ADF Code Corner

78. How-to programmatically expand trees and tree
table components upon initial rendering and later

ORACLE’

CODE CORNER

s

twitter.com/adfcodecorner

Abstract:

Initially expanding the ADF Faces tree and tree table
components is a frequently asked requirements that |
cover in sample #20, #21 and #61 on ADF Code Corner.
This article is a different approach to sample #21 and
allows developers to initially expand ADF bound trees and
tree tables down to a defined level of depth. In addition,
this solution works for ADF Faces views in JSPX pages
and JSFF page fragments as it does not use a phase
listener but a managed bean to determine the the tree and
tree table disclosed keys.

Frank Nimphius, Oracle Corporation

twitter.com/fnimphiu
06-APR-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

How-to programmatically expand trees and tree table
DI G@IDISNGORWIARE components upon initial rendering and later

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
corvection. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTIN forum
for Oracle | Developer: bttp:/ / forums.oracle.com/ forums/ fornm.jspaZforumID=83

Introduction

The images below show the sample at runtime. Based on a default value provided for the tree
and tree table level to which nodes should be automatically expanded, the tree and tree table
renders in expanded mode. Later, using the select one choice component on top of the view in
combination with the Refresh button, users can change the disclose state dynamically.

| || http://127.0.0.1:7. . state=oirvd1p3y 4| + | E

T+| Refresh

Expand to level ...

TreeTable Tree
City |Departments |First Name Lasthame |salaty [mMail
Roma -
Venice N
Tokyo |
Hiroshima 3
7 Southlake
w7 T
Alexander Hunold 10,000 AHUMOLD
Bruce Ernst 5,000 BERNST
David Austin 4,800 DAUSTIN
vall Pataballa 4,800 VPATABAL
Diana Lorentz 4,200 DLORENTZ
South San Frandis
South Brunswick
7 Seattle
ki Administration
Jennifer Whalen 4,400 JWHALEN
k7l Purchasing
Den Raphaely 11,000 DRAPHEAL
Alexander Khoo 3,100 AKHOOD
Shelli Baida 2,900 SBAIDA
Sigal Tobias 2,800 STOBIAS
Guy Himure 2,600 GHIMURO
Karen Colmenares 2,500 KCOLMEMA
W Executive
Steven King 24,000 SKING
MNeena Kochhar 17,000 MNKOCHHAR il
ey [ie Haan 17 00N | DFHAAN

The same settings applied to a tree component is shown in the image below.

http://forums.oracle.com/forums/forum.jspa?forumID=83

How-to programmatically expand trees and tree table
RIDINGOIDIDNGORNWNIBRE components upon initial rendering and later

J' 3 hﬂp:fleT.0.0.l:?...-state=oirvd1p3y_4.|_+|

E

Expand to level ... |Expand two level El Refresh

TreeTable

1000 Roma
1100 Venice
1200 Tokyo
1300 Hiroshima
W 1400 Southlake
WV OE0IT
103 Alexander Hunold
104 Bruce Ernst
105 David Austin
106 Valli Pataballa
107 Diana Lorentz
1500 South San Frandsco
1600 South Brunswick
1700 Seattle
W 10 Administration
200 Jennifer Whalen
W 30 Purchasing
114 Den Raphaely
115 Alexander Khoo
116 Shelli Baida
117 Sigal Tobias
118 Guy Himuro
119 Karen Colmenares
W 90 Executive
100 Steven King
101 Neena Kochhar
102 Lex De Haan

Changing the node level for disclosure then re-renders the tree.

|] http#/127.0.0.1:7...-state=oirvd1p3y 4| = |

Expand to level ... :Expand one lew

Expand none

TreeTable Expand two level

1000 Roma Expand three level
1100 Venice
1200 Tokyo
1300 Hiroshima

W 1400 Southlake
= a0 1T
1500 South San Frandsco
1600 South Brunswick

W 1700 Seattle
[10 Administration

30 Purchasing

90 Executive

100 Finance

110 Accounting

120 Treasury

130 Corporate Tax

140 Control And Credit

160 Benefits

170 Manufacturing
180 Construction
190 Contracting

200 Operations

210 IT Support

220 NOC

230 IT Helpdesk

240 Government Sales

250 Retail Sales

VVVNVVVVVVVVVVVVVY

»

m

m

How-to programmatically expand trees and tree table
DI G@IDISNGORWIARE components upon initial rendering and later

The sample code is provided as an Oracle JDeveloper 11.1.1.4 works pace and can be
downloaded as sample #78 from the ADF Code Corner website.

About the sample

The key to this solution is a managed bean that is configured in view scope so its internal variable state
survives subsequent requests. The bean must be configured in the task flow definition file that holds the

view that shows the tree or tree table component with the functionality introduced in this article. The
managed bean exposes two methods:

e A method that returns an instance of RowKeySetImpl individually for the tree and the tree
table component

e A method that can be called to set the depth of node levels until where the tree and tree table
component should be expanded (disclosed)

aﬂc—miig.xnl
General
Description % Managed Beans
Activities
* *® *®

Control Flows fiane Class Scope
Managed Beans TreeTableHelperBean adf.sample.view. TreeTableHelperBean view
Metadata Resources =l Managed Properties

MName * Class

Value

The tree and tree table components have their DiscloseRowKeys property configured to point to the
managed bean method that returns the instance of RowKeySetImpl.

TreeTabIaSampla.jspx
W - Shuw‘[FuII Screen S\ze']@[Nona 'IDefau\t 'INOHE V]E HFB I U=

Expand to level ... - Refresh

TreeTable Tree
#{node}
#{node}
#{node}
¥ Tree - t1- Property |
IR 7B (g0 $4)@
£ Advanced [
Binding: | ‘ o
ClientComponent: [<dEfEu|t> (false) '] hd
AttributeChangelistener: | ‘ e
FocusRowKey: | ‘ ~
@ DisclosedRowkeys: #{viewScope. TreeTableHelperBean.newDisdosedTreekeys}
SelectedRowkeys: | ‘ i
Visible: [<defauit> (rue) v
Unsecure: | ‘ 4
=] Customization
Customization allowed: [cdefault) '] v oL
o ization allowed by: ‘ ‘ ~
=l Other

ActiveRowkey: | ‘ e

How-to programmatically expand trees and tree table
VDI OG@IDISAGIORWIANE components upon initial rendering and later

The content of the RowKeySetImpl instance is a collection of keyPath, which are lists containing the
primary key paths to a node in the tree or tree table hierarchy. For ADF bound components, the keypath
is accessible from the JUCtrl1HierNodeBinding class that represents individual hierarchical nodes in
the ADF binding. For the remainder of this article I expect the reader to understand how to build ADF
bound trees and tree tables in Oracle ADF.

Note: Just in case, how to build ADF bound trees and tree tables is briefly covered in ADF Code Corner
sample #50. Read page 5 onwards

http://www.oracle.com/technetwork/developer-tools/adf/learnmore /50-synchromize-form-
treeselection-169192.pdf

Managed bean Code

Below is the managed bean code that uses a recursive method call to parse the tree hierarchy. The
example uses the tree component Id "t1" and the tree table component Id "tt1" to lookup the component
instances on the ADF Faces view. The lookup code can be improved as explained in sample #58 on ADF
Code Corner:

http://www.oracle.com/technetwork/developer-tools/adf/downloads/58-

optimizedadffacescomponentsearch-175858.pdf

import java.util.ArrayList;
import java.util.List;

import javax.faces.component.UIViewRoot;
import javax.faces.context.FacesContext;

import oracle.adf.view.rich.component.rich.data.RichTree;
import oracle.adf.view.rich.component.rich.data.RichTreeTable;
import oracle.adf.view.rich.context.AdfFacesContext;

import oracle.jbo.uicli.binding.JUCtrlHierBinding;
import oracle.jbo.uicli.binding.JUCtrlHierNodeBinding;

import org.apache.myfaces.trinidad.model.CollectionModel;
import org.apache.myfaces.trinidad.model.RowKeySetImpl;

public class TreeTableHelperBean {

//disclose state for tree tables

private RowKeySetImpl newDisclosedTreeTableKeys = null;
//disclose state for tree

private RowKeySetImpl newDisclosedTreeKeys = null;

//allows you to configure the depth of the tree table
private int expandTreeTolLevellLevel = 1;

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/50-synchromize-form-treeselection-169192.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/50-synchromize-form-treeselection-169192.pdf
http://www.oracle.com/technetwork/developer-tools/adf/downloads/58-optimizedadffacescomponentsearch-175858.pdf
http://www.oracle.com/technetwork/developer-tools/adf/downloads/58-optimizedadffacescomponentsearch-175858.pdf

How-to programmatically expand trees and tree table
VDI OG@IDISAGIORWIANE components upon initial rendering and later

public TreeTableHelperBean () {
super () ;

}

public void setNewDisclosedTreeTableKeys (
RowKeySetImpl newDisclosedKeys) {
this.newDisclosedTreeTableKeys = newDisclosedKeys;

}

public RowKeySetImpl getNewDisclosedTreeTableKeys () {
if (newDisclosedTreeTableKeys == null) {
newDisclosedTreeTableKeys = new RowKeySetImpl () ;
FacesContext fctx = FacesContext.getCurrentInstance();
UIViewRoot root = fctx.getViewRoot ();
//lookup the tree table component by its component ID
RichTreeTable treeTable =
(RichTreeTable) root.findComponent ("ttl") ;
//if tree table is found
if (treeTable != null) {
//get the collection model to access the ADF binding layer for
//the tree binding used
CollectionModel model = (CollectionModel) treeTable.getValue();
JUCtrlHierBinding treeBinding =
(JUCtrlHierBinding)model.getWrappedData () ;
JUCtrlHierNodeBinding nodeBinding =
treeBinding.getRootNodeBinding () ;
expandAllNodes (nodeBinding, newDisclosedTreeTableKeys, O,
expandTreeToLevelLevel) ;

}

return newDisclosedTreeTableKeys;

public void setNewDisclosedTreeKeys (
RowKeySetImpl newDisclosedTreeKeys) {
this.newDisclosedTreeKeys = newDisclosedTreeKeys;

}

public RowKeySetImpl getNewDisclosedTreeKeys () {
if (newDisclosedTreeKeys == null) {
newDisclosedTreeKeys = new RowKeySetImpl () ;
FacesContext fctx = FacesContext.getCurrentInstance();
UIViewRoot root = fctx.getViewRoot ();
//lookup thetree component by its component ID
RichTree tree = (RichTree)root.findComponent ("tl1");

//1if tree is found

How-to programmatically expand trees and tree table
VDI OG@IDISAGIORWIANE components upon initial rendering and later

if (tree != null) {

//get the collection model to access the ADF binding

//layer for the tree binding used. Note that for this

//sample the bindings used by the tree is different from

//the binding used for the tree table

CollectionModel model = (CollectionModel) tree.getValue();

JUCtrlHierBinding treeBinding =
(JUCtrlHierBinding)model.getWrappedData () ;

JUCtrlHierNodeBinding nodeBinding =

treeBinding.getRootNodeBinding() ;
expandAllNodes (nodeBinding, newDisclosedTreeKeys, O,

expandTreeTolLevellevel) ;

}

return newDisclosedTreeKeys;

* Method that allows you to dynamically set the maximum level
* until where the tree or tree table is disclosed. Note that
* to use this from a rendered page, you need an additional method
* that clears the current disclosed row keys
*/

public void setExpandTreeToLevellevel (int expandTreeToLevellevel) {
this.expandTreeTolLevellevel = expandTreeTolevellevel;

}

public int getExpandTreeToLevelLevel () {
return expandTreeTolevellevel;

}
/‘k‘k

* Recursive method to expand nodes to a pre-defined level

* @param nodeBinding the JUCtrlHierNodeBinding representing

* the current node

* (@param disclosedKeys the RowKeySetImpl instance that holds

* the keys to disclose

* @param currentExpandLevel the current depth of the tree node

* (@param maxExpandLevel the max. number of levels to expand nodes
* for

*/

How-to programmatically expand trees and tree table
VDI OG@IDISAGIORWIANE components upon initial rendering and later

private void expandAllNodes (JUCtrlHierNodeBinding nodeBinding,
RowKeySetImpl disclosedKeys,
int currentExpandLevel,
int maxExpandLevel) {
if (currentExpandLevel <= maxExpandLevel) {
List<JUCtrlHierNodeBinding> childNodes =
(List<JUCtrlHierNodeBinding>)nodeBinding.getChildren() ;
ArrayList newKeys = new ArrayList();
if (childNodes != null) {
for (JUCtrlHierNodeBinding node : childNodes) {
newKeys.add(node.getKeyPath()) ;
expandAllNodes (_node, disclosedKeys,
currentExpandLevel + 1, maxExpandLevel) ;

}
disclosedKeys.addAll (newKeys) ;

//handle the case of the Refresh button being pressed. Reset the
//tree and tree table disclosure state

public String onRefresh() {
FacesContext fctx = FacesContext.getCurrentInstance();
UIViewRoot root = fctx.getViewRoot ()
AdfFacesContext adfFacesContext =
AdfFacesContext.getCurrentInstance () ;

//clear disclosed RowKeys
newDisclosedTreeTableKeys =null;
//PPR tree table
RichTreeTable treeTable =

(RichTreeTable) root.findComponent ("ttl") ;
getNewDisclosedTreeTableKeys () ;
adfFacesContext.addPartialTarget (treeTable) ;

//reset tree keys

newDisclosedTreeKeys = null;

RichTree tree = (RichTree)root.findComponent ("tl1");
getNewDisclosedTreeKeys () ;
adfFacesContext.addPartialTarget (tree);

return null;

How-to programmatically expand trees and tree table
VDI OG@IDISAGIORWIANE components upon initial rendering and later

Download

The sample workspace can be downloaded from the ADF Code Corner website where it is sample #78.
http://www.oracle.com/technetwork/developer-tools /adf/learnmore/index-101235.html

You need to configure the database connection and point it to the HR schema of your local database
(Oracle XE or enterprise edition both have the schema installed). The workspace is of Oracle JDeveloper
11.1.1.4, though the code is expected to be backward compatible.

RELATED DOCOMENTATION

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

