One-Minute Spotlight

Distribution Fitting

How can you use your actual data to create probability distributions?

Often, when working on a project or problem, you may have the option of using real data. There are two types of historical data: data that exhibits some form of trend and/or seasonality over time (referred to as time-series data) and data that varies randomly within some bounds. Examples of this second form of data are the cost of procuring a machine part (for cost estimating), the performance of a sales person compared to quota, or even plane arrival times.

To model time-series data, you should use CB Predictor. However, if you have random historical data available, Crystal Ball's distribution fitting feature can substantially simplify the process of selecting a probability distribution. Not only is the process simple, but the resulting distribution more accurately reflects the nature of your data than if you estimated the shape and parameters of the distribution. This example uses spring coil diameter data to fit to a distribution.
One-Minute Spotlight

How Distribution Fitting Works

In distribution fitting, Crystal Ball automatically matches your data against the continuous and/or discrete probability distributions. You can choose to fit to some or all of the available distributions, with the exception of the Yes No and Custom distributions. Crystal Ball performs a mathematical fit to determine the set of parameters for each distribution that best describes the characteristics of your data.

Crystal Ball judges the quality, or *goodness*, of each fit using one of several standard *goodness-of-fit* tests. It then chooses the distribution with the highest-ranking fit to represent your data.

![Fit Distribution](image)

- **Location of data**: Select the range or text file containing your data.
- **Distributions to fit**: Choose from options like AutoSelect, All continuous, All discrete, Choose, Triangular, Anderson-Darling, Kolmogorov-Smirnov, and Chi-Square.
- **Rank by goodness-of-fit statistic**: Select the goodness-of-fit statistic to rank the distributions.
- **Lock parameters**: Optionally lock parameters during the fitting process.
- **Show all goodness-of-fit statistics**: Display all goodness-of-fit statistics for comparison.

Image: Fit Distribution dialog box showing data location and distribution options.
One-Minute Spotlight

Reviewing Your Fit Results

You can review the distributions sorted in order of their fit tests using a comparison chart. This chart shows the fitted distributions superimposed over your data, letting you to visually check the quality of the fits.

A summary table can show some or all of the goodness-of-fit statistics, including P-values for certain distributions. You can override the highest-ranking probability distribution with another one of your choice.

Each goodness-of-fit test is calculated for every distribution, but only the selected test determines how the distributions are ranked. The Chi-Square test is selected for discrete distributions, and the default for continuous distributions is the Anderson-Darling test.

Creating a Distribution

The final step in fitting is to select a probability distribution with an appropriate fit. Crystal Ball then applies the calculated parameters to the appropriate distribution and displays the distribution for you to review and select.
For more information or to contact us, browse to http://www.oracle.com/crystalball.