Oracle9i Data Mining

Data Sheet
July 2003

Oracle9i Data Mining enables companies to build integrated business intelligence applications. Using data mining functionality embedded in the Oracle9i Database, application developers can automate the extraction and distribution of business intelligence throughout the organization.

ORACLE9i DATA MINING

Oracle9i Data Mining provides comprehensive data mining functionality that is embedded in the Oracle9i Database. Oracle9i Data Mining allows companies to build advanced business intelligence applications that mine corporate databases, discover new insights, and integrate that information into business applications.

Oracle9i Data Mining is a priced option to the Oracle9i Database Enterprise Edition (EE) that embeds classification, prediction, associations, and clustering natively within the database. All model building and scoring functions are accessible through a Java API.

Oracle9i Data Mining enables application developers and data analysts to extend the benefits from data mining to many users throughout an organization. By enhancing applications through embedded data mining, customers, independent software vendors (ISVs), and Oracle Applications can deliver far greater value than is possible from a data mining tool for a single data analyst.

Oracle9i Data Mining helps companies build advanced business intelligence applications that find patterns in data that can help you discover new insights and make predictions. With Oracle9i Data Mining, you can implement strategies to:

- prevent customer attrition
- cross-sell to existing customers
- acquire new customers and identify profitable customers
- detect fraud
- identify customer clusters or segments
- profile customers with greater accuracy

Oracle9i Data Mining helps companies tap information hidden in corporate databases to reveal new customer insights. At every stage of the customer life cycle, Oracle9i Data Mining delivers value that goes straight to your bottom line.

Oracle9i Data Mining can also detect hidden patterns in life science, scientific, government, manufacturing, and other applications, such as:

- finding “target” genes and promising “leads” to attack diseases
- predicting the quality of a manufactured part
- finding associations between patients, drugs, and outcomes
- identifying patterns of anomalies
Insights discovered by Oracle9i Data Mining can be revealing, significant, and invaluable.

DATA MINING EMBEDDED IN ORACLE9i DATABASE

Oracle9i Data Mining automates the process of extracting business intelligence from large amounts of data. It eliminates off-loading data to external special-purpose analytic servers for data mining and scoring. All of Oracle9i Data Mining functionality is embedded in the Oracle9i Database. With Oracle9i Data Mining, the data never leaves the database—the data, data preparation, model building, and model scoring activities all remain in the database. This also has significant advantages for data security, manageability, back-up, and user access.

Embedding in the database not only means that the data stays in the database but also that the mining tasks can run automatically, asynchronously, and independently of any GUI-driven user interface. This plus automated capabilities provides a powerful and scalable platform to quickly and efficiently build advanced business intelligence applications.

Oracle9i’s scalability allows Oracle9i Data Mining to analyze large volumes of data to detect subtle patterns and relationships and extract new business intelligence. Oracle9i Data Mining’s new insights and predictions are available for access by other query, analysis, and reporting tools and applications. This allows businesses to build applications that are driven by data mining results.

Because the Oracle9i Database delivers unrivaled performance and scalability, Oracle9i Data Mining provides the ideal infrastructure for building advanced business intelligence applications. Companies can score large data tables without extracting the data to external dedicated data mining servers.

By automating the discovery of new business intelligence, Oracle9i Data Mining significantly reduces latency time from data to information and provides results that translate directly into higher profits and lower costs.
Oracle Data Mining for Java

Oracle Data Mining for Java (DM4J) provides GUI add-in extensions to Oracle9i JDeveloper that help data analysts and application developers build advanced business intelligence applications based on Oracle's embedded data mining technology. DM4J consists of the ODM Components for building data mining models and the ODM Browser for viewing data mining tasks and results.

Oracle Data Mining for Java (DM4J) helps companies leverage their investment in data to extract valuable new information. Oracle Data Mining enables companies to be successful in their ultimate goal, that is, to increase revenue / reduce costs by operationalizing data mining in advanced business intelligence applications.

Oracle Data Mining Components

ODM Components is a collection of GUI wizards that step the user through the mining process. The ODM Components automatically generate Java code that can be run to perform data mining in the database.

You can use the Components to create Java programs that perform the following in-database data mining tasks:

- Build, test, calculate lift, and apply classification models using either the Adaptive Bayes Network or Naïve Bayes algorithms; you can also create a transformation that splits a table into the build and test tables required for classification models
- Build and apply clustering models using either the O-Cluster or k-Means clustering algorithm
- Build association rules models and query for rules of interest using criteria such as support, confidence, rule size, or specific items of interest.
- Build attribute importance model so you can assess the relative importance of each attribute in making a classification. This can assist in determine which data is necessary to obtain from customers or to ensure is correct. Attribute importance can also be used to select attributes for subsequent model building in Naïve Bayes; thereby reducing build and apply times and possibly increasing accuracy.

The DM4J Components provide defaults for most values; the user can override these defaults.

Any data analyst can use the ODM components, but the advantage is that while building models, DM4J writes the Java code. By deploying the data mining application, the Java developer can take the code generated by DM4J directly into an application. Using Oracle Data Mining and DM4J, the data never leaves the database: all data movement is eliminated. Additionally, ODM provides the security of the Oracle database.

Oracle Data Mining Browser

The ODM Browser is a separate Oracle9i JDeveloper extension that allows the user to view the results created in the database. The ODM Browser allows the data analyst and Java developer to view lift tables, confusion matrices, ABN rules, Association and Cluster results and rules. Oracle Data Mining and DM4J enables data analysts and Java developers to collaborate to build and deploy true data mining applications.
ORACLE DATA MINING FOR JAVA
SELECTED SCREEN SHOTS

JDeveloper allows users to view data tables in the database that they wish to mine.

DM4J’s wizards allow the user to specify the attributes to include in the model.

DM4J provides graphical display for viewing results such as this cluster detail output.

DM4J’s wizards allow the user to specify algorithm settings.

DM4J generates Java code for developing business intelligence applications.
AN ANALYTICAL INFERENCE ENGINE

Oracle9i Data Mining enables companies to systematize the discovery and integration of new business intelligence within their operations. Application developers can use Oracle9i Data Mining’s Java API to add data mining insights and predictions to enhance business applications such as Customer Relationship Management (CRM), Call Centers, Enterprise Resource Planning (ERP), Web portals, and even wireless applications. Companies, for example, can use Oracle9i Data Mining to build churn applications that identify customers that are likely to churn before they leave for a competitor. Oracle9i Data Mining’s predictions can help anticipate and proactively manage customer behavior in mutually beneficial 1-to-1 relationships.

Retailers and database marketers can use Oracle9i Data Mining to build marketing campaign applications that target those prospects that are most likely to respond to offers. Oracle9i Data Mining can integrate data mining results into these applications. Examples include predicting a customer’s likelihood to churn, to respond to a special offer, to be a profitable customer, to file a claim, or to spend large amounts of money.

E-businesses and Web sites can enhance Web searches using Oracle9i Data Mining to present other documents or items that are related or “associated” in use or content.

Once the data has been mined and the predictive models built, Oracle9i Data Mining can apply the models to score other data to make predictions. Scoring of data occurs in the database and the scores are available for use by other applications. Data mining models can provide insights and predictions on demand to interactive applications, such as call centers, that suggest “recommendations.” For example, a call center application could use a customer’s historical data together with responses from a call in progress to rate the customer’s preferences and make personalized cross-sell recommendations.

PREDICTION AND CLASSIFICATION

Oracle9i Data Mining provides Naive Bayes and Adaptive Bayes Networks algorithms for making predictions and classifications. These algorithms are applicable to a variety of data mining problems and provide high accuracy. By finding patterns in data, companies can make predictions about the future behavior of customers with similar characteristics — using the past as a predictor of the future. Typical prediction applications estimate the probability of an outcome, such as “0, 1” or “yes, no” or “A, B, C, or D.” Consider the following example:

Question: Will Customer #4567332 respond to my special offer?

Answer: “Yes,” with a likelihood of 92%.

Oracle9i Data Mining’s predictive models return predicted outcomes and their associated probability, so companies can proactively manage their business.

<table>
<thead>
<tr>
<th>Customer ID</th>
<th>Response</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>4567332</td>
<td>YES</td>
<td>0.92</td>
</tr>
<tr>
<td>5463433</td>
<td>YES</td>
<td>0.92</td>
</tr>
<tr>
<td>1123444</td>
<td>YES</td>
<td>0.85</td>
</tr>
<tr>
<td>9565333</td>
<td>YES</td>
<td>0.72</td>
</tr>
<tr>
<td>2346557</td>
<td>YES</td>
<td>0.55</td>
</tr>
<tr>
<td>2257673</td>
<td>YES</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Oracle9i Data Mining’s Adaptive Bayes Networks also provide human readable “rules” for each prediction that can be useful for explanations such as:

CHURN = "TRUE":
MARITAL_STATUS = "Married" AND
EDUCATION_NUM = "13-16"

Results of models can be combined to provide valuable business intelligence. For example, Oracle9i Data Mining could build a model to predict the lifetime value (LTV) of a customer and another model to predict the likelihood that a customer will churn. Multiplying the two
expected results (P(LTV) x P(Churn)) can provide insights on how to spend your marketing budget.

Association Rules can also be used to identify co-occurring items or events such as:

- What manufactured parts and equipment settings are associated with failure events?
- What patient and drug attributes are associated with which outcomes?
- Which items or products is a person who has purchased item A most likely to buy?

Oracle9i Data Mining’s predictions and classifications can be examined using other software and applications, such as Oracle Discoverer shown here.

CLUSTERING AND ASSOCIATION RULES

Oracle9i Data Mining provides Clustering and Association Rules algorithms to detect naturally occurring clusters and associated or co-occurring items hidden in your data.

Cluster analysis is popular for discovering groupings within the data that may reveal some additional insight. Clustering can also be used to assign “cluster member values” that can serve as input to supervised learning techniques. An example output of clustering might reveal, for example:

The average AGE of Cluster 1 members is 20% higher than Cluster 2 members

Association Rules analysis is often used to find popular product bundles (e.g., market basket analysis) of products that are related for customers, as in “milk” and “cereal” being associated with “bananas.”

DM4J interface for viewing Association Rules results.

Associations Rules can be used to predict the next item placed into the shopping basket, which can be helpful to satisfy customers and increase average order value.

MODEL SEEKER

With Model Seeker, a user can asynchronously build multiple classification models and have Model Seeker evaluates each and selects a best model. The models to be built and evaluated can be a combination of Naive Bayes and Adaptive Bayes Network models.
ATTRIBUTE IMPORTANCE

Often, corporations are swamped with data and feel they need to store, manage, and mine all the data. Oracle9i Data Mining’s attribute importance feature allows users to rank fields on their relative importance or influence on a specified target field. For example, Attribute Importance may be used to reduce 650 attributes about customer loyalty to the 50 attributes that most affect it.

JAVA API

Application developers access Oracle9i Data Mining’s functionality through a Java API. Java enables tight integration with Web and J2EE applications as well as ensuring portability across platforms. By providing a Java API, Oracle continues its support of Java application development.

Programmatic control of all data mining functions enables automation of data preparation, model building and model scoring operations, as well as testing and computing lift for classification algorithms. For model building, the API allows users to specify information required for the mining function, e.g., classification, association rules, attribute importance, or clustering, and optionally select a specific mining algorithm with access to the specific algorithm’s settings. Oracle9i Data Mining provides suitable defaults for all algorithm settings.

Java Data Mining (JDM) is an emerging data mining standard, following Sun’s Java Community Process as a Java Specification Request (JSR). As specification lead, Oracle is joined by many companies, including the major data mining vendors, that recognize the need for Java-based standard for specifying and using data mining. JDM leverages several evolving data mining standards, including Object Management Group’s Common Warehouse Metadata (CWM), the Data Mining Group’s Predictive Mining Markup Language (PMML), and International Standards Organization’s SQL/MM for Data Mining.
TECHNICAL SPECIFICATIONS

DATA PREPARATION

• Oracle9i Data Mining provides data transformations that are accessed using a Java API. Additionally, SQL and PL/SQL can be used for a wide range of data preparation tasks.

• Oracle9i Data Mining supports both aggregated single-record case format or multi-record case (transactional) format data.

• Automatic data binning (discretization) function for creating Oracle9i Data Mining bin boundary tables.

IN-DATABASE MINING

• All model building and scoring functions occur within the Oracle9i Database.

• Default mining function settings for all Oracle9i data mining operations. Ability to override and specify settings.

SUPERVISED LEARNING

• Prediction of binary (e.g., yes or no) or multi-class outcomes with supporting confidence (e.g., assuming A, B, C, or D as possible outcomes, B will occur with 60% confidence).

• Support for prior probabilities and cost matrix.

• Real-time scoring performance for individual records.

Attribute Importance

• Identification of the attributes as important for predicting a target field. Attribute ranking value indicates how correlated each predictor is with the target attribute.

• Attribute Importance is implemented using the Predictor Variance algorithm. Predictor Variance estimates the variances of the predictor target combinations and the variance with respect to the other predictors.

• Most applicable for explicit attribute selection for Naïve Bayes. Automatic attribute importance/selection preprocessing is included in the Adaptive Bayes Network algorithm.

Naive Bayes Algorithm

• Naive Bayes algorithm makes predictions using Bayes’ Theorem, which derives the probability of a prediction from the underlying evidence, as observed in the data.

• Naive Bayes affords fast model building and scoring.

• Algorithm settings include singleton and pairwise thresholds to reduce noise and improve model generalization.

• Naive Bayes cross-validation permits the user to test model accuracy on the same data that was used to build the model, rather than building the model on one portion of the data and testing it on a different portion. This is important when the number of cases available to build a model is small.

Adaptive Bayes Networks Algorithm

• Like Naïve Bayes, Adaptive Bayes Network (ABN) builds models based on counts observed in the database.

• ABN supports three modes of operation: build a pruned Naïve Bayes model, a single tree model, or a boosted multi-tree model.

• In the single tree model, ABN provides model transparency with human readable rules, e.g.:

 IF MARITAL_STATUS = "Maried" AND EDUCATION_NUM = "13-16" THEN CHURN= "TRUE"

• Advanced ABN features:

 • Maximum Network Feature Depth: Network features are like individual decision trees. This parameter restricts the depth of any
individual network features in the model.

- **Maximum Number of Network Features:**
 Controls the maximum number of features included in this ABN model.

- **Maximum Build Time:**
 Allows the user to build quick, possibly less accurate models for immediate use or simply to get a sense of how long it will take to build a model with a given set of data.

- In the single tree mode, ABN API for retrieving the rule that produced a given customer prediction or classification is enabled.

Model Seeker

- Oracle9i Data Mining provides a Model Seeker productivity feature to automatically run multiple Naïve Bayes and Adaptive Bayes Networks model and recommend the best model.

Model Evaluation

- Confusion matrix for Naïve Bayes and Adaptive Bayes Networks models

- Lift calculation for Naïve Bayes and Adaptive Bayes Networks models

Clustering Algorithms

- Discover naturally occurring groupings within the data to reveal additional insights.

- **k-means Clustering:**
 The k-means algorithm is a distance-based clustering algorithm that partitions the data into a predetermined number of clusters. The k-means algorithm works only with numerical attributes. Oracle9i Data Mining implements a hierarchical version of the k-means algorithm.

- **Orthogonal Cluster (O-Cluster) Algorithm:**
 Creates a hierarchical, grid-based clustering model. The resulting clusters define dense areas in the attribute space. The clusters are described by intervals along the attribute axes and the corresponding centroids and histograms. O-Cluster works with both numerical and categorical attributes and supports hierarchy. It is particularly good in high dimensional space (many attributes).

- Clustering techniques are useful as a data-preprocessing step to identify homogeneous groups on which to build better predictive models.

- Example results: Records 12, 15, and 25 are members of Cluster_1. Output includes: cluster centroids and histograms per attribute and cluster rules.

UNSUPERVISED LEARNING

Association Rules Algorithm

- Find the occurrence and likelihood of co-occurring events—for example, Q, R, and S are associated with Z, 452 times, with 78% confidence.

- Finds all rules with support greater than a minimum support and confidence greater than a minimum confidence.

JAVA API

- All Oracle9i Data Mining functions for data preparation, model building and scoring are accessed via a Java API.

- The Java API uses a paradigm of mining tasks such as build, test, lift, apply, import, and export. It uses a paradigm of mining function and mining algorithm for specifying settings. This separates the technical algorithm details from the higher-level mining objective. Mining functions include classification, clustering, association rules, and attribute importance.

- Asynchronous execution is supported for all of
the mining tasks.

- Oracle9i Data Mining applications can be built using Oracle9i JDeveloper exclusively, or through the DM4J interface.

PMML Support

- The Predictive Model Markup Language (PMML) specifies data mining models using an XML DTD (document type definition). PMML provides a standard representation for data mining models to facilitate model interchange among vendors. PMML is specified by the Data Mining Group (http://www.dmg.org).

- Oracle9i Data Mining is both a producer and consumer of PMML models for of two model types: Association Rules models and Naïve Bayes classification models. Oracle9i Data Mining consumes only models that use features supported by Oracle9i Data Mining.

PLATFORM REQUIREMENTS

Oracle9i Data Mining runs in Oracle9i Database on all supported platforms.

Oracle9i Partitioning is recommended for large data mining problems.

PREQUISITES FOR DM4J

The ODM Browser and the ODM Components require that ODM 9.2 be installed on a server. You must also have Oracle9i JDeveloper 9.0.3 or 9.0.3.1 installed.