IT Complexity in the Era of Cloud and Big Data: Survey Results

CONTENTS

Executive Summary...02
Introduction ..03
The IT Complexity Assessment..04
Simplicity Scorecard ...06
Findings and the Path Forward..09
Conclusion..15
Appendix and Methodology..16
EXECUTIVE SUMMARY

In January and February 2014, Oracle invited 544 IT executives to complete the IT Complexity Assessment Survey. This online survey posed 18 questions designed to uncover the level of IT complexity within each organization. Responses were anonymously aggregated and analyzed.

Key findings from the survey:

• **Few IT organizations report high levels of IT simplicity.**

 Our survey asked respondents to rate themselves across six distinct areas of information technology. Between 15 and 35 percent of organizations gave themselves high marks in simplicity, depending on the IT area being examined. On average, only 19 percent of organizations rated their IT environments as “highly simplified.”

• **Less than one-quarter of organizations are ready for big data.**

 The areas that enable big data analysis showed some of the highest levels of complexity. This is to be expected, given that big data is a relatively recent trend that many organizations are still struggling to get their arms around. Simplifying information management proved to be among the most critical priorities for IT organizations in our survey.

• **Integration remains a challenge.**

 As more organizations migrate toward cloud applications, they face an array of integration requirements from multiple vendors. More than two-thirds of respondents cited high levels of complexity in the area of application integration. Additionally, few respondents are able to identify integration requirements during the early phase of a project, which can often lead to time and cost overruns.
Research has shown that IT complexity can impede investment in new capabilities. The Corporate Executive Board (CEB) has found that 2014 spending on new, “grow the business” capabilities will account for only one-third of IT project budgets. The remaining two-thirds will go towards process automation and shoring up foundational infrastructure.

Simplifying the IT environment can help shift some of this spending away from maintenance projects in favor of new innovations. Past approaches to reducing IT complexity have included retirement of legacy systems, virtualization, and reduction in the number of custom-built applications. However, in an era of big data and cloud systems, additional approaches are needed to simplify the IT environment and reduce complexity.
CEB estimates that in 2014, spending on new, “grow the business” capabilities will account for only 33% of IT project budgets, with the remainder spent on process automation and shoring up foundational infrastructure.

IT COMPLEXITY: NEW APPROACHES ARE NEEDED

Business operations are frequently tied to complex IT systems that have become increasingly difficult and costly to manage, and which can’t adequately support new ideas and changing business models.

In response, IT organizations have employed many mechanisms to simplify the IT environment, such as:

- Technology portfolio rationalization
- Centralization
- Consolidation
- Standards setting

Oracle’s IT Complexity Assessment Survey polled 554 IT executives globally in an effort to uncover their organizations’ level of complexity across six areas of IT:

Applications Portfolio - Complexity related to legacy technologies, custom applications and size of the applications portfolio.

Integration - Complexity related to how integration is conducted, including use of SaaS, the point at which integration requirements are identified, and preferred methods for applications integration.

Technology Portfolio - Complexity related to technology portfolio, volume of technology versions, and degree of technology standardization.

Application Hosting - Complexity related to the application hosting environment (i.e. servers) including use of server virtualization and multi-tenancy.

Information Management - Complexity related to information management practices, including existence of policies for data governance, master data management, metadata management and data transformation.

IT Governance - Complexity related to IT governance practices, including timing of architecture guidance, the architecture review process and the technology rationalization process.
In their efforts to simplify the IT environment, organizations have made the most progress in areas related to application hosting. They have made fairly significant strides in streamlining the server environment through virtualization and server multi-tenancy.

The lowest marks for IT simplicity are related to the technology portfolio, encompassing such factors as the volume of technology versions and the degree of technology standardization.
The Complexity Gap is the average difference in score between those organizations with simplified IT environments and those with highly complex IT.

The above chart shows that IT complexity is particularly high among a cluster of areas related to information management—namely, data transformation, master data management, metadata, and data governance. More than 70 percent of respondents to our survey indicated that they experienced high levels of complexity in each of these four areas. This is to be expected of areas that are closely connected to big data, a relatively recent trend that many organizations are still struggling to get their arms around.

In addition, application integration is an area where there is significant opportunity to simplify. As more organizations migrate toward cloud applications, they face an array of requirements and APIs from multiple vendors, leading to integration challenges with their on-premise and/or mission-critical systems.
DE-CLUTTERING HARDWARE AND SOFTWARE

Organizations have made strides in simplifying the software environment by:

- Reducing reliance on legacy technologies (i.e. older technologies that are no longer part of the standard environment but are maintained due to existing applications that only run on that platform).
- Reducing the overall volume of large-scale, mission-critical applications.

In parallel, organizations have reduced the likelihood of future hardware proliferation by:

- Increasing use of server virtualization.
- Increasing utilization of multi-tenancy.

However, organizations still face significant challenges when it comes to managing the number of hardware and software versions in their IT environments. Only 21 percent of respondents gave themselves a rating of “strong maturity” in this area.

Organizations Reporting Strong Maturity
THE PATH FORWARD: RECOMMENDATIONS TO SIMPLIFY HARDWARE AND SOFTWARE ENVIRONMENTS

SIMPLIFY EXISTING COMPLEXITY

Build new applications for easy retirement. During the requirements gathering phase, identify features and specifications that will make it easier to upgrade or replace applications as business needs evolve. Key elements include alerts and monitoring capabilities that signal low utilization and the ability to set application expiration dates.

Fast-track retirement for technologies similar to recent retirees. Once there is a clear view on what makes for a good retirement candidate, create two tracks for retirement. The first track is for technologies that do not adhere to the “ideal” criteria, in which case a full review may be necessary. For technologies that fit the retirement profile, create a more lightweight review process to accelerate removal and minimize bureaucracy without absorbing too much risk.

INVEST IN FUTURE COMPLEXITY REDUCTION

Understand organizational tolerance for server multi-tenancy. Business partners are often wary of multi-tenancy, fearing that outages in one application can have broader impact. Assess where there is acceptable risk for multi-tenancy (e.g. non-mission critical applications) for targeted utilization of the private cloud.

Enable dynamic management of workloads. Establish controls to automatically turn off unused capacity to ensure maximum resource efficiency.

Provide visibility into metered usage. A key component of cloud computing is providing transparency into resource usage. Establish “showbacks” to provide visibility into the relationship between consumption and costs.
In an era of analytics, poorly managed information can undermine organizations’ ability to draw intelligence from big data. Less than one-quarter of IT executives say that their information management policies are mature (i.e. formal, standardized, and adhered to) across four key policy areas:

- Data governance
- Master data management (MDM)
- Metadata management
- Data transformation

This is an urgent challenge for today’s data-driven organizations, where lines of business are increasingly demanding faster, easier access to analytics.
THE PATH FORWARD: RECOMMENDATIONS TO SIMPLIFY INFORMATION MANAGEMENT

Integrate line-of-business partners into policy creation. Standards can’t be imposed on the business by IT. Bring line-of-business partners into standards decisions and discussions to ensure that policies are relevant. Business partners are more likely to adhere to standards if they play a role in determining when data standards make sense and where flexibility is paramount.

Leverage heavy data users to drive consensus on common enterprise data definitions. Knowledge workers are the heaviest users of enterprise data. Look to them for guidance to ensure definitions are clear and consistent. To establish data standards create cohorts of knowledge workers that share similar data needs and manage similar processes.

Establish accountability for data. Data is a critical business asset and needs to be managed as such. To establish clear accountability for data stewardship, define dedicated roles and responsibilities for monitoring quality and driving adherence to standards. Ensure business partner representation on stewardship boards and roles to ensure that standards and policies evolve with business conditions and priorities.

Pragmatically approach Master Data Management. MDM initiatives often fail due to the vast scope of the effort. Instead of pursuing MDM comprehensively, prioritize the most critical master data domains based on their importance to financial performance and staff productivity, and the number of systems the data touches.

Federate your metadata model. Create a federated metadata model to maintain consistency of core, enterprise metadata, while letting lines of business customize extended metadata for asset types that are used mainly (or only) by their LOB.
IT GOVERNANCE HAS ROOM TO IMPROVE

Whereas de-cluttering the hardware and software environment helps rationalize the existing environment, IT governance can be used to minimize future complexity. IT must improve its ability to establish formal, long-term retirement strategies and technology lifecycle roadmaps.

Organizations Reporting Strong Maturity

Whereas de-cluttering the hardware and software environment helps rationalize the existing environment, IT governance can be used to minimize future complexity. IT must improve its ability to establish formal, long-term retirement strategies and technology lifecycle roadmaps.

Whereas de-cluttering the hardware and software environment helps rationalize the existing environment, IT governance can be used to minimize future complexity. IT must improve its ability to establish formal, long-term retirement strategies and technology lifecycle roadmaps.
THE PATH FORWARD: RECOMMENDATIONS TO SIMPLIFY IT GOVERNANCE

Improve roadmapping quality and usability. Measure and monitor the two dimensions of roadmaps that have most impact on business executives: completeness and graphics quality. Establish minimum readability thresholds that all roadmaps must meet. Develop a simple checklist against which roadmaps can be objectively scored. Make sure roadmaps that don’t meet the threshold receive clear guidance.

Design a standards framework that is relevant to the business. Create a standardized taxonomy that will allow for more or less flexibility depending on the need for agility in the related business process.

Communicate criteria for standards application and exceptions. Many project teams lack an understanding of how to apply standards to different project circumstances. Create a framework that communicates how standards should be applied and where exceptions can be allowed.

Synchronize roadmapping with strategic and annual planning processes. Disjointed enterprise, business unit, and IT planning processes can destroy the clarity of IT investment benefits and timelines. Understand precisely where roadmaps have a role to play in strategic and annual planning, and ensure that roadmaps are kept up-to-date and available to key stakeholders.

Develop an architecture review board, but keep it focused. Many architecture review boards attempt to review too many projects and thus end up failing to provide any tangible value. Establish an upfront questionnaire to determine the optimal role of the board for any given project.
INTEGRATION COMPLEXITY IN THE CLOUD ERA

Only one-third of respondents indicated they can accurately identify integration requirements during the early phases of a new project. This lack of early insight can often lead to a project taking longer, and costing more, than originally anticipated.

As adoption of Software as a Service (SaaS) grows, the need to identify these requirements early on becomes even more acute—particularly since vendor pricing typically does not include money spent on integration efforts.

When deciding whether to implement SaaS, organizations must identify integration requirements early in the process, in order to estimate the true, total cost of ownership.
THE PATH FORWARD: RECOMMENDATIONS TO SIMPLIFY INTEGRATION

Begin inventory of common integration needs.
Critical to reducing integration time is having a library of services. Identify the most common services and establish standards for reuse. Start with identifying where there has been the highest volume of point-to-point integration, as this signals the greatest opportunity to remove complexity.

Define criteria for integration service creation. Ensuring reuse of integration services can significantly reduce duplicated efforts. However, clarity into which services have the greatest potential for reuse can be low. To identify the best candidates, look for integration services that map to foundational functions within the enterprise—such as finance—since they are likely targets for integration.

Organize and publicize your integration services library. A library of integration services is only valuable if it’s widely used. Publicize the volume of reuse and document the amount of time saved in order to create incentives for adoption.

Consolidate similar integration services to improve reusability and ROI. Once a library of services has been created, look for similar services. Consolidate similar services based on volume of usage, possibly pulling the most valuable component parts of each service to build a more refined option.

CONCLUSION

In the era of big data and cloud services, new approaches are needed to simplify the IT environment and reduce complexity. Integrated cloud offerings that include software, platform and infrastructure as a service are one approach to reducing complexity, as well as improving ease-of-use and deployment. A complete big data architecture to manage both structured and unstructured data can help companies reduce the high levels of complexity related to information management. Finally, an IT stack designed and built to work together offers a way to reduce the time spent on routine maintenance, integration and testing. Simplifying the IT environment can help organizations shift time, money and resources away from “keeping the lights on” and towards more strategic, growth-oriented projects.

To rate your own level of IT complexity, take the survey:
oracle.com/goto/rate-my-IT-complexity
Percentage of Organizations Reporting Strong Maturity

Organizations Reporting High Levels of IT Simplicity, by Industry

HOW COMPLEXITY VARIES ACROSS INDUSTRIES
METHODOLOGY

Oracle conducted an online survey with 544 IT executives in January and February of 2014.

Sample Demographics:
Function/Title:
- CIO/CTO/IT Manager, 32%
- Infrastructure, 19%
- Enterprise Architecture, 13%
- Applications, 7%
- Other, 29%

Location:
- North America, 40%
- EMEA, 34%
- APAC, 18%
- Latin America, 8%

Industries Surveyed:
- Business and Technology Services
- Banking, Financial and Insurance Services
- Healthcare, Pharmaceutical and Life Sciences
- High Technology
- ISV (Independent Software Vendor)
- Telecommunications
- IT Hardware Vendor
- Aerospace and Defense
- VAR / System Integrator
- Energy and Utilities
- Engineering and Construction
- Automotive
- Transport and Logistics
- Manufacturing and Consumer Products
- Retail and Wholesale
- Industrial Manufacturing
- Media and Entertainment
- Travel, Hospitality and Transportation
- Government and Other Public Sectors
- Education and Research
- Professional Services

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Find your local Oracle contact number here:

Oracle.com

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.