Acme Packet 6000 Series combines groundbreaking performance, capacity, and system throughput with the most proven and comprehensive session delivery functions and features in the industry. Featuring the 1RU Acme Packet 6100 (see Figure 1) and the 3RU Acme Packet 6300 (see Figure 2) and Acme Packet 6350 (see Figure 3), the 6000 Series is building the foundation for future generation Internet Protocol (IP) real-time communications (RTC) services.

Overview

Acme Packet 6000 Series is based on a next-generation hardware design that leverages state-of-the-art components and 64-bit symmetrical multiprocessding (SMP) in a modular system designed for growth and flexibility. It operates the same version of Acme Packet OS as all other Acme Packet platforms for ease of management and uncompromised field-proven functionality in many product configurations and options. Its rear slots accommodate dual port 10 Gb/sec network interface units (NIUs) and, in the case of Acme Packet 6300 and 6350, high-capacity transcoding carrier units (TCUs). The 6000 Series provides for flexible deployment at high-volume network access or interconnect borders or within the service provider signaling core.

Breakthrough performance in a field-proven design

Applications
- Service provider SBC for access and interconnect applications
- High-performance SIP session routing
- Combination access SBC with IMS core and session management functions

Key Features
- High-performance, purpose-built multiprocessor design
- Acme Packet 6300 and 6350 feature three slots for modular flexibility
- Market-leading Acme Packet OS functions, features and configurations
- 20 Gb/sec (6100) or 40 Gb/sec (6300 and 6350) system throughput
- Leverages proven SBC design with state-of-the-art components

Key Benefits
- Capable of supporting up to 3,000,000 simultaneous subscribers
- Protects investment in existing SBC infrastructure
- Meets all emerging service requirements in efficient 1RU (6100) or 3RU (6300 and 6350) form factor
- Reduced total cost of ownership
Based on a common architecture that tightly integrates Acme Packet OS with Oracle’s distributed multiprocessor hardware, each platform in the 6000 Series can handle the signaling and media traffic generated by next-generation services such as voice over Long Term Evolution (VoLTE); rich communication services (RCS) and enhanced RCS (RCS-e), and high-definition video calling. It features Oracle’s carrier-class high availability (HA) and Network Equipment Building Systems (NEBS) certification to ensure nonstop operation and survivability in the most business-critical services and applications.

Acme Packet 6000 Series Flexibility, Scale and Efficiency

Acme Packet 6000 Series systems leverage common state-of-the-art components, design and system architecture. The 1RU Acme Packet 6100 is populated with dual 10 Gb/sec Ethernet interfaces, delivering 20 Gb/sec of system throughput, while the 3RU Acme Packet 6300 and 6350 adds two expansion slots for additional 10 Gb/sec connectivity and/or transcoding. The 6300 and 6350 deliver up to 40 Gb/sec of system throughput. Both the 6100 and 6300 platforms deliver equal levels of session performance, capacity, throughput and high availability, while the 6350 provides a higher performance option.

ACME PACKET 6000 SERIES PLATFORM FEATURES, CAPACITY, AND PERFORMANCE

<table>
<thead>
<tr>
<th>Feature</th>
<th>Acme Packet 6100</th>
<th>Acme Packet 6300</th>
<th>Acme Packet 6350</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP subscriber capacity</td>
<td>Up to 1 M simultaneous subscribers</td>
<td>Up to 3 M simultaneous subscribers</td>
<td></td>
</tr>
<tr>
<td>SIP calls per second (CPS)</td>
<td>Up to 950 calls per second (in a fully redundant configuration)</td>
<td>Up to 1080 calls per second (in a fully redundant configuration)</td>
<td></td>
</tr>
<tr>
<td>SIP-TLS capacity</td>
<td>Up to 300,000 TLS sessions</td>
<td></td>
<td>Up to 800,000 TLS sessions</td>
</tr>
<tr>
<td>Media session capacity</td>
<td>Up to 80,000 simultaneous anchored media sessions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPSec capacity</td>
<td>Up to 1 M tunnels with IMS Authentication and Key Agreement (IMS AKA)</td>
<td>Up to 1,000 tunnels with IKEv1</td>
<td></td>
</tr>
<tr>
<td>SRTP capacity</td>
<td>Up to 32,000 encrypted call legs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Availability</td>
<td>Active/standby systems (1-to-1 redundancy) with check-pointing of signaling, media, and configuration state for no loss of service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-level encryption acceleration hardware</td>
<td>IPSec tunnel and TLS session setup, IPSec and SRTP traffic encryption/decryption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>Front panel display with keypad; rear panel console, management, alarm interfaces, power supply indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route table capacity</td>
<td>Up to 8 million routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaging</td>
<td>1RU system</td>
<td>3RU system</td>
<td></td>
</tr>
<tr>
<td>Maximum system throughput</td>
<td>20 Gb/sec</td>
<td>40 Gb/sec</td>
<td></td>
</tr>
<tr>
<td>NIU</td>
<td>Single 2x10 Gb/sec Ethernet NIU</td>
<td>Up to two 2x10 Gb/sec Ethernet NIUs</td>
<td></td>
</tr>
<tr>
<td>HW-based transcoding</td>
<td>N/A</td>
<td></td>
<td>Up to 60,000 transcoded sessions (G.711- G.729)</td>
</tr>
<tr>
<td>Fan assemblies</td>
<td>5 individually hot-swappable fan assemblies</td>
<td></td>
<td>15 individually hot-swappable fan assemblies</td>
</tr>
</tbody>
</table>
NETWORK SESSION DELIVERY AND CONTROL INFRASTRUCTURE

Oracle's network session delivery and control infrastructure enables enterprises and service providers to manage the many challenges in the delivery of IP voice, video, and data services and applications. Service provider solutions are deployed at network borders and in the IP service core to help fixed-line, mobile, wholesale, and over-the-top service providers optimize revenues and realize long-term cost savings. In the enterprise, session delivery infrastructure solutions seamlessly connect fixed and mobile users, enabling rich multimedia interactions and automating business processes for significant increases in productivity and efficiency.

The following Oracle products are part of the network session delivery and control infrastructure:

- Oracle Communications Session Border Controller
- Oracle Communications Session Router
- Oracle Communications Subscriber-Aware Load Balancer
- Oracle Communications Unified Session Manager
- Oracle Communications Mobile Security Gateway
- Oracle Communications Interactive Session Recorder
- Oracle Communications Core Session Manager
- Oracle Enterprise Session Border Controller
- Oracle Communications Session Delivery Management Suite
- Acme Packet 1100
- Acme Packet 3900
- Acme Packet 4600
- Acme Packet 6100
- Acme Packet 6300
- Acme Packet 6350

PRODUCTS AND CONFIGURATIONS SUPPORTED BY ACME PACKET 6000 SERIES

<table>
<thead>
<tr>
<th>Product/Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Communications Session Border Controller</td>
<td>Session border controller (SBC) integrating controls for real-time communications signaling and media traffic</td>
</tr>
<tr>
<td>Oracle Communications Session Router</td>
<td>Session routing proxy (SRP) for SIP session routing between core and access networks and interconnects</td>
</tr>
<tr>
<td>Oracle Communications Mobile Security Gateway</td>
<td>Secures the delivery of voice and data services through untrusted internet access to local femtocells, small cells, and Wi-Fi devices</td>
</tr>
<tr>
<td>Oracle Communications Subscriber-Aware Load Balancer</td>
<td>Enable linear, non-disruptive session border control (SBC) capacity through SBC clustering</td>
</tr>
<tr>
<td>Oracle Communications Unified Session Manager</td>
<td>3GPP IMS compliant Call Session Control Function (CSCF) with integrated access session border controller (SBC)</td>
</tr>
<tr>
<td>Oracle Communications Core Session Manager</td>
<td>Complete set of session core functions including Call Session Control Function (CSCF) and Break-out Gateway Control Function (BGCF) and their associated 3GPP interfaces</td>
</tr>
</tbody>
</table>

Note: Some product/configurations are not supported on all 6000 series members

Hardware

The Acme Packet 6000 Series feature Oracle’s integrated multiprocessor design to achieve the industry’s highest system-level performance and capacity for signaling, media, and encryption. Acme Packet 6300 and 6350 also feature industry-leading transcoding capacity and features. Powerful network processor drive system throughput up to 20 Gb/sec (6100) or 40 Gb/sec (6300 and 6350) in fully-populated systems. The versatility, carrier-grade hardware design, and high-availability makes the 6000 Series suitable for deployment at large service provider access and interconnect network borders or within the IP Multimedia Subsystem (IMS) signaling core.

The front of Acme Packet 6000 Series platforms features a bright vacuum fluorescent display (VFD) with a front panel keypad and individual fan assemblies to deliver precise and consistent airflow for optimal cooling of all processors and internal components. Each fan assembly can be replaced individually while the system is in service. A black front bezel hides the fan assemblies without restricting airflow through the system. Acme Packet 6300 and 6350 feature fifteen individual fan assemblies, five for each of its three slots. The 1RU Acme Packet 6100 features five fan assemblies.

The rear of Acme Packet 6300 and 6350 include three slots for NIUs or TCUs with at least one slot reserved for an NIU. One or two slots can be populated with TCUs. The rear of the chassis also accommodates fully redundant power supplies, console and
alarm ports, and management ports. A separate rear slot accommodates a 480 GB solid state drive. The power supplies and drives are hot replaceable. Light-emitting diode (LED) indicators for all field-replaceable modules (FRUs) provide at-a-glance power and redundancy status.

The rear of the 1RU Acme Packet 6100 includes one slot for its NIU. Unlike Acme Packet 6300 and 6350, the Acme Packet 6100 NIU directly integrates the system console and alarm ports, and management ports. The rear of Acme Packet 6100 also accommodates fully redundant hot-replaceable power supplies. Light-emitting diode (LED) indicators for all field-replaceable modules (FRUs) provide at-a-glance power and redundancy status. A 480 GB solid state drive for file and record storage is located internally on the Acme Packet 6100.

Acme Packet 6000 Series platforms support two-stage hardware-accelerated encryption to assure confidentiality, privacy and integrity for IP real-time communications at wire rate. 6000 Series Secure Services Module 3 (SSM3) performs compute-intensive random number generation, TLS encryption and IKE key generation to accelerate call setup for encrypted SIP sessions. Encryption co-processors on 6000 Series NIUs support standard IPsec and SRTP for encrypting RTP media.

Acme Packet 6000 Rear Slot Modules
One of the three Acme Packet 6300 and 6350 rear slots (slot 0) is populated with a NIU; the other two slots can accommodate either NIUs or TCUs. NIU options deliver hardware-accelerated advanced media controls, such as quality of service (QoS) monitoring and encryption and denial of service (DoS) attack protection far beyond the capabilities of general purpose server-based platforms. The single rear slot of Acme Packet 6100 is populated with its NIU.

Dual Port 10 Gigabits per Second Network Interface Unit
The 2x10 Gb/sec NIU is an ultrahigh-performance NIU that integrates dual 32-core processors with options for high-performance, high-capacity encryption for line-rate security even at maximum system throughput. This ensures uncompromised end user or subscriber quality of experience. NIU processors also integrate QoS monitoring and measurement in addition to intelligence designed to protect the rest of the system in the event of signaling overloads or fuzzing attacks. The 10 Gb/sec NIU also supports hardware acceleration of SIP sessions encrypted with TLS, Datagram Transport Layer Security (DTLS), or Internet Key Exchange (IKE) for privacy and confidentiality.

High Capacity Transcoding Carrier Unit (Acme Packet 6300 and 6350)
The Acme Packet 6300 and 6350 Transcoding Carrier Unit (TCU) delivers high-performance, high capacity hardware-accelerated transcoding and transrating for services and applications requiring the highest levels of scale and codec management. Each TCU leverages up to 24 transcoding modules, to support up to 30,000 transcoded sessions for a total of up to 60,000 transcoded sessions when Acme Packet 6300 and 6350 are populated with dual TCUs. The Acme Packet 6300 and 6350 transcoding hardware complements the extensive codec management functionality supported by the Oracle Communications Session Border Controller (SBC).
Acme Packet 6000 Series Details

Details of Acme Packet 6000 Series specifications, power, physical properties, and regulatory compliance are listed in the table below.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Details</th>
</tr>
</thead>
</table>
| **Chassis** | - Acme Packet 6350 – 3 RU, rack mount
 - Acme Packet 6300 – 3RU, rack mount
 - Acme Packet 6100 – 1RU, rack mount
 - Front: Display, console, front bezel, fan pack assemblies

- Acme Packet 6300 and 6350 Rear: One NIU slot, two expansion slots for NIU or TCUs, console and alarm ports, three management ports, redundant power supplies (AC or DC), slot for integrated disk drive

- Acme Packet 6100 Rear: One NIU slot featuring console and alarm ports and three management ports, redundant power supplies (AC or DC), slot for integrated disk drive

- Rack mount options: Four-post cabinet or two-post center mount |
| **Network Processor** | - Coordinates signaling, media, encryption and transcoding, and management subsystems
 - Drives up to 40 Gb/sec overall system throughput (dependent on number of NIUs present) |
| **Operating Software** | - Acme Packet OS
 - 64-bit Linux-based OS kernel to fully support SMP hardware |
| **NIUs** | - Field-replaceable 2x10 Gb/sec NIU
 » Acme Packet 6300 and 6350 – Supports network interfaces for signaling, media, and data
 » Acme Packet 6100 – Supports network interfaces for signaling, media, and data, as well as console, alarm and management ports

- Two 10 Gb/sec Ethernet ports with enhanced small form-factor pluggable (SFP+) for short and long reach options:

 » SFP+ short reach—10 GBase-SR 850 nm transceiver for operation in multimode fiber link applications to 300 m

 » SFP+ long reach—10 GBase-LR 1310 nm transceiver for operation in single-mode fiber (SMF) link applications to 10 km

- 32-core processor per interface (two per NIU)

- Optional Signaling Security Module (SSM3) for hardware acceleration of encryption, compression, hashing, and public key algorithms for TLS, random number generation, Advanced Encryption Standard (AES), and Triple Data Encryption Standard (3DES)

- Integrated QoS monitoring and measurement |
| **Transcoding Carrier Unit** | - Up to two modules supported per Acme Packet 6300 or 6350 chassis
 - Supported codecs:

 » Wireless – AMR-NB, AMR-WB, GSM-FR, EVRC, EVRC-B

 » T.38 fax interworking |
| **Management Interfaces** | - One RS-232 serial console interface with RJ-45 connector
 - One alarm port with RJ-45 connector
 - One 10/100/1000 Mb/sec Ethernet interface with RJ-45 for management
 - Two 10/100/1000 Mb/sec Ethernet interfaces with RJ-45 for HA |
| **Power** | **Details** |
| **Power Supplies** | - Redundant, load-sharing, 1100 W maximum |
| **AC Power Option** | - Voltage: Auto-ranging 100 AC to 240 AC wide input with power factor correction
 - Frequency: 50/60 Hz
 - Current: 100 AC 6A base system, 14A with two transcode carriers (shared between two power supplies) |
| **-48 DC Power Option** | - Voltage: -48 DC (-/+10%) nominal in North America (maximum range: -40 DC to -72 DC)
 - Current: 12A base system, 30A with two transcode carriers (shared between two power supplies)
 - Cable: 10 AWG recommended minimum, with at least three conductors rated for at least 140°F (60°C) |
| **Physical** | **Details** |
| **Dimensions (not including mounting hardware)** | - Acme Packet 6100
 - Acme Packet 6300 and 6350
 - Height: 1.72 in. (4.37 cm)
 - Width: 17.10 in. (43.43 cm)
 - Depth: 20.00 in. (50.80 cm)
 - Height: 5.22 in. (13.26 cm)
 - Width: 17.10 in. (43.43 cm)
 - Depth: 20.00 in. (50.80 cm)
| **Weight** | - Empty chassis: 12.00 lb. (5.44 kg)
 - With 2 power supplies: 17.00 lb. (7.71 kg)
 - Fully populated: 20.5 lb. (9.30 kg)
 - Empty chassis: 28.90 lb. (13.11 kg)
 - With 2 power supplies: 33.50 lb. (15.20 kg)
 - Fully populated: 42.5 lb. (19.28 kg) |
| **Temperature** | - Operating: 32°F to 104°F, 0°C to +40°C
 - Storage: -4°F to 149°F, -20°C to +45°C |
| **Relative Humidity** | - 10% to 85%, noncondensing |
Air Flow
- 90 CFM per slot front to back

Heat Dissipation
- 300 W (1030 BTU/hr.) typical, 1400 W (4800 BTU/hr.) maximum

Power Dissipation
- 300 W typical, 500 W maximum (base system with 2x10 Gb/s NIU)
- Additional 250 W for second 2x10 Gb/sec NIU (Acme Packet 6300 and 6350)
- Additional 340 W for each fully populated transcoding carrier card (Acme Packet 6300 and 6350)

Regulatory Details
<table>
<thead>
<tr>
<th>Regulatory Markings</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE, FCC, ICES-003, VCCI, NRTL TUV (US/Canada), KCC, BSMI, EAC, RCM, BIS, ANATEL</td>
<td></td>
</tr>
</tbody>
</table>

Safety
- EN 60950-1
- IEC 60950-1
- UL 60950-1
- CSA 22.2 No. 60950-1-07

EMI
- 47CFR15 Subpart B (FCC) Class A
- ICES-003 Class A
- AS/NZS CISPR22 Class A
- CISPR22 Class A
- EN300386 for Telecommunications Centers and for Other Than Telecommunications Centers
- EN 55022 Class A
- VCCI Class A limits

EMC
- EN55024
- EN61000-3-2
- EN61000-3-3
- EN300386:2010 for Telecommunications Centers and for Other Than Telecommunications Centers

Other
- NEBS Level 3
- ETSI: EN 300019 Class 1.2, 2.2, 3.2
- Seismic: GR-63-CORE requirements for earthquake zone 4
- 1 TR 9
For more information about Acme Packet 6000 Series, visit oracle.com or call +1.800.ORACLE1 to speak to an Oracle representative.

CONTACT US

Integrated Cloud Applications & Platform Services

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.