Microarchitecture of the UltraSPARC-T1 CPU

Poonacha Kongetira
Director Hardware Engineering
Sun Microsystems, Inc.
Agenda

- Introduction
- Threading and the Core pipeline
- Sparc Core Microarchitecture
- Memory Subsystem Brief
- Conclusions
Architectural Tradeoffs for Throughput

- Maximize number of Threads on die to exploit Thread Level Parallelism
 - Memory and Pipeline stall time hidden by overlapped execution of large number of threads
 - Shared L2 cache for efficient data sharing among cores
- Implement a high b/w memory system to feed the threads
 - High b/w interface to L2 cache for L1 misses
 - Banked and highly associative L2 cache
 - High bandwidth interface to DRAM
- Pick frequency optimized for Performance/Watt
UltraSPARC-T1

- 8 x 4-way Multithreaded cores for a total of 32 threads
- 134 GB/s crossbar interconnect for on chip communication
- 4 way banked, 12 way associative, 3MB L2
- 4 DDR2 channels (25GB/s)
- Sun Jbus interface to PCI-X/PCIe bridge chip
- Single FPU shared by all cores
- SPARC V9 ISA
- 1.2Ghz frequency
UltraSPARC-T1: Some Design Choices

- Simpler core architecture to maximize cores on die
- Caches, dram channels shared across cores give better area utilization
- Shared L2 decreases cost of coherence misses by an order of magnitude
- On die memory controllers reduce miss latency
- Crossbar good for b/w, latency, functional verification
- 378mm² die in 90nm dissipating ~70W
UltraSPARC-T1 Processor Core

- Four threads per core
- Single issue 6 stage pipeline
- 16KB I-Cache, 8KB D-Cache
 > Unique resources per thread
 > Registers
 > Portions of I-fetch datapath
 > Store and Miss buffers
 > Resources shared by 4 threads
 > Caches, TLBs, Execution Units
 > Pipeline registers and DP
- Core Area = 11mm² in 90nm
- MT adds ~20% area to core
SPARC Core Pipeline

Fetch → Thrd Sel → Decode → Execute → Memory → WB

ICache IItlb
Inst buf x 4

Thrd Sel Mux
Thread selects

Regfile x4

Crypto Coprocessor

DCache Dtlb Stbuf x 4

Crossbar Interface

Instruction type
misses
traps & interrupts
resource conflicts
Thread Selection Policy

- Switch between available threads every cycle giving priority to least recently executed thread
- Threads become unavailable due to:
 - Long latency ops like loads, branch, mul, div.
 - Pipeline stalls such as cache misses, traps, and resource conflicts
- Loads are speculated as cache hits, and the thread is switched in with lower priority
Thread Selection – All Threads Ready

Pipelined Flow

Next Fetch

\[S_{t0-ld} \rightarrow D_{t0-ld} \rightarrow E_{t0-ld} \rightarrow M_{t0-ld} \rightarrow W_{t0-ld} \]

\[F_{t0-add} \rightarrow S_{t1-sub} \rightarrow D_{t1-sub} \rightarrow E_{t1-sub} \rightarrow M_{t1-sub} \rightarrow W_{t1-sub} \]

\[F_{t1-ld} \rightarrow S_{t2-ld} \rightarrow D_{t2-ld} \rightarrow E_{t2-ld} \rightarrow M_{t2-ld} \rightarrow W_{t2-ld} \]

\[F_{t2-br} \rightarrow S_{t3-add} \rightarrow D_{t3-add} \rightarrow E_{t3-add} \rightarrow M_{t3-add} \]

\[F_{t3-add} \rightarrow S_{t0-add} \rightarrow D_{t0-add} \rightarrow E_{t0-add} \]
Thread Selection – Two Threads Ready

Pipelined Flow

Next Fetch

Thread '0' is speculatively switched in before cache hit information is available, in time for the 'load' to bypass data to the 'add'
Instruction Fetch/Switch/Decode Unit (IFU)

- **I-cache complex**
 - 16KB data, 4ways, 32B line size
 - Single ported Instruction Tag.
 - Dual ported (1R/1W) Valid bit array to hold Cache line state of valid/invalid
 - Invalidates access Vbit array not Instruction Tag
 - Pseudo-random replacement

- **Fully Associative Instruction TLB**
 - 64 entries, Page sizes: 8k, 64k, 4M, 256M
 - Pseudo LRU replacement.
 - Multiple hits in TLB prevented by doing autodemap on fill
IFU Functions (cont'd)

- 2 instructions fetched each cycle, though only one is issued/clk. Reduces I$ activity and allows opportunistic line fill.
- 1 outstanding miss/thread, and 4 per core. Duplicate misses do not request to L2
- PC's, NPC's for all live instructions in machine maintained in IFU
Windowed Integer Register File

- 5kB 3R/2W/1T structure
 > 640 64b regs with ECC!
- Only 32 registers from current window visible to thread.
- Window changing in background under thread switch. Other threads continue to access IRF
- Compact design with 6T cells for architectural set & multi ported cell for working set.
- Single cycle R/W access
Execution Units

- Single ALU and Shifter. ALU reused for Branch Address and Virtual Address Calculation
- Integer Multiplier
 - 5 clock latency, throughput of $\frac{1}{2}$ per cycle for area saving
 - Contains accumulate function for Mod Arithmetic.
 - 1 integer mul allowed outstanding per core.
 - Multiplier shared between Core Pipe and Modular Arithmetic unit on a round robin basis.
- Simple non restoring divider, with one divide outstanding per core.
- Thread issuing a MUL/DIV will rollback and switch out if another thread is occupying the mul/div units.
Load Store Unit (LSU)

- D-Cache complex
 - 8KB data, 4ways, 16B line size
 - Single ported Data Tag.
 - Dual ported(1R/1W) Valid bit array to hold Cache line state of valid/invalid
 - Invalidates access Vbit array but not Data Tag
 - Pseudo-random replacement
 - Loads are allocating, stores are non allocating.

- DTLB: common macro to ITLB(64 entry FA)
- 8 entry store buffer per thread, unified into single 32 entry array, with RAW bypassing.
LSU (cont'd)

- Single load per thread outstanding. Duplicate request for the same line not sent to L2
- Crossbar interface
 - LSU prioritizes requests to the crossbar for FPops, Streaming ops, I and D misses, stores and interrupts etc.
 - Request priority: imiss>ldmiss>stores, {fpu, strm, interrupt}.
 - Packet assembly for pcx.
- Handles returns from crossbar and maintains order for cache updates and invalidates.
Asynchronous Crypto Co-processor

- One crypto unit per core
 - Supports asymmetric crypto (public key RSA) for upto 2048b size key. Shares integer Multiplier for modular arithmetic operations
 - One thread can use unit at a time
 - Operation set up by store to control register, and thread returns to normal processing
 - Crypto unit initiates streaming load/store to L2 through the crossbar, compute ops to Multiplier
 - Completion by polling or interrupt
Other Functions

• Support for 6 trap levels. Traps cause pipeline flush and thread switch until trap PC is available
• Support for upto 64 pending interrupts per thread
• Floating Point
 > FP registers and decode located within core
 > On detecting an Fpop
 > The thread switches out
 > Fpop is further decoded and FRF is read
 > Fpop with operands are packetized and shipped over the crossbar to the FPU
 > Computation done in FPU and result returned via crossbar
 > Writeback completed to FRF and thread restart
Virtualisation

- Hypervisor layer virtualizes CPU
- Multiple OS instances
- Better RAS as failures in one domain do not affect other domain
- Improved OS portability to newer hardware
Virtualisation on UltraSPARC-T1

- Implementation on UltraSPARC-T1
 - Hypervisor uses Physical Addresses
 - Supervisor sees 'Real Addresses' – a PA abstraction
 - VA translated to 'RA' and then PA. Niagara MMU and TLB provides h/w support.
 - Upto 8 partitions can be supported. 3Bit partion ID is part of TLB translation checks
 - Additional trap level added for hypervisor use
Crossbar

- Each requestor queues up to 2 packets per destination.
- 3 stage pipeline: Request, Arbitrate and Transmit
- Centralised arbitration with oldest requestor getting priority
- Core to cache bus optimized for address + doubleword store
- Cache to core bus optimized for 16B line fill. 32B I$ line fill delivered in 2 back to back clks
L2 Cache

- 3MB, 4-way banked, 12way SA, Writeback
- 64B line size, 64B interleaved between banks
- Pipeline latency: 8 clks for Load, 9 clks for I-miss, with critical chunk returned first
- 16 outstanding misses per bank -> 64 total
- Coherence maintained by shadowing L1 tags in an L2 directory structure.
- L2 is point of global visibility. DMA from IO is serialised wrt traffic from cores in L2
L2 Cache – Directory

- Directory shadows L1 tags
 - L1 set index and L2 bank interleaving is such that $\frac{1}{4}$ of L1 entries come from an L2 bank
 - On an L1 miss, the L1 replacement way and set index identify the physical location of the tag which will be updated by miss address
- On a store, directory will be cammed.
 - Directory entries collated by set so only 64 entries need to be cammed. Scheme is quite power efficient
 - Invalidates are a pointer to the physical location in the L1, eliminating the need for a tag lookup in L1
Coherence/Ordering

• Loads update directory & fill the L1 on return

• Stores are non allocating in L1
 – Two flavors of stores: TSO, RMO. One TSO store outstanding to L2 per thread to preserve store ordering. No such limitation on RMO stores
 – No tag check done at store buffer insert
 – Stores check directory and determine L1 hit.
 – Directory sends store ack/inv to core
 – Store update happens to D$ on store ack

• Crossbar orders responses across cache banks
On Chip Mem Controller

- 4 independent DDRII DRAM channels
- Can supports memory size of upto 128GB
- 25GB/s peak bandwidth
- Schedules across 8 rds + 8 writes
- Can be programmed to 2 channel mode in reduced configuration
- 128+16b interface, chipkill support, nibble error correction, byte error detection
- Designed to work from 125-200Mhz
Conclusion

- Microarchitecture choices for UltraSPARC-T1 guided by a focus on throughput performance for commercial server workloads
 - Simple threaded cores to maximize number of threads
 - Shared memory subsystem to deliver sufficient bandwidth
 - Focus on Performance/Watt to address power concerns in datacentre installations
Microarchitecture of the UltraSPARC - T1 CPU

Poonacha Kongetira
Director Hardware Engineering
Sun Microsystems Inc