SQL Statistical Functions

Make Big Data + Analytics Simple

Charlie Berger, MS Engineering, MBA
Sr. Director Product Management, Data Mining and Advanced Analytics
charlie.berger@oracle.com www.twitter.com/CharlieDataMine
Data, data everywhere
Growth of Data Exponentially Greater than Growth of Data Analysts!

The Useful Data GAP

12%
Executives who feel they understand the impact data will have on their organizations

Produce Data

Data Analysis platforms requirements:

• Be extremely powerful and handle large data volumes

Use Data

• Be easy to learn

• Be highly automated & enable deployment

http://www.delphianalytics.net/more-data-than-analysts-the-real-big-data-problem/
Analytics + Data Warehouse + Hadoop

- Platform Sprawl
 - More Duplicated Data
 - More Data Movement Latency
 - More Security challenges
 - More Duplicated Storage
 - More Duplicated Backups
 - More Duplicated Systems
 - More Space and Power
Oracle Advanced Analytics Database Evolution

- **1998**: Oracle acquires Thinking Machine Corp’s dev. team + “Darwin” data mining software
- **1999**: Oracle Data Mining 9.2i launched – 2 algorithms (NB and AR) via Java API
- **2002**: Oracle Data Mining 10gR2 SQL - 7 new SQL dm algorithms and new Oracle Data Miner “Classic” wizards driven GUI
- **2004**: SQL statistical functions introduced
- **2005**: New algorithms (EM, PCA, SVD)
- **2008**: Predictive Queries
 - SQLDEV/Oracle Data Miner 4.0 SQL script generation and SQL Query node (R integration)
- **2011**: ODA/ORE 1.3 + 1.4
 - ODM 11g & 11gR2 adds AutoDataPrep (ADP), text mining, perf. improvements
 - SQLDEV/Oracle Data Miner adds NN, Stepwise, scalable R algorithms
- **2014**: Oracle Adv. Analytics for Hadoop Connector launched with scalable BDA algorithms
- **2014**: Product renamed “Oracle Advanced Analytics (ODM + ORE)"
You Can Think of Oracle Advanced Analytics Like This...

Traditional SQL
- “Human-driven” queries
- Domain expertise
- Any “rules” must be defined and managed

SQL Queries
- SELECT
- DISTINCT
- AGGREGATE
- WHERE
- AND OR
- GROUP BY
- ORDER BY
- RANK

SQL Statistical Functions - SQL & R
- Automated knowledge discovery, model building and deployment
- Domain expertise to assemble the “right” data to mine/analyze

Statistical SQL “Verbs”
- MEAN, STDEV
- MEDIAN
- SUMMARY
- CORRELATE
- FIT
- COMPARE
- ANOVA
Oracle Advanced Analytics Database Architecture
Multi-lingual Component of Oracle Database—SQL, SQL Dev/ODMr GUI, R

Users
Data & Business Analysts
R programmers
Business Analysts/Mgrs
Domain End Users

Platform
SQL Developer/ODMr
R Client
OBIEE
Applications

Oracle Database Enterprise Edition

Oracle Advanced Analytics - Database Option
SQL Data Mining & Analytic Functions + R Integration
for Scalable, Distributed, Parallel in-Database ML Execution

Copyright © 2014 Oracle and/or its affiliates. All rights reserved.
Vision

• Big Data + Analytic Platform for the Era of Big Data and Cloud
 – Make Big Data + Analytics Discovery *Simple*
 • Any data size, on any computer infrastructure
 • Any variety of data (structured, unstructured, transactional, geospatial), in any combination
 – Make Big Data + Analytics Deployment *Simple*
 • As a service, as a platform, as an application
Oracle Advanced Analytics Database Option

Wide Range of In-Database Data Mining and Statistical Functions

• Data Understanding & Visualization
 – Summary & Descriptive Statistics
 – Histograms, scatter plots, box plots, bar charts
 – R graphics: 3-D plots, link plots, special R graph types
 – Cross tabulations
 – Tests for Correlations (t-test, Pearson’s, ANOVA)
 – Selected Base SAS equivalents

• Data Selection, Preparation and Transformations
 – Joins, Tables, Views, Data Selection, Data Filter, SQL time windows, Multiple schemas
 – Sampling techniques
 – Re-coding, Missing values
 – Aggregations
 – Spatial data
 – SQL Patterns
 – R to SQL transparency and push down

• Classification Models
 – Logistic Regression (GLM)
 – Naive Bayes
 – Decision Trees
 – Support Vector Machines (SVM)
 – Neural Networks (NNs)

• Regression Models
 – Multiple Regression (GLM)
 – Support Vector Machines

• Clustering
 – Hierarchical K-means
 – Orthogonal Partitioning
 – Expectation Maximization

• Anomaly Detection
 – Special case Support Vector Machine (1-Class SVM)

• Associations / Market Basket Analysis
 – A Priori algorithm

• Feature Selection and Reduction
 – Attribute Importance (Minimum Description Length)
 – Principal Components Analysis (PCA)
 – Non-negative Matrix Factorization
 – Singular Vector Decomposition

• Text Mining
 – Most OAA algorithms support unstructured data (i.e. customer comments, email, abstracts, etc.)

• Transactional & Spatial Data
 – All OAA algorithms support transactional data (i.e. purchase transactions, repeated measures over time, distances from location, time spent in area A, B, C, etc.)

• R packages—ability to run open source
 – Broad range of R CRAN packages can be run as part of database process via R to SQL transparency and/or via Embedded R mode

* included free in every Oracle Database

Copyright © 2014 Oracle and/or its affiliates. All rights reserved.
Independent Samples T-Test
(Pooled Variances)

• Query compares the mean of AMOUNT_SOLD between MEN and WOMEN within CUST_INCOME_LEVEL ranges. Returns observed t value and its related two-sided significance

```sql
SELECT substr(cust_income_level,1,22) income_level,
    avg(decode(cust_gender,'M',amount_sold,null)) sold_to_men,
    avg(decode(cust_gender,'F',amount_sold,null)) sold_to_women,
    stats_t_test_indep(cust_gender, amount_sold, 'STATISTIC','F') t_observed,
    stats_t_test_indep(cust_gender, amount_sold) two_sided_p_value
FROM sh.customers c, sh.sales s
WHERE c.cust_id=s.cust_id
GROUP BY rollup(cust_income_level)
ORDER BY 1;
```
STATS_T_TEST_*

The test functions are:

- STATS_T_TEST_ONE: A one-sample t test
- STATS_T_TEST_INDEP: A two-sample, paired t test (also known as a crossed t test)
- STATS_T_TEST_INDEP: A t test of two independent groups with the same variance (pooled variances)
- STATS_T_TEST_INDEP: A t test of two independent groups with unequal variance (unpooled variances)

Syntax

\[\text{stats_t_test} := \]

Purpose

The t test measures the significance of a difference of means. You can use it to compare the means of two groups or the means of one group with a constant. The one-sample and two-sample \(\text{STATS_T_TEST_*} \) functions take three arguments: two expressions and a return value of type \(\text{VARCHAR2} \). The functions return one number, determined by the value of the third argument. If you omit the third argument, the default is \(\text{TWO_SIDED_SIG} \). The meaning of the return values is shown in Table 5-9.

Table 5-9 STATS_T_TEST_* Return Values

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATISTIC</td>
<td>The observed value of (t)</td>
</tr>
<tr>
<td>DF</td>
<td>Degree of freedom</td>
</tr>
</tbody>
</table>
In the STATS_T_TEST_ONE function, `exp2` is the sample and `exp1` is the constant mean against which the sample mean is compared. For this test only, the constant mean defaults to 0. The function obtains the value of r by dividing the difference between the sample mean and the known mean by the error of the mean rather than the standard error of the difference of the means, as for STATS_T_TEST_PAIRED.

STATS_T_TEST_ONE Example

The following example determines the significance of the difference between the average list price and the constant value 00:

```sql
SELECT AVG(price_list_price) group_mean,
       STATS_T_TEST_ONE(price_list_price, 00, 'STATISTIC') t_observed,
       STATS_T_TEST_ONE(price_list_price, 00 two_sided_p_value
FROM sh.products;
```

GROUP MEAN T_OBSERVED TWO_SIDED_P_VALUE
-------------------------- ------------
139.545556 2.32107746 0.02315853

STATS_T_TEST_PAIRED

In the STATS_T_TEST_PAIRED function, `exp1` and `exp2` are the two samples whose means are being compared. The function obtains the value of r by dividing the difference between the sample means by the standard error of the difference of the means (rather than the standard error of the mean, as for STATS_T_TEST_ONE).

STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU

In the STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU functions, `exp2` is the grouping column and `exp1` is the sample of values. The pooled variances version (STATS_T_TEST_INDEP) tests whether the means are the same or different for two distributions that have similar variances. The unpooled variances version (STATS_T_TEST_INDEPU) tests whether the means are the same or different even if the two distributions are known to have significantly different variances.

Before using these functions, it is advisable to determine whether the variances of the samples are significantly different. If they are, then the data may come from distributions with different shapes, and the difference of the means may not be very useful. You can perform an F test to determine the difference of the variances. If they are not significantly different, use STATS_T_TEST_INDEP. If they are significantly different, use STATS_T_TEST_INDEPU. Refer to STATS_F_TEST for information on performing an F test.

STATS_T_TEST_INDEP Example

The following example determines the significance of the difference between the average sales to men and women where the distributions are assumed to have similar (pooled) variances:

```sql
SELECT custsds(incm_age_level, 1, 2) income_level,
       AVG(secode|cust_gender, 'M', amount_sold, null) sold_to_men,
       AVG(secode|cust_gender, 'F', amount_sold, null) sold_to_women,
       STATS_T_TEST_INDEP(cust_gender, amount_sold, 'STATISTIC') t_observed,
       STATS_T_TEST_INDEP(cust_gender, amount_sold, 'TWO_SIDED_P') p_value
FROM sh.customers c, sales s
WHERE c.cust_id = s.cust_id
GROUP BY ROLLUP(income_level)
ORDER BY income_level, sold_to_men, sold_to_women, t_observed;
```
Split Lot A/B Offer testing

In-Database SQL t-test

• Offer “A” to one population and “B” to another

• Over time period “t” calculate median purchase amounts of customers receiving offer A & B

• Perform t-test to compare

• If statistically significantly better results achieved from one offer over another, offer everyone higher performing offer
DBMS_STAT_FUNCS Package

SUMMARY procedure

- SUMMARY procedure is summarize a numerical column (ADM_PULSE); the summary is returned as record of type summaryType

```sql
set echo off
connect CBERGER/CBERGER
set serveroutput on
set echo on
declare
  s DBMS_STAT_FUNCS.SummaryType;
begin
  DBMS_STAT_FUNCS.SUMMARY('CBERGER','LYMPHOMA','ADM_PULSE',3,s);
  dbms_output.put_line('SUMMARY STATISTICS');
  dbms_output.put_line('Count: '||s.count);
  dbms_output.put_line('Min: '||s.min);
  dbms_output.put_line('Max: '||s.max);
  dbms_output.put_line('Range: '||s.range);
  dbms_output.put_line('Mean: '||round(s.mean));
  dbms_output.put_line('Mode Count: '||s.cmode.count);
  dbms_output.put_line('Mode: '||s.cmode(1));
  dbms_output.put_line('Variance: '||round(s.variance));
  dbms_output.put_line('Stddev: '||round(s.stddev));
  dbms_output.put_line('Quantile 5: '||s.quantile_5);
  dbms_output.put_line('Quantile 25: '||s.quantile_25);
  dbms_output.put_line('Median: '||s.median);
  dbms_output.put_line('Quantile 75: '||s.quantile_75);
  dbms_output.put_line('Quantile 95: '||s.quantile_95);
  dbms_output.put_line('Extreme Count: '||s.extreme_values.count);
  dbms_output.put_line('Extremes: '||s.extreme_values(1));
  dbms_output.put_line('Top 3: '||s.top_5_values(1)||','||s.top_5_values(2)||','||s.top_5_values(3));
  dbms_output.put_line('Bottom 3: '||s.bottom_5_values(5)||','||s.bottom_5_values(4)||','||s.bottom_5_values(3));
end;
```
One-Sample T-Test

• Query compares the mean of SURVIVAL_TIME to the assumed value of 35:

```
SELECT avg(SURVIVAL_TIME_MO) group_mean,
       stats_t_test_one(SURVIVAL_TIME_MO, 35, 'STATISTIC') t_observed,
       stats_t_test_one(SURVIVAL_TIME_MO, 35)
          two_sided_p_value
FROM LYMPHOMA;
```

• Returns the observed t value and its related two-sided significance
Paired Samples T-Test

• Query compares the mean of LOGWT for Pig Weights in Week 3 to week 8, grouped by Diet:

```
SELECT substr(diet,1,1) as diet, avg(LOGWT3) logwt3_mean, 
avg(LOGWT8) logwt8_mean, 
stats_t_test_paired(LOGWT3, LOGWT8,'STATISTIC') t_observed, 
stats_t_test_paired(LOGWT3, LOGWT8) two sided_p_value 
FROM CBERGER.PIGLETS3 
GROUP BY ROLLUP(DIET) 
ORDER BY 5 ASC;
```

• Returns the observed t value and its related two-sided significance
F-Test

Query compares the variance in the SIZE_TUMOR between MALES and FEMALES

```
SELECT variance(decode(GENDER,'0', SIZE_TUMOR_MM, null)) var_tumor_men,
       variance(decode(GENDER,'1', SIZE_TUMOR_MM,null)) var_tumor_women,
       stats_f_test(GENDER, SIZE_TUMOR_MM, 'STATISTIC', '1') f_statistic,
       stats_f_test(GENDER, SIZE_TUMOR_MM) two_sided_p_value
FROM DMUSER.LYMPHOMA;
```

• Returns observed f value and two-sided significance
F-Test

• Query compares the variance in the SIZE_TUMOR between males and females Grouped By GENDER

```
SELECT GENDER,
    stats_one_way_anova(TREATMENT_PLAN, SIZE_REDUCTION,'F_RATIO') f_ratio,
    stats_one_way_anova(TREATMENT_PLAN, SIZE_REDUCTION,'SIG') p_value, AVG(SIZE_REDUCTION)
FROM CBERGER.LYMPHOMA
GROUP BY GENDER ORDER BY GENDER;
```

• Returns observed f value and two-sided significance
One-Way ANOVA

- Query compares the average SIZE_REDUCTION within different TREATMENT_PLANS Grouped By LYMPH_TYPE:

```sql
SELECT LYMPH_TYPE,
    stats_one_way_anova(TREATMENT_PLAN,
        SIZE_REDUCTION,'F_RATIO') f_ratio,
    stats_one_way_anova(TREATMENT_PLAN,
        SIZE_REDUCTION,'SIG') p_value
FROM DMUSER.LYMPHOMA
GROUP BY LYMPH_TYPE ORDER BY 1;
```

- Returns one-way ANOVA significance and split by LYMPH_TYPE
Hypothesis Testing
Nonparametric

- Nonparametric tests are used when certain assumptions about the data are questionable.
- This may include the difference between samples that are not normally distributed.
- All tests involving ordinal scales (in which data is ranked) are nonparametric.
- Nonparametric tests supported in Oracle Database 10g:
 - Binomial test
 - Wilcoxon Signed Ranks test
 - Mann-Whitney test
 - Kolmogorov-Smirnov test
"Our experience suggests that Oracle Statistics and Data Mining features can reduce development effort of analytical systems by an order of magnitude."

– Sumeet Muju, Senior Member of Professional Staff, SRA International (SRA supports NIH bioinformatics development projects)

```
248 rows selected.

SQL> select peak_id peak, avg(decode(E.sample_group,'CHS',s.intensity,null)) avg_CHS, avg(decode(E.sample_group,'ND',s.intensity,null)) avg_ND, stats_ks_test(E.sample_group,s.intensity,'STATISTIC') ks_stat, stats_ks_test(E.sample_group,s.intensity) ks_p_value, stats_t_test_indep(E.sample_group,s.intensity) t_test_p_value, avg(subs_mass) AVG_MASS from exp_descriptor E, celd_spectrum s where E.exp_id = s.exp_id and E.chip_id = s.chip_id and E.spot_number = s.spot_number and (sample_group = 'CHS' or sample_group = 'ND') group by peak_id order by stats_t_test_indep(E.sample_group,s.intensity);

PEAK  AVG_CHS  AVG_ND  KS_STAT  KS_P_VALUE  T_TEST_P_VALUE  AVG_MASS
------- ------- ------- -------- ---------- ---------- --------
178    1.3314339 2.178171687  .673333333 7.2556E-16  2.6544E-17  5952.91674
181    5.0996029 7.89194275  .626666667 8.4480E-14  1.4848E-14  6075.9581
180    2.27649538 3.47917519  .606666667 5.8453E-13  8.8539E-14  6055.14643
182    1.82166382 2.70982458  .586666667 3.7986E-12  1.7684E-13  6093.52256
112    1.4375687  .415726202  .6  1.0984E-12  4.5081E-13  4033.66603
179    .470304995  .713666667  .546666667 1.3289E-10  6.0678E-13  5976.10528
162    .32065549  .488111947  .606666667 5.8453E-13  6.3174E-13  5384.91078
176    1.71473936 2.70554235  .553333333 7.4775E-11  1.7747E-12  5914.50224
185    .336895407  .472142857  .55  9.9772E-11  1.9222E-12  6260.71013
186    .491995708  .562915017  .506666667 3.6175E-09  2.1445E-12  6281.69466
177    2.3623861 3.801601995  .586666667 3.7986E-12  4.1806E-12  5933.83083
```
Correlation Functions

• The CORR_S and CORR_K functions support nonparametric or rank correlation (finding correlations between expressions that are ordinal scaled).

• Correlation coefficients take on a value ranging from -1 to 1, where:
 - 1 indicates a perfect relationship
 - -1 indicates a perfect inverse relationship
 - 0 indicates no relationship

• The following query determines whether there is a correlation between the AGE and WEIGHT of people, using Spearman's correlation:

```sql
select CORR_S(AGE, WEIGHT) coefficient,
       CORR_S(AGE, WEIGHT, 'TWO_SIDED_SIG') p_value,
       substr(TREATMENT_PLAN, 1,15) as TREATMENT_PLAN
from DMUSER.LYMPHOMA
GROUP BY TREATMENT_PLAN;
```
Correlation Functions

• Procedure to find correlation coefficients for all attributes vs. all attributes

-- Procedure for creating a correlation table
-- Parameters:
-- p_in_table - name of the input data table
-- p_out_table - name of the output table
-- p_type - correlation type ('P' - Pearson - default
-- 'S' - Spearman's rho
-- 'K' - Kendall's tau-b)
-- p_compact - output type (1 - compact output, triangular matrix, default
-- 0 - full matrix)
--
-- Usage:
-- 1) Uses Pearson correlation and compact output, saves results to OUTTAB
-- DROP TABLE OUTTAB PURGE;
-- BEGIN
-- mcorr('EMP','OUTTAB');
-- END;
-- /
-- SELECT * FROM outtab ORDER BY col1, col2;
--
-- 2) Uses Spearman's rho and full matrix output, saves results to OUTTAB

DROP TABLE OUTTAB PURGE;
BEGIN
 mcorr('CUST_INSUR_LTV','OUTTAB');
END;
/

select * from outtab order by correlation desc;
Correlation Functions

```
DROP TABLE OUTTAB PURGE;
BEGIN
  mcorr('CUST_INSUR_LTV', 'OUTTAB');
END;
/

-- create output table
v_stmt := 'CREATE TABLE ' || p_out_table || ' (' || col1 VARCHAR2(30), col2 VARCHAR2(30), correlation NUMBER)';
EXECUTE IMMEDIATE v_stmt;

-- compute correlation and insert into output table
v_stmt := 'INSERT INTO ' || p_out_table || ' (col1, col2, correlation) VALUES(:v1, :v2, :v3)';
FOR i IN 1..v_col_names.count LOOP
  EXECUTE IMMEDIATE v_stmt using v_col_names(i), v_col_names(i), 1.0;
END LOOP;
/
```

```
DECLARE
  v_corr NUMBER;
  v_corr_str VARCHAR2(6) := 'CORR';
BEGIN
  IF (p_type = 'S') THEN
    v_corr_str := 'CORR_S';
  ELSE
    IF (p_type = 'K') THEN
      v_corr_str := 'CORR_K';
    END IF;
  END IF;
  -- get list of columns
  v_stmt := 'SELECT column_name FROM user_tab_columns ' ||
            'WHERE data_type = "NUMBER" AND ' ||
            'table_name = '' ' || p_in_table || ''' '; EXECUTE IMMEDIATE v_stmt BULK COLLECT INTO v_col_names;
```

```
CREATE OR REPLACE PROCEDURE mcorr(p_in_table VARCHAR2, p_out_table VARCHAR2, p_type VARCHAR2 DEFAULT 'P', p_compact NUMBER DEFAULT 1) AS
  TYPE Char_Tab IS TABLE OF VARCHAR2(30);
  v_col_names Char_Tab;
  v_stmt VARCHAR2(4000);
  v_stmt1 VARCHAR2(4000);
  v_corr NUMBER;
  v_corr_str VARCHAR2(6) := 'CORR';
BEGIN
  IF (p_type = 'S') THEN
    v_corr_str := 'CORR_S';
  ELSE
    IF (p_type = 'K') THEN
      v_corr_str := 'CORR_K';
    END IF;
  END IF;
  -- get list of columns
  v_stmt := 'SELECT column_name FROM user_tab_columns ' ||
            'WHERE data_type = "NUMBER" AND ' ||
            'table_name = '' ' || p_in_table || ''' '; EXECUTE IMMEDIATE v_stmt BULK COLLECT INTO v_col_names;
```

```
SELECT * FROM outtab ORDER BY col1, col2;
```
Cross Tabulations

- This query analyzes the strength of the association between TREATMENT_PLAN and GENDER Grouped By LYMPH_TYPE using a cross tabulation:

```
SELECT LYMPH_TYPE,
    stats_crosstab(GENDER, TREATMENT_PLAN,
        'CHISQ_OBS') chi_squared,
    stats_crosstab(GENDER, TREATMENT_PLAN,
        'CHISQ_SIG') p_value,
    stats_crosstab(GENDER, TREATMENT_PLAN,
        'PHI_COEFFICIENT') phi_coefficient
FROM CBERGER.LYMPHOMA
GROUP BY LYMPH_TYPE ORDER BY 1;
```

- Returns the observed p_value and phi coefficient significance:
Cross Tabulations

• STATS_CROSSTAB function takes as arguments two expressions (the two variables being analyzed) and a value that determines which test to perform. These values include the following:
 – CHISQ_OBS (observed value of chi-squared)
 – CHISQ_SIG (significance of observed chi-squared)
 – CHISQ_DF (degree of freedom for chi-squared)
 – PHI_COEFFICIENT (phi coefficient)
 – CRAMERS_V (Cramer’s V statistic)
 – CONT_COEFFICIENT (contingency coefficient)
 – COHENS_K (Cohen’s kappa)

• Function returns all values as specified by the third argument (default is CHISQ_SIG)
Linear Regression

Excerpted from Rob Rolek, BIWA TechCast presentation “Lies, Damned Lies and SQL Statistical Functions”, rolekr@tusc.com
SELECT
s.channel_id,
REGR_SLOPE(s.quantity_sold, p.prod_list_price) SLOPE ,
REGR_INTERCEPT(s.quantity_sold, p.prod_list_price) INTCPT ,
REGR_R2(s.quantity_sold, p.prod_list_price) RSQR ,
REGR_COUNT(s.quantity_sold, p.prod_list_price) COUNT ,
REGR_AVGX(s.quantity_sold, p.prod_list_price) AVGLISTP ,
REGR_AVGY(s.quantity_sold, p.prod_list_price) AVGQSOLD
FROM sales s, products p
WHERE s.prod_id=p.prod_id AND
p.prod_category='Men' AND
s.time_id=to_DATE('10-OCT-2000')
GROUP BY s.channel_id;

<table>
<thead>
<tr>
<th></th>
<th>SLOPE</th>
<th>INTCPT</th>
<th>RSQR</th>
<th>COUNT</th>
<th>AVGLISTP</th>
<th>AVGQSOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.3529838</td>
<td>16.4546382</td>
<td>.217277422</td>
<td>17</td>
<td>87.8764706</td>
<td>13.3529412</td>
</tr>
<tr>
<td>I</td>
<td>-.0108044</td>
<td>13.3082392</td>
<td>.028398018</td>
<td>43</td>
<td>116.77907</td>
<td>12.0465116</td>
</tr>
<tr>
<td>P</td>
<td>-.01729665</td>
<td>11.3634927</td>
<td>.026191191</td>
<td>33</td>
<td>80.5818182</td>
<td>9.96969697</td>
</tr>
<tr>
<td>S</td>
<td>-.01277499</td>
<td>13.488506</td>
<td>.000473089</td>
<td>71</td>
<td>52.571831</td>
<td>12.8169014</td>
</tr>
<tr>
<td>T</td>
<td>-.01026734</td>
<td>5.01019929</td>
<td>.064283727</td>
<td>21</td>
<td>75.2</td>
<td>4.23809524</td>
</tr>
</tbody>
</table>
Oracle Advanced Analytics Database Option
Fastest Way to Deliver Scalable Enterprise-wide Predictive Analytics

Key Features

- Scalable in-database data mining algorithms and R integration
- Powerful predictive analytics and deployment platform
- Drag and drop workflow, R and SQL APIs
- Data analysts, data scientists & developers
- Enables enterprise predictive analytics applications
Oracle Advanced Analytics

How Oracle R Enterprise Compute Engines Work

1. R-> SQL Transparency “Push-Down”
 - R language for interaction with the database
 - R-SQL Transparency Framework overloads R functions for scalable in-database execution
 - Function overload for data selection, manipulation and transforms
 - Interactive display of graphical results and flow control as in standard R
 - Submit user-defined R functions for execution at database server under control of Oracle Database

2. In-Database Adv Analytical SQL Functions
 - 15+ Powerful data mining algorithms (regression, clustering, AR, DT, etc.)
 - Run Oracle Data Mining SQL data mining functioning (ORE.odmSVM, ORE.odmDT, etc.)
 - Speak “R” but executes as proprietary in-database SQL functions—machine learning algorithms and statistical functions
 - Leverage database strengths: SQL parallelism, scale to large datasets, security
 - Access big data in Database and Hadoop via SQL, R, and Big Data SQL

3. Embedded R Package Callouts
 - R Engine(s) spawned by Oracle DB for database-managed parallelism
 - ore.groupApply high performance scoring
 - Efficient data transfer to spawned R engines
 - Emulate map-reduce style algorithms and applications
 - Enables production deployment and automated execution of R scripts

Oracle R Enterprise (ORE) packages

Other R packages

Oracle Database 12c

R Engine

Other R packages

Oracle R Enterprise packages

R

Results

R-> SQL

Results

R

In-Database Adv Analytical SQL Functions

Embedded R Package Callouts
Getting started
OAA Links and Resources

- **Oracle Advanced Analytics Overview:**
 - OAA presentation — [Big Data Analytics in Oracle Database 12c With Oracle Advanced Analytics & Big Data SQL](#)
 - [Big Data Analytics with Oracle Advanced Analytics: Making Big Data and Analytics Simple white paper](#) on OTN
 - [Oracle Internal OAA Product Management Wiki and Workspace](#)

- **YouTube** recorded OAA Presentations and Demos:
 - Oracle Advanced Analytics and Data Mining at the YouTube Movies
 (6 + OAA “live” Demos on ODM’r 4.0 New Features, Retail, Fraud, Loyalty, Overview, etc.)

- **Getting Started:**
 - Link to [Getting Started w/ ODM blog entry](#)
 - Link to [New OAA/Oracle Data Mining 2-Day Instructor Led Oracle University course](#)
 - Link to [OAA/Oracle Data Mining 4.0 Oracle by Examples (free) Tutorials](#) on OTN
 - Take a [Free Test Drive of Oracle Advanced Analytics (Oracle Data Miner GUI) on the Amazon Cloud](#)
 - Link to [OAA/Oracle R Enterprise (free) Tutorial Series](#) on OTN

- **Additional Resources:**
 - [Oracle Advanced Analytics Option on OTN](#) page
 - [OAA/Oracle Data Mining on OTN](#) page, ODM Documentation & ODM Blog
 - [OAA/Oracle R Enterprise page on OTN](#) page, ORE Documentation & ORE Blog
 - Oracle SQL based Basic Statistical functions on OTN
 - BIWA Summit’16, Jan 26-28, 2016 – Oracle Big Data & Analytics User Conference @ Oracle HQ Conference Center
BIWA SUMMIT 2016
The Oracle Big Data + Analytics User Conference
January 26-28, 2016
Including Oracle Spatial Summit

- Hands-on-Labs
- Customer stories, told by the customers
- Educational sessions by Practitioners and Direct from Developers
- Oracle Keynote presentations
- Presentations covering: Advanced Analytics, Big Data, Business Intelligence, Cloud, Data Warehousing and Integration, Spatial and Graph, SQL
- Networking with product management and development professionals

Publicity
- Oracle Business Analytics Newsletter
- DB Insider Dec 2014
- Oracle Magazine
- Latest BIWA SIG Blog Entry
- Jeff Shauer Blog Entry
- Daily BIWA Newsletter
- Email to BIWA members
- Real Time BI Webcast
- Oracle Events Calendar
- Oracle ACE Newsletter
- DB Insider Jan 2015 with Spatial Summit
- Lots of other emails

January 26-28, 2016
Oracle Conference Center at Oracle HQ Campus, Redwood Shores, CA