visualization**
 - Summary & Descriptive Statistics
 - Histograms, scatter plots, box plots, bar charts
 - R graphics: 3-D plots, link plots, special R graph types
 - Cross tabulations
 - Tests for Correlations (t-test, Pearson’s, ANOVA)
 - Selected Base SAS equivalents

• **Data Selection, Preparation and Transformations**
 - Joins, Tables, Views, Data Selection, Data Filter, SQL time windows, Multiple schemas
 - Sampling techniques
 - Re-coding, Missing values
 - Aggregations
 - Spatial data
 - SQL Patterns
 - R to SQL transparency and push down

• **Classification Models**
 - Logistic Regression (GLM)
 - Naive Bayes
 - Decision Trees
 - Support Vector Machines (SVM)
 - Neural Networks (NNs)

• **Regression Models**
 - Multiple Regression (GLM)
 - Support Vector Machines

• **Clustering**
 - Hierarchical K-means
 - Orthogonal Partitioning
 - Expectation Maximization

• **Anomaly Detection**
 - Special case Support Vector Machine (1-Class SVM)

• **Associations / Market Basket Analysis**
 - A Priori algorithm

• **Feature Selection and Reduction**
 - Attribute Importance (Minimum Description Length)
 - Principal Components Analysis (PCA)
 - Non-negative Matrix Factorization
 - Singular Vector Decomposition

• **Text Mining**
 - Most OAA algorithms support unstructured data (i.e. customer comments, email, abstracts, etc.)

• **Transactional Data**
 - Most OAA algorithms support transactional data (i.e. purchase transactions, repeated measures over time)

• **R packages—ability to run open source**
 - Broad range of R CRAN packages can be run as part of database process via R to SQL transparency and/or via Embedded R mode

* included in every Oracle Database
Data Mining When Lack Examples
Better Information, Valuable Insights and Predictions

Cell Phone Fraud vs. Loyal Customers

Source: Inspired from Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management by Michael J. A. Berry, Gordon S. Linoff

Copyright © 2014 Oracle and/or its affiliates. All rights reserved.
Challenge: Finding Anomalies

• Considering multiple attributes
• Taken alone, may seem “normal”
• Taken collectively, a record may appear to be anomalous
• Look for what is “different”
In-Database Advanced Analytics

Independent Samples T-Test

• Query compares the mean of AMOUNT_SOLD between MEN and WOMEN Grouped By CUST_INCOME_LEVEL ranges

• Returns observed t value and its related two-sided significance (<.05 = significant)

```
SELECT substr(cust_income_level,1,22) income_level,
  avg(decode(cust_gender,'M',amount_sold,null)) sold_to_men,
  avg(decode(cust_gender,'F',amount_sold,null)) sold_to_women,
  stats_t_test_indep(cust_gender, amount_sold, 'STATISTIC','F') t_observed,
  stats_t_test_indep(cust_gender, amount_sold) two_sided_p_value
FROM sh.customers c, sh.sales s
WHERE c.cust_id = s.cust_id
GROUP BY rollup(cust_income_level)
ORDER BY 1;
```
R—Widely Popular

R is a statistics language similar to Base SAS or SPSS statistics

R environment

- **Strengths**
 - Powerful & Extensible
 - Graphical & Extensive statistics
 - Free—open source
- **Challenges**
 - Memory constrained
 - Single threaded
 - Outer loop—slows down process
 - Not industrial strength
Oracle Advanced Analytics
Oracle R Enterprise Compute Engines

User R Engine on desktop
• R-SQL Transparency Framework intercepts R functions for scalable in-database execution
• Function intercept for data transforms, statistical functions and advanced analytics
• Interactive display of graphical results and flow control as in standard R
• Submit entire R scripts for execution by database

Database Compute Engine
• Scale to large datasets
• Access tables, views, and external tables, as well as data through DB LINKS
• Leverage database SQL parallelism
• Leverage new and existing in-database statistical and data mining capabilities

R Engine(s) spawned by Oracle DB
• Database can spawn multiple R engines for database-managed parallelism
• Efficient data transfer to spawned R engines
• Emulate map-reduce style algorithms and applications
• Enables “lights-out” execution of R scripts
R Graphics Direct Access to Database Data

```r
R> boxplot(split(CARSTATS$mpg, CARSTATS$model.year), col = "green")
```

MPG increases over time.
Oracle Advanced Analytics Example

Use of All 3 OAA/ORE Engines Within One R Script

The following example illustrates use of all 3 engines from within 1 R script.

```R
# Use of relational_table_1
# Use of relational_table_2
m3 <- merge(mary, nary, by="ID", all=TRUE) %>%
  summarise(m3)

# Aggregation of m3: if ID by=list(age=AGE, geo=GEN), FUN=median)
BP <- bwplot(list(age=AGE), plot=FALSE)

# Use of c荩, AGE, CLASS, group by 'COUNTRY', 'EDUCATION' )
filtered_set <- m3[AGE==17 & in m3(AGE) & & COUNTRY IN ('USA', 'France'), c(1,4,5)]

# Local pull of filtered subset for processing by an open source package - arima in this case. Result of
# processing added to database object m3 as a derived column -> Local R engine on user's desktop

# Embedded R engine invoked to build a model on the
# prepared/augmented data using yet another open source package
# biglm in this case
```

Data preparation/analysis/visualizes summarization/correlation/cross tabulation -> completely shipped to database for execution.
Accelarates Complex Segmentation Queries from Weeks to Minutes—Gains Competitive Advantage

Objectives

- World’s leading customer-science company
- Accelerate analytic capabilities to near real time using Oracle Advanced Analytics and third-party tools, enabling analysis of unstructured big data from emerging sources, like smart phones

Solution

- Accelerated segmentation and customer-loyalty analysis from **one week to just four hours**—enabling the company to deliver more timely information & finer-grained analysis
- Generated more accurate business insights and marketing recommendations with the ability to analyze 100% of data—including years of historical data—instead of just a small sample

“Improved analysts’ productivity and focus as they can now run queries and complete analysis without having to wait hours or days for a query to process”

“Improved accuracy of marketing recommendations by analyzing larger sample sizes and predicting the market’s reception to new product ideas and strategies”

– dunnhumby Oracle Customer Snapshot

Objectives

- Prepaid card fraud—millions of dollars/year
- Extremely fast sifting through huge data volumes; with fraud, time is money

Solution

- Monitor 10 billion daily call-data records
- Leveraged SQL for the preparation—1 PB
- Due to the slow process of moving data, Turkcell IT builds and deploys models in-DB
- Oracle Advanced Analytics on Exadata for extreme speed. Analysts can detect fraud patterns almost immediately

“Turkcell manages 100 terabytes of compressed data—or one petabyte of uncompressed raw data—on Oracle Exadata. With Oracle Data Mining, a component of the Oracle Advanced Analytics Option, we can analyze large volumes of customer data and call-data records easier and faster than with any other tool and rapidly detect and combat fraudulent phone use.”

– Hasan Tonguç Yılmaz, Manager, Turkcell İletişim Hizmetleri A.Ş.
Insurance

Identify “Likely Insurance Buyers” and their Profiles

OAA work flows capture analytical process and generates SQL code for deployment

If BANK_FUNDS > 225.5
And CHECKING_AMOUNT <= 207.5
And MONEY_MONTHLY_OVERDRAWN > 53.115
And T_AMOUNT_AUTOM_PAYMENTS > 8283.5
And N_TRANS_ATM > 6.5
Then Yes
drop table CLAIMS_SET;
exec dbms_data_mining.drop_model('CLAIMSMODEL');
create table CLAIMS_SET (setting_name varchar2(30), setting_value varchar2(4000));
insert into CLAIMS_SET values ('ALGO_NAME','ALGO_SUPPORT_VECTOR_MACHINES');
insert into CLAIMS_SET values ('PREP_AUTO','ON');
commit;

begin
 dbms_data_mining.create_model('CLAIMSMODEL', 'CLASSIFICATION', 'CLAIMS', 'POLICYNUMBER', null, 'CLAIMS_SET');
end;
/

-- Top 5 most suspicious fraud policy holder claims
select * from (select POLICYNUMBER, round(prob_fraud*100,2) percent_fraud,
 rank() over (order by prob_fraud desc) rnk from (select POLICYNUMBER, prediction_probability(CLAIMSMODEL, '0' using *) prob_fraud from CLAIMS
 where PASTNUMBEROFCLAIMS in ('2to4', 'morethan4'))
 where rnk <= 5
 order by percent_fraud desc;
Find market baskets, product bundles, and next-likely products
Market Basket Analysis

- Perform market basket analysis in-database
- Find All “A→B rules”
- Sort by confidence
- Filter out recommendations that already in the customer’s shopping cart
- Finally, query the top 3 recommendations based on the order of highest confidence and support

```sql
SELECT rownum AS rank, consequent AS recommendation FROM
  (SELECT cons_pred.attribute_subname consequent,
   max(AR.rule_support) max_support,
   max(AR.rule_confidence) max_confidence
    FROM TABLE (DBMS_DATA_MINING.GET_ASSOCIATION_RULES ('AR_RECOMMENDATION', 10, NULL, 0.5, 0.01, 2, 1,
      ORA_MINING_VARCHAR2_NT ('RULE_CONFIDENCE DESC', 'RULE_SUPPORT DESC'),
      DM_ITEMS(DM_ITEM('PROD_NAME', 'Comic Book Heroes', NULL, NULL),
      DM_ITEM('PROD_NAME', 'Martial Arts Champions', NULL, NULL),
      NULL, 1)) AR,
    TABLE(AR.consequent) cons_pred
    WHERE cons_pred.attribute_subname NOT IN ('Comic Book Heroes', 'Martial Arts Champions')
  GROUP BY cons_pred.attribute_subname
  ORDER BY max_confidence DESC, max_support DESC
 )
WHERE rownum <=3;
```

RANK RECOMMENDATION

1 Endurance Racing
2 128MB Memory Card
3 Xtend Memory
Oracle Advanced Analytics

More Details

- On-the-fly, single record apply with new data (e.g. from call center)

```
Select prediction_probability(CLAS_DT_1_16, 'Yes'
    USING 7800 as bank_funds, 125 as checking_amount, 20 as credit_balance, 55 as age, 'Married' as marital_status,
    250 as MONEY_MONTLY_OVERDRAWN, 1 as house_ownership)
from dual;
```

Likelihood to respond:

- Query Result: PREDICTION_PROB... 0.8382936507936...
What we learned...

- Complex Methods barely outperform simpler methods:
 - Binning makes Trees and GLM almost as good as Ensemble or Gradient Methods

- Complex methods are hard to implement and require investments in infrastructure

- The current model building structure (SAS + Angoss) does not scale to grow with large volume
Accuracy + Agility vs. Cost to Deploy

Cost Dimension (Size)
Time to Deploy X Accuracy (% Fr Detected)

- Pick the best combination of:
 - Less days to deployment
 - High model accuracy
 - Lower Cost

<table>
<thead>
<tr>
<th>Application</th>
<th>Deploy (Days)</th>
<th>Accuracy</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS Server</td>
<td>3</td>
<td>0.92</td>
<td>x5</td>
</tr>
<tr>
<td>ODM</td>
<td>1</td>
<td>0.90</td>
<td>1</td>
</tr>
<tr>
<td>SAS Base</td>
<td>15</td>
<td>0.83</td>
<td>30%</td>
</tr>
<tr>
<td>Angoss</td>
<td>12</td>
<td>0.85</td>
<td>10%</td>
</tr>
</tbody>
</table>
Fusion HCM Predictive Workforce

Predictive Analytics Applications

Fusion Human Capital Management Powered by OAA

- Oracle Advanced Analytics factory-installed predictive analytics
- Employees likely to leave and predicted performance
- Top reasons, expected behavior
- Real-time "What if?" analysis
Fusion HCM Predictive Workforce

Predictive Analytics Applications

Fusion Human Capital Management
Powered by OAA

• Oracle Advanced Analytics factory-installed predictive analytics
• Employees likely to leave and predicted performance
• Top reasons, expected behavior
• Real-time "What if?" analysis
Oracle Communications Industry Data Model

Predictive Analytics Applications

- Enterprise wide data model for communications industry
 - Over 1,500 tables and 30,000 columns
 - Over 1,000 industry measures and KPIs
 - TMF SID conformance aligned
- Prebuilt mining models, OLAP cubes and sample reports
- Automatic data movement across layers
- Easily extensible and customizable
- Usable within any source application
Oracle Communications Industry Data Model

Predictive Analytics Applications

Pre-Built Predictive Models

• Fastest Way to Deliver Scalable Enterprise-wide Predictive Analytics

• OAA’s clustering and predictions available in-DB for OBIEE

• Automatic Customer Segmentation, Churn Predictions, and Sentiment Analysis
Oracle Communications Data Model

Pre-Built Data Mining Models

1. Prepaid Churn Prediction
2. Postpaid Churn Prediction
3. Customer Profiling
4. Targeted Promotion
5. Customer Life Time Value
6. Customer Life Time Survival Value
7. Customer Sentiment
Oracle Communications Data Model

Pre-Built Prepaid Churn Prediction Data Mining Models

- Prepaid Churn Prediction Definition
 - Customer is recognized as a churner when he stop using any product from the operator

- Sample Input Attributes Used in Model
 - 170 attributes used in total for prepaid churn model

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCPT_NWSLTR_IND</td>
<td>Indicates whether customer accepts News Letter</td>
<td>Indicates whether customer accepts News Letter</td>
</tr>
<tr>
<td>BRDBND_IND</td>
<td>Indicates whether Customer has Broadband connection</td>
<td>Indicates whether Customer has Broadband connection</td>
</tr>
<tr>
<td>CAR_DRV_LICENSES_IND</td>
<td>Indicates whether customer has driver's license</td>
<td>Indicates whether customer has driver's license</td>
</tr>
<tr>
<td>CHRN_IND</td>
<td>Indicates whether a customer is a Churner or Non-churner</td>
<td>Indicates whether a customer is a Churner or Non-churner</td>
</tr>
<tr>
<td>CMPLNT_CNT_LAST_3MO</td>
<td>Number of complaints made by customer in last 3 months</td>
<td>Number of complaints made by customer in last 3 months</td>
</tr>
<tr>
<td>CMPLNT_CNT_LAST_MO</td>
<td>Number of complaints made by customer in this month</td>
<td>Number of complaints made by customer in this month</td>
</tr>
<tr>
<td>CMPLNT_CNT_LFTM</td>
<td>Number of complaints made by customer in his/her life span</td>
<td>Number of complaints made by customer in his/her life span</td>
</tr>
<tr>
<td>CRDT_CTGRY_KEY</td>
<td>Customer Credit Category</td>
<td>Customer Credit Category</td>
</tr>
<tr>
<td>CUST_RVN_BND_CD</td>
<td>Customer Revenue Band Code</td>
<td>Customer Revenue Band Code</td>
</tr>
<tr>
<td>DAYS_BFR_FIRST_RCHRG</td>
<td>Days between first payment and first recharge</td>
<td>Days between first payment and first recharge</td>
</tr>
<tr>
<td>DAYS_BFR_FIRST_USE</td>
<td>Days between payment and first use</td>
<td>Days between payment and first use</td>
</tr>
<tr>
<td>DRPD_CALLS_CNT_LAST_3MO</td>
<td>Number of dropped calls in last 3 months</td>
<td>Number of dropped calls in last 3 months</td>
</tr>
<tr>
<td>DRPD_CALLS_CNT_LAST_MO</td>
<td>Number of dropped calls this month</td>
<td>Number of dropped calls this month</td>
</tr>
<tr>
<td>DRPD_CALLS_CNT_LFTM</td>
<td>Number of dropped calls in customer life span</td>
<td>Number of dropped calls in customer life span</td>
</tr>
<tr>
<td>DWLNG_OWNER</td>
<td>Dwelling Owner</td>
<td>Dwelling Owner</td>
</tr>
<tr>
<td>DWLNG_STS</td>
<td>Dwelling Status</td>
<td>Dwelling Status</td>
</tr>
<tr>
<td>DWLNG_SIZE</td>
<td>Dwelling Size</td>
<td>Dwelling Size</td>
</tr>
<tr>
<td>DWLNG_TENR</td>
<td>Dwelling Tenure</td>
<td>Dwelling Tenure</td>
</tr>
<tr>
<td>DWNLD_DATA_LAST_3MO</td>
<td>Data downloaded in KBs in last 3 months</td>
<td>Data downloaded in KBs in last 3 months</td>
</tr>
<tr>
<td>DWNLD_DATA_LAST_MO</td>
<td>Data downloaded in KBs in last 1 month</td>
<td>Data downloaded in KBs in last 1 month</td>
</tr>
<tr>
<td>DWNLD_DATA_LFTM</td>
<td>Data downloaded in KBs in lifetime</td>
<td>Data downloaded in KBs in lifetime</td>
</tr>
<tr>
<td>ETHNCTY</td>
<td>Customer Ethnicity</td>
<td>Customer Ethnicity</td>
</tr>
<tr>
<td>GNDR_CD</td>
<td>Individual Customer Gender Code</td>
<td>Individual Customer Gender Code</td>
</tr>
<tr>
<td>HH_SZ</td>
<td>Household Size</td>
<td>Household Size</td>
</tr>
<tr>
<td>HDRP_CALLS_CNT_LAST_3MO</td>
<td>Number of hangup calls in last 3 months</td>
<td>Number of hangup calls in last 3 months</td>
</tr>
<tr>
<td>HDRP_CALLS_CNT_LAST_MO</td>
<td>Number of hangup calls this month</td>
<td>Number of hangup calls this month</td>
</tr>
<tr>
<td>MMS_CNT_LAST_MO</td>
<td>MMSs sent in last 1 month</td>
<td>MMSs sent in last 1 month</td>
</tr>
<tr>
<td>OFFNET_CALLS_LAST_MO</td>
<td>Number of offnet calls in last 1 month</td>
<td>Number of offnet calls in last 1 month</td>
</tr>
<tr>
<td>PAY_TV_IND</td>
<td>Indicates whether Customer has Pay TV connection</td>
<td>Indicates whether Customer has Pay TV connection</td>
</tr>
</tbody>
</table>
Oracle Communications Industry Data Model

Predictive Analytics Applications

OCMD Telco Churn Enhanced by SNA Analysis

• Integrated with OCDM, OBIEE, and leverages Oracle Data Mining with specialized SNA code
• Identification of social network communities from CDR data
• Predictive scores for churn and influence at a node level, as well as potential revenue/value at risk
• User interface targeted at business users and flexible ad-hoc reporting
Integrated Business Intelligence

Enhance Dashboards with Predictions and Data Mining Insights

- In-database predictive models "mine" customer data and predict their behavior
- OBIEE’s integrated spatial mapping shows location
- All OAA results and predictions available in Database via OBIEE Admin to enhance dashboards

Customer “most likely” to be **HIGH** and **VERY HIGH** value customer in the future
Integrated Business Intelligence
Enhance Dashboards with Predictions and Data Mining Insights

- In-database predictive models “mine” customer data and predict their behavior
- OBIEE’s integrated spatial mapping shows location
- All OAA results and predictions available in Database via OBIEE Admin to enhance dashboards

Oracle BI EE defines results for end user presentation
Oracle Data Mining results available to Oracle BI EE administrators
Healthcare Example

Top At-Risk Factors, Guided Drill-Through for Detail

- Given patient hospital admissions and claims history for several years, predict which patients are at highest risk of dying.

- Using OBI EE, select OAA model insights and predictions and define interactive Dashboards with optional drill-through for detail.

Patients “most likely” to be **HIGH RISK** and their **KEY RISKS** presented for selection, search and filter.
Oracle Advanced Analytics Database Option

Oracle Data Miner 4.0 Summary New Features

• Oracle Data Miner/SQLDEV 4.0 (for Oracle Database 11g and 12c)
 – New **Graph node** (box, scatter, bar, histograms)
 – **SQL Query node** + integration of R scripts
 – Automatic **SQL script generation** for deployment

• Oracle Advanced Analytics 12c features exposed in Oracle Data Miner
 – New SQL data mining algorithms/enhancements
 • Expectation Maximization clustering algorithm
 • PCA & Singular Vector Decomposition algorithms
 • Improved/automated Text Mining, Prediction Details and other algorithm improvements)
 – Predictive SQL Queries—automatic build, apply within SQL query
SQL Developer/Oracle Data Miner 4.0

New Features

- **Graph node**
 - Scatter, line, bar, box plots, histograms
 - Group_by supported
SQL Developer/Oracle Data Miner 4.0

New Features

• **SQL Query node**
 - Allows any form of query/transformation/statistics within an ODM’r work flow
 - Use SQL anywhere to handle special/unique data manipulation use cases
 - Recency, Frequency, Monetary (RFM)
 - SQL Window functions for e.g. moving average of $$ checks written past 3 months vs. past 3 days
 - Allows integration of R Scripts
SQL Developer/Oracle Data Miner 4.0

New Features

- **SQL Script Generation**
 - Deploy entire methodology as a SQL script
 - Immediate deployment of data analyst’s methodologies
SQL Developer/Oracle Data Miner 4.0

New Features

• **SQL Query** node
 - Allows integration of R Scripts
SQL Developer/Oracle Data Miner 4.0

New Features

- **SQL Query node**
 - Allows integration of R Scripts
SQL Developer/Oracle Data Miner 4.0

New Features

• Database/Data Mining Parallelism On/Off Control
 – Allows users to take full advantage of Oracle parallelism/scalability on an Oracle Data Miner node by node basis
 • Default is “Off”
 – Important for large Oracle Database & Oracle Exadata shops
12c New Features

New Server Functionality

• 3 New Oracle Data Mining SQL functions algorithms
 – Expectation Maximization (EM) Clustering
 • New Clustering Technique
 – Probabilistic clustering algorithm that creates a density model of the data
 – Improved approach for data originating in different domains (for example, sales transactions and customer demographics, or structured data and text or other unstructured data)
 – Automatically determines the optimal number of clusters needed to model the data.
 – Principal Components Analysis (PCA)
 • Data Reduction & improved modeling capability
 – Based on SVD, powerful feature extraction method use orthogonal linear projections to capture the underlying variance of the data
 – Singular Value Decomposition (SVD)
 • Big data “workhorse” technique for matrix operations
 – Scales well to very large data sizes (both rows and attributes) for very large numerical data sets (e.g. sensor data, text, etc.)
12c New Features

New Server Functionality

• **Text Mining Support Enhancements**
 – This enhancement greatly simplifies the data mining process (model build, deployment and scoring) when text data is present in the input:
 • Manual pre-processing of text data is no longer needed.
 • No text index needs to be created.
 • Additional data types are supported: CLOB, BLOB, BFILE.
 • Character data can be specified as either categorical values or text.

![Diagram showing text mining process](image)
12c New Features

New Server Functionality

• Predictive Queries
 – Immediate build/apply of ODM models in SQL query
• Classification & regression
 – Multi-target (nested) problems
• Clustering query
• Anomaly query
• Feature extraction query

OAA automatically creates multiple anomaly detection models “Grouped_By” and “scores” by partition via powerful SQL query

```
Select
cust_income_level, cust_id,
round(probanom,2) probanom, round(pctrank,3)*100 pctrank from ( select
cust_id, cust_income_level, probanom, percent_rank() 
over (partition by cust_income_level order by probanom desc) pctrank 
from ( select
cust_id, cust_income_level, 
prediction_probability(of anomaly, 0 using *) 
over (partition by cust_income_level) probanom 
from customers 
) )
where pctrank <= .05
order by cust_income_level, probanom desc;
```
12c New Features

New Server Functionality

• Predictive Queries
 – **Immediate** build/apply of ODM models in SQL query
 • Classification & regression
 – Multi-target (nested) problems
 • Clustering query
 • Anomaly query
 • Feature extraction query

OAA automatically creates multiple anomaly detection models “Grouped_By” and “scores” by partition via powerful SQL query
OAA Links and Resources

• **Oracle Advanced Analytics Overview:**
 - Link to presentation—[Big Data Analytics using Oracle Advanced Analytics In-Database Option](#)
 - [OAA data sheet](#) on OTN
 - [Oracle Internal OAA Product Management Wiki and Workspace](#)

• **YouTube recorded OAA Presentations and Demos:**
 - [Oracle Advanced Analytics and Data Mining at the YouTube Movies](#) (6 + OAA “live” Demos on ODM’r 4.0 New Features, Retail, Fraud, Loyalty, Overview, etc.)

• **Getting Started:**
 - Link to [Getting Started w/ ODM blog entry](#)
 - Link to [New OAA/Oracle Data Mining 2-Day Instructor Led Oracle University course](#).
 - Link to [OAA/Oracle Data Mining 4.0 Oracle by Examples (free) Tutorials](#) on OTN
 - Take a [Free Test Drive of Oracle Advanced Analytics (Oracle Data Miner GUI) on the Amazon Cloud](#)
 - Link to [SQL Developer Days Virtual Event w/ downloadable VM of Oracle Database + ODM/ODM & e-training for Hands on Labs](#)
 - Link to [OAA/Oracle R Enterprise (free) Tutorial Series](#) on OTN

• **Additional Resources:**
 - [Oracle Advanced Analytics Option on OTN page](#)
 - [OAA/Oracle Data Mining on OTN page](#), ODM Documentation & [ODM Blog](#)
 - [OAA/Oracle R Enterprise page on OTN page](#), ORE Documentation & [ORE Blog](#)
 - [Oracle SQL based Basic Statistical functions](#) on OTN
 - Business Intelligence, Warehousing & Analytics—[BIWA Summit’15, Jan 27-29, 2015](#) at Oracle HQ Conference Center