ORACLE EDGE ANALYTICS

Oracle Edge Analytics (OEA) is a solution for building embedded device applications to filter, correlate and process events in real-time so that downstream applications, services and event-driven architectures are driven by true, real-time intelligence. Oracle Edge Analytics (OEA) enables designing, defining, development, and implementing event processing applications that not only meet embedded device requirements but perform to the highest levels of today’s intelligent systems. Based on the Oracle Real Time Streaming Analytics technology, Oracle Edge Analytics (OEA) provides an optimized low memory and disk footprint version of the enterprise edition Oracle Stream Explorer platform. It is built on industry-standards including Java, ANSI SQL, and OSGi™. With a powerful Java development tooling, Oracle Edge Analytics (OEA) ensures that your development team can develop event-driven applications on the edge without the hurdle of specialized training or unique skill-set investment.

Introduction

The accelerated growth of the “Internet of Things” (IoT) has driven demand for increased capabilities to collect and process data from a proliferation of embedded devices. At the same time, the quantity and speed of business events is exponentially growing. Whether it is streaming machine data for factory automation, streaming satellite data for the military or real-time location data for transportation and logistics, customers in multiple industries must handle large volumes of complex data in real time. These two trends have put pressure on customers to expand their capability to support event-driven architecture throughout the edge devices. Real-time event processing requires both the infrastructure and the application development environment to execute on event processing requirements. These requirements often include the need to scale from legacy system to enabling intelligence directly on the devices in the field to capture high velocities of data and event throughputs, being able to react to the critical events in real-time without affording latencies associated with backend processing.

Figure 1 Cascading Oracle Edge Analytics Architecture
Benefits

- Enables real-time situational awareness, faster decisions and immediate actions locally at the machine level, ensuring better customer satisfaction and retention, driving higher revenues
- Decrease costs and improve compliance with the real-time analysis of data patterns, identifying and proactively responding to critical events and threats
- Cost savings in terms of network bandwidth and processing power in the backend. Plus greater autonomy and resilience in case of connectivity loss to network
- Improve operational efficiency with immediate insight into supply chain, integrated systems and processes, facilitate dynamic optimization of resource utilization
- Provide low TCO and increase productivity with a complete rapid development and deployment platform for event-driven solutions requiring complex event processing on the edge devices

Sample Use Cases

Oracle Edge Analytics (OEA) targets a wealth of industries and functional areas. Following are some use cases:

- **Industrial Automation:** High speed data collection and analysis, local storage and analysis, filtering, correlation, and pattern matching.
- **Management appliances:** Ability to detect events from various sub-systems and determine downstream process
- **Transportation and Telemetry:** Location tracking, container content monitoring, intrusion detection, temperature, and pressure monitoring
- **Healthcare:** Data evaluation, analysis, monitoring, automatic alerts, and care-flow processing
- **Smart Retail Vending Machines:** Inventory management, demand-based handling, and pricing

Streaming Event Processing

Oracle Edge Analytics (OEA) provides ability to join incoming streaming events with persisted data, thereby delivering contextually aware filtering, correlation, aggregation, and pattern matching. The Oracle Edge Analytics (OEA) can be integrated with lightweight adapters for common event sources like sockets and JMS messages, while also providing an easy-to-use adapter framework for custom adapter development.

Today’s intelligent devices process multitude of data and require capability to easily capture, analyze and process vital information. With Oracle Edge Analytics (OEA) customers can identify and anticipate opportunities, and threats represented by seemingly unrelated events.

- Detects related events that, for example, have the following characteristics:
 - Correlated events: If event A happens, event B almost always follows within 2 seconds of it.
 - Causal events: Event ‘manufacturing process halted’ will result in event ‘delayed shipment.’

- Generates optimal downstream events, based on customer-specific inference queries, in response to a combination of upstream events.

Standards-Based Continuous Query Language

In addition to real-time event sourcing, the Oracle Edge Analytics (OEA) design environment and runtime execution supports standards-based, continuous query execution across both event streams and persisted data stores like databases and high performance data grids. This enables Oracle Edge Analytics (OEA) to act as the heart of intelligence for systems needing answers in microseconds or minutes to discern patterns and trends that would otherwise go unnoticed. Event Processing use cases require high speed processing with mathematical accuracy and reliability of standard database SQL. Oracle Edge Analytics (OEA) queries listen to incoming event streams and execute registered queries continuously, in-memory on each event, utilizing advanced, automated algorithms for query optimization. While based on an in-memory execution model, however, Oracle Edge Analytics (OEA) leverages standard ANSI SQL syntax for query development, thus ensuring accuracy and extensibility of query construction. Oracle Edge Analytics (OEA) is fully compliant with the ANSI SQL ’99 standard and is the first product available in the industry to support ANSI SQL reviewed extensions to standard SQL for real-time, continuous query pattern matching.
Event Processing Programming Model

The Oracle Edge Analytics (OEA) Event Processing Network allows for both CQL and Java code to be combined to deliver robust event processing applications and is at the heart of the Oracle Edge Analytics (OEA) programming model. Leveraging standard industry terminology to describe event sources, processors, and event output or sinks, Oracle Edge Analytics (OEA) provides a meta-data driven approach for defining and manipulating events within an application. This means real-time updates with no re-compilation, no updates to binary, and no restart required. Oracle Edge Analytics (OEA) developers use a JDeveloper IDE plug-in with a visual, directed-graph canvas, and palette for application design to quickly outline the flow of events and processing across both event and data sources. Developing the flow through drag and drop modeling, the developer can then enter the appropriate metadata definitions to connect design to implementation. This provides a consistent application design approach for both Enterprise and Embedded implementation solutions.

Integrated industry-leading embedded Java application platform

Oracle Edge Analytics (OEA) has the ability to handle millions of events per second with microseconds of processing latencies. This is achieved through a complete layered solution, not only with a design focus on high performance event processing use cases, but also a tight integration with industry-leading embedded Java application platform. It delivers a commercial grade Java Machine-to-Machine (M2M) platform focused on reliability, scalability enabling customers to predictably deploy business-critical embedded applications.

To satisfy the needs of today’s intelligent system, Oracle Edge Analytics (OEA) is packaged as a completely stand-alone platform, and together with the Java platform on the device it provides a comprehensive streaming application layer for embedded device runtime environments.

Real Time Streaming Analytical Product Family

Oracle Edge Analytics (OEA) is a product component of the Oracle Real Time Streaming Analytics platform that includes Oracle Stream Explorer, which provides business user friendly, visually impactful, abstraction, and simplistic web tooling features together with a complete, highly scalable, high performance event driven runtime platform.
Supported Platforms
For specific product requirements, refer to the following documentation hub: http://www.oracle.com/technology/documentation/index.html

<table>
<thead>
<tr>
<th></th>
<th>Oracle Edge Analytics (OEA) Supported Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>ARM v6 and v7</td>
</tr>
<tr>
<td>OS</td>
<td>Linux Kernel 2.6.28 or higher; glibc 2.9 or higher</td>
</tr>
<tr>
<td>FP</td>
<td>VFP</td>
</tr>
<tr>
<td>RAM</td>
<td>256MB or more for Java</td>
</tr>
<tr>
<td>ROM/ Flash/ Disk</td>
<td>128MB or more for Java</td>
</tr>
</tbody>
</table>

Contact Us
For more information about Java Embedded products, please visit http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/index.html or call +1.800.ORACLE1 to speak to an Oracle representative.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through The Open Group.