An advanced session routing proxy (SRP), Oracle Communications Session Router overcomes the challenges inherent in routing large numbers of Session Initiation Protocol (SIP)–based voice, video, instant messaging, and multimedia sessions within and between access and interconnect networks of service providers.

Overview

Oracle Communications Session Router provides high-performance SIP routing with scalable routing policies that increase overall network capacity and reduce costs. It plays a central role in Oracle’s open session routing (OSR) architecture and helps service providers build a scalable, next-generation signaling core for SIP-based services.

Oracle Communications Session Router is offered on purpose-built Acme Packet 3820, 4500, 4600, 6100, and 6300 platforms. It is also available as a software-only application or as a Virtualized Network Function (VNF) on several Oracle and third-party servers. On all platforms it leverages Acme Packet Operating Software (Acme Packet OS) to offer industry-leading SIP routing performance, routing control and deployment flexibility, openness and interoperability, high availability (HA), and cost effectiveness.

Services and Applications

Oracle’s Open Session Routing architecture features SRPs and session border controllers (SBCs) working in conjunction with an ecosystem of routing database products and services from Oracle partners.

An evolutionary leap over distributed routing architectures that use mobile switching centers (MSCs) and soft-switches, OSR dramatically boosts network efficiency and intelligence, while reducing capital and operating expenditures.

Oracle Communications Session Router resides in the next-generation signaling core and directs traffic to and from other SIP signaling elements in the network, including MSCs, Class 4 and 5 soft-switches, Call Session Control Function (CSCF) servers, and access and interconnect SBCs.

Oracle Communications Session Router provides SIP routing for the following applications:

- Core session routing for Voice over IP (VoIP), Rich Communications Services (RCS), Voice over Long Term Evolution (VoLTE), and Voice over WiFi
- Class 4 routing—interregional and trans-continental network
• External network selection—Public Switched Telephone Network (PSTN) and IP interconnects

• Routing services—least cost routing (LCR), number portability, and calling name (CNAM) delivery

• Wholesale / IP Exchange (IPX) transit services

Figure 1: Oracle Communications Session Router support multiple SIP routing applications

IP Multimedia Subsystem Compliance

In Third Generation Partnership Project (3GPP) IP Multimedia Subsystem (IMS) networks, Oracle Communications Session Router fulfills the role of the Breakout Gateway Control Function (BGCF) to select the optimum IP or time-division multiplexing (TDM) interconnect next hop for off-network traffic, in addition to the proper Serving Call Session Control Function (S-CSCF) for incoming sessions. In this role, Oracle Communications Session Router is able to offload the CSCF core by receiving session signaled directly from an external network via a Media Gateway Controller Function (MGCF) or an Interconnect Border Control Function (I-BCF), and forward to the appropriate next hop.

High-Performance SIP Routing and Capacity

Oracle Communications Session Router is supported by the industry’s most comprehensive and scalable portfolio of hardware platforms, in addition to carrier-grade third-party server platforms—meeting a wide range of capacity and performance requirements. Oracle Communications Session Router is scalable to 150,000 messages per second or 320,000 sessions per system.

On every platform, Acme Packet OS provides the same powerful SIP routing features with compelling price/performance measurements. The wide platform portfolio provides flexibility to match the performance and price points for individual environments.

In comparison with session-stateful, soft-switch-based approaches, the high-performance Oracle Communications Session Router reduces CapEx and OpEx as service providers evolve to next-generation VoIP and IMS networks. Delivered in a variety of compact form factors, Oracle Communications Session Router reduces
Oracle’s network session delivery and control infrastructure enable enterprises and service providers to manage the many challenges in the delivery of IP voice, video, and data services and applications. Service provider solutions are deployed at network borders and in the IP service core to help fixed-line, mobile, wholesale, and over-the-top service providers optimize revenues and realize long-term cost savings. In the enterprise, session delivery infrastructure solutions seamlessly connect fixed and mobile users, enabling rich multimedia interactions and automating business processes for significant increases in productivity and efficiency.

The following Oracle products are part of the network session delivery and control infrastructure:

- Oracle Communications Session Border Controller
- Oracle Communications Session Router
- Oracle Communications Subscriber-Aware Load Balancer
- Oracle Communications Unified Session Manager
- Oracle Communications Mobile Security Gateway
- Oracle Communications Interactive Session Recorder
- Oracle Communications Application Orchestrator
- Oracle Communications Core Session Manager
- Oracle Enterprise Session Border Controller
- Oracle Communications Session Delivery Manager product family
- Oracle Communications Operations Monitor
- Acme Packet 3820
- Acme Packet 4600
- Acme Packet 6000 Series

These platforms deliver high-performance processing of signaling messages matched with dedicated hardware, for processor-intensive functions such as denial-of-service (DOS) and distributed denial-of-service (DDoS) attack prevention or encryption. For core session routing applications requiring the highest SIP message processing capacity and performance, Oracle Communications Session Router also operates on Oracle’s carrier-grade Netra X3-2 and Netra X5-2 servers as well as selected third-party servers.

Virtualization

Oracle Communications Session Router may be run as a Virtual Network Function (VNF). Supported hypervisors include Oracle Virtual Machine (OVM), Kernel-Based Virtual Machine (KVM), and VMware ESXi. As a VNF, Oracle Communications Session Router may be deployed as a standalone instance or within an orchestrated Network Function Virtualization (NFV) environment under control of Oracle Communications Application Orchestrator (OCAO) acting as a VNF-Manager, and offers the same level of security, reliability, and routing capability as it does on purpose-built platforms, and adds to network flexibility and agility. As a VNF, Oracle Communications Session Router runs, among others, on Oracle Netra X5-2 servers.

Features and Functions

Oracle Communications Session Router provides compelling features that deliver a number of key benefits to service providers building VoIP and IMS networks:

- A more streamlined and scalable network
- Lower total cost of ownership
- Improved network resilience
- Faster time to market
- Vendor flexibility

These features deliver superior functionality for routing, interoperability and security, and overload control. Oracle Communications Session Router also provides carrier-class HA across all Oracle hardware and third-party server platforms.
Extensive Routing Control

Oracle Communications Session Router provides comprehensive and flexible control for routing and forwarding SIP messages. It determines the next signaling hop using selection criteria that can be derived from a number of sources.

Routing information can be selected using multiple processing rules and can leverage regular expressions to match, compare, and extract routable information from both standard and non-standard sources.

The source of routing information is SIP message content, including called number, CNAM, ingress realm, egress realm, time, codec, SIP method, cost, trunk group, and proprietary headers.

Oracle Communications Session Router leverages routing policies on its local route table (LRT) in addition to external routing databases. The external databases enable routing decisions for the PSTN and IP networks and include local number portability (LNP), CNAM, Local Exchange Routing Guide (LERG), emergency services (Enhanced 911), LCR, inter-provider private route tables, and public databases.

Oracle Communications Session Router provides multistage routing to support complex routing decisions and enforce business logic. With nested local route policy lookups, the results of the first lookup determine the next lookup, and ultimately the next hop destination. Following route selection, SIP messaging may be further modified to influence behavior in the network.

Oracle Communications Session Router also monitors SIP elements and E.164 Number Mapping (ENUM) database servers for availability and reroutes traffic upon failure to provide service continuity.

Figure 2: the Oracle Communications Session Router system architecture leverages routing policies on its local route table in addition to external routing databases

Load Balancing

Routing can be further enhanced with load balancing to optimize network performance. The result can be a unique element from a group of session agents or a recursive set of targets from the selected group.

The next signaling hop can be selected based on a variety of load-balancing
techniques, including:

- Hunt
- Least busy
- Lowest sustained rate
- Proportional
- Round robin

Interworking and Mediation

Oracle Communications Session Router provides interworking capabilities to provide rapid interoperability between vendors and various SIP elements. The normalization and mediation functionality accelerates time to market, as vendors and core equipment are added and changed over time. This interworking capability also enables service providers to choose best-of-breed elements and to integrate acquisitions or new vendors into the network more rapidly.

All SIP message headers can be modified, added, or removed based on specified criteria as messages flow through Oracle Communications Session Router. This dynamic manipulation provides a powerful interoperability tool that is not dependent on feature enhancements or software updates.

The interworking and mediation functions include:

- SIP, SIP with Encapsulated ISDN User Part (SIP-I), and SIP for Telephones (SIP-T) protocol mediation and normalization
- Response code translations
- User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Stream Control Transmission Protocol (SCTP) transport layer interworking

Call Admission and Overload Control

Leveraging Oracle’s proven Net-SAFE® security framework, dynamic signaling rate limiting protects Oracle Communications Session Router and other elements from DoS attacks or non-malicious overloads. Incoming messages that exceed configured maximums based on a variety of constraint criteria are rejected. The Oracle Communications Session Router overload control features help ensure core network and overall service availability.

Accounting

Oracle Communications Session Router provides accounting via call detail records (CDRs) or Remote Authentication Dial-In User Service (RADIUS) for session-based billing and settlement, in addition to traffic planning and performance management.

Carrier-Class High Availability

Across all hardware and server platform options, Oracle Communications Session Router supports an HA configuration with active and standby units. The SIP message state and peer state are check-pointed between the active and standby units to ensure uninterrupted service in the event of a unit failure.

Management

Oracle Communications Session Delivery Manager product family—a fully integrated, extensible management system—is used to provision Oracle Communications Session
Router. Oracle Communications Session Delivery Manager centralizes and automates the management and distribution of local route tables to Oracle Communications Session Routers. It can also be managed by command-line interface (CLI) and Telnet. Secure File Transfer Protocol can be used to update local route tables with XML. RADIUS is used for accounting and Simple Network Management Protocol (SNMP) and Syslog for monitoring.

Oracle Communications Session Router is also supported by Oracle Communications Session Monitor product family, a real-time monitoring and troubleshooting software that provides network intelligence for service provider networks.

Flexible Operational Modes
Oracle Communications Session Router supports four modes, providing multiple levels of session statefulness that balance interoperability, security, and accounting features with performance, as outlined in the table.

| MODES OF SESSION STATEFULNESS SUPPORTED BY ORACLE COMMUNICATIONS SESSION ROUTER |
|---|---|---|---|---|---|---|
| Mode | Performance | Signaling State | Topology Hiding | Overload Control | Load Balancing | SIP Interworking | Accounting |
| Stateless | Highest | Initial invite only | No | No | No | No | No |
| Transaction Stateful | Higher | Through initial setup | No | CPS only | Hunt, lowest sustained rate | Yes | No |
| Session Stateful | High | Through session termination | No | CPS and sessions | Hunt, round robin, and proportional, least busy, lowest sustained rate | Yes | Yes |
| Dialog Stateless | High | Through session termination | Yes | CPS and sessions | Hunt, round robin, and proportional, least busy, lowest sustained rate | Yes | Yes |
TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3261</td>
<td>SIP proxy, SIP relay</td>
</tr>
<tr>
<td>SIP interface support</td>
<td>Mi, Mj, Mk, Mx</td>
</tr>
<tr>
<td>3GPP compliance</td>
<td>BGCF</td>
</tr>
<tr>
<td>SIP protocols</td>
<td>SIP, SIP-I, SIP-T, and interworking</td>
</tr>
<tr>
<td>Transport protocols</td>
<td>UDP, TCP, SCTP, and interworking</td>
</tr>
<tr>
<td>IP protocols</td>
<td>IPv4, IPv6</td>
</tr>
<tr>
<td>Resolution and translation protocols</td>
<td>ENUM, DNS</td>
</tr>
<tr>
<td>Supported platforms</td>
<td>Acme Packet 3820, 4500, 4600, 6100, 6300, Oracle Netra X3-2, Netra X5-2, and select third-party servers</td>
</tr>
<tr>
<td>Management</td>
<td>Oracle Communications Session Delivery Manager product family, CLI, Telnet, SFTP, XML, RADIUS, SNMP, and Syslog</td>
</tr>
</tbody>
</table>

OCSR-VNF SPECIFICATIONS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypervisors</td>
<td>Oracle Virtual Machine (OVM), Kernel-based Virtual Machine (KVM), or VMware ESXi</td>
</tr>
<tr>
<td>VNF Manager</td>
<td>Oracle Communications Application Orchestrator</td>
</tr>
<tr>
<td>Minimum Required Configuration</td>
<td>3 vCPU Cores, 4 GB RAM, 48 GB HDD, 8 vNICs</td>
</tr>
</tbody>
</table>

CONTACT US
For more information about Oracle Communications Session Router, visit oracle.com or call +1.800.ORACLE1 to speak to an Oracle representative.

Integrated Cloud Applications & Platform Services

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 3.8.2017