Oracle Enterprise Session Border Controller and Cisco Unified Communications Manager with SIP/TLS and RTP Trunking with the Oracle Enterprise Operations Monitor

Technical Application Note
Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.

Table of Contents

INTENDED AUDIENCE

DOCUMENT OVERVIEW

INTRODUCTION

Requirements

Lab Configuration

Caveats

PHASE 1 – CONFIGURING THE ORACLE ENTERPRISE SESSION BORDER CONTROLLER

In Scope

Out of Scope

What Will You Need

SBC – Getting Started

Establish the serial connection and logging in the SBC

Initial Configuration – Assigning the Management Interface an IP Address

Configuring the Oracle Enterprise SBC (E-SBC)

High Availability (Local to a Particular Site)

Certificate-Records

Importing Trusted Certificates

Generating the SBC’s Certificate Signing Requests

Importing the SBC’s Signed Certificates

Local Policy

Media Manager

Media Security Policies

Network Interfaces

Physical Interfaces

Realm Configs

SDES Profile

Session Agents

Session Translation

SIP Config

SIP Interfaces
PHASE 2 – CONFIGURING THE ORACLE ENTERPRISE OPERATIONS MONITOR

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Scope</td>
<td>19</td>
</tr>
<tr>
<td>Out of Scope</td>
<td>19</td>
</tr>
<tr>
<td>What Will You Need</td>
<td>19</td>
</tr>
<tr>
<td>EOM – Getting Started</td>
<td>19</td>
</tr>
<tr>
<td>Configuring EOM To Display All Legs of a Call in a Single Report</td>
<td>19</td>
</tr>
</tbody>
</table>

PHASE 3 – CONFIGURING THE CISCO UNIFIED COMMUNICATIONS MANAGER (CUCM)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating a Certificate Signing Request (CSR) for CallManager</td>
<td>28</td>
</tr>
<tr>
<td>Importing the Certificate Authority (CA) Certificate</td>
<td>34</td>
</tr>
<tr>
<td>Importing the CallManager certificate signed by a CA</td>
<td>37</td>
</tr>
<tr>
<td>Configuring a SIP Trunk Security Profile</td>
<td>39</td>
</tr>
<tr>
<td>Creating a SIP Profile</td>
<td>45</td>
</tr>
<tr>
<td>Configuring a SIP Trunk</td>
<td>49</td>
</tr>
<tr>
<td>Creating a Route Pattern</td>
<td>54</td>
</tr>
<tr>
<td>Setting the cluster to Mixed Mode</td>
<td>61</td>
</tr>
</tbody>
</table>

TEST PLANS & RESULTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Plan</td>
<td>64</td>
</tr>
</tbody>
</table>

TROUBLESHOOTING TOOLS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireshark</td>
<td>64</td>
</tr>
<tr>
<td>On the Oracle E-SBC</td>
<td>64</td>
</tr>
<tr>
<td>Examining the log files</td>
<td>65</td>
</tr>
<tr>
<td>Through the Web GUI</td>
<td>65</td>
</tr>
</tbody>
</table>

APPENDIX A

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessing the ALCI</td>
<td>66</td>
</tr>
<tr>
<td>ACLI Basics</td>
<td>66</td>
</tr>
<tr>
<td>Configuration Elements</td>
<td>68</td>
</tr>
<tr>
<td>Creating an Element</td>
<td>68</td>
</tr>
<tr>
<td>Editing an Element</td>
<td>68</td>
</tr>
<tr>
<td>Deleting an Element</td>
<td>69</td>
</tr>
<tr>
<td>Configuration Versions</td>
<td>69</td>
</tr>
<tr>
<td>Saving the Configuration</td>
<td>69</td>
</tr>
<tr>
<td>Activating the Configuration</td>
<td>70</td>
</tr>
</tbody>
</table>
Intended Audience

This is a technical document intended for telecommunications engineers with the purpose of configuring the Oracle Communications Enterprise-SBC, Oracle Enterprise Operations Monitor, and Cisco Unified Communications Manager (CUCM). There will be steps that require navigating the Acme Packet Command Line Interface (ACLI). Understanding the basic concepts of TCP/UDP, IP/Routing, and SIP/TLS/RTP are also necessary to complete the configuration and for troubleshooting, if necessary.

Document Overview

This technical application note documents the implementation of the Oracle Enterprise Session Border Controller (E-SBC) trunk-side between the Cisco Unified Communications Manager (CUCM) and a Service Provider network.

It should be noted that the E-SBC configuration provided in this guide focuses strictly on the CUCM associated parameters. Many E-SBC users may have additional configuration requirements that are specific to other applications. These configuration items are not covered in this guide. Please contact your Oracle representative with any questions pertaining to this topic.
Introduction

Enterprise Session Border Controller Overview

The Oracle Enterprise Session Border Controller (E-SBC) is an enterprise-class signaling component designed to simplify communications networks. It connects disparate IP communications networks while mitigating security threats, curing interoperability problems and ensuring reliability.

Requirements

- Oracle Enterprise Session Border Controller ECZ7.3.0 MR-1 Patch 1
- Oracle Enterprise Operations Monitor 3.3.90.0.0
- Cisco CUCM version 10.5.2.10000-5

Lab Configuration

The following diagram illustrates the lab environment used for testing.

The Oracle Enterprise Operations Monitor (EOM) was used to monitor the SIP signaling during testing. The E-SBC was used as a probe to send SIP signaling to EOM for analysis in real time or for historical reporting. Even though the SIP signaling was encrypted using TLS, it can still be read by EOM. The communication between the E-SBC and EOM can be either plaintext or encrypted with TLS.

The communication between the Cisco phone and CUCM is SIP-over-TCP and RTP. It is outside the scope of this document to detail the configuration for this area. The communication between CUCM and the Oracle SBC is SIP-over-TLS and RTP, and the Oracle SBC converts this to SIP-over-UDP and RTP going to the Service Provider network. It should be possible to use all Secure RTP (SRTP) on the trunk side, but this was not tested.
Caveats

- This configuration includes replacing CUCM’s self-signed certificate with one signed by a third-party Certificate Authority (CA). Since CUCM uses this certificate to sign the phone configuration files, no changes to the config files is possible without also importing the CA certificate onto the phones. Importing the CA certificate onto the phones was not performed during this testing.

- The Oracle SBC supports converting between Secure RTP (SRTP) and RTP, and an example configuration is given in this document even though it was not tested.

Configuration, validation and troubleshooting is the focus of this document and will be described in three phases:

- Phase 1 – Configuring the Oracle E-SBC
- Phase 2 – Configuring the Oracle EOM
- Phase 3 – Configuring the Cisco Unified Communications Manager (CUCM) 10.5
Phase 1 – Configuring the Oracle Enterprise Session Border Controller

In this section we describe the steps for configuring Oracle Enterprise SBC (E-SBC) for trunking with the Cisco Unified Communication Manager (CUCM).

In Scope

The following guide for configuring the Oracle SBC assumes that this is a newly deployed device dedicated to a single customer. Please see the ACLI Configuration Guide on http://docs.oracle.com/cd/E61547_01/index.html for a better understanding of the Command Line Interface (CLI).

Note that Oracle offers several models of the SBC. This document covers the setup for the 3820, 4500, 4600, and 6300 running OS ECZ7.3.0 MR-1 Patch 1 or later with the necessary encryption hardware. Each of the products listed above run the same software, configuration and method of implementation. If additional instructions are required, please contact your Oracle sales representative.

Out of Scope

- Configuration of Network management including SNMP and RADIUS
- Configuration of Distributed Denial of Service (DDoS) protection parameters as these are based on individual customer requirements.

What will you need

- RJ45/DB9 serial adapter provided with the SBC, along with a straight-through Ethernet cable to go from the adapter to the SBC’s console port (on the rear of the 1100, 4600, and 6300, and the front of the 3820 and 4500).
- Terminal emulation application such as PuTTY or HyperTerm
- Passwords for the User and Superuser modes on the Oracle SBC
- IP address to be assigned to the management interface (eth0, labeled Mgmt0 on the SBC chassis) of the SBC - the eth0 management interface must be connected and configured to a management network separate from the service interfaces. Otherwise the SBC is subject to ARP overlap issues, loss of system access when the network is down, and compromising DDoS protection. Oracle does not support SBC configurations with management and media/service interfaces on the same subnet.
- IP addresses of CUCM and the Oracle EOM
- IP addresses to be used for the SBC internal and external facing ports (Service Interfaces)

SBC – Getting Started

Once the Oracle SBC is racked and the power cable connected, you are ready to set up physical network connectivity. **Note: use the console port on the front of the SBC, not the one on the back, on platforms such as the 3820 and 4500 that have two console ports.**

Plug the slot 0 port 0 (s0p0) interface into your outside network and the slot 1 port 0 (s1p0) interface into your inside network. Once connected, you are ready to power on and perform the following steps.

All commands are in bold, such as **configure terminal**: parameters in bold red such as **oraclesbc1** are parameters which are specific to an individual deployment. **Only non-default parameters are shown.** **Note:** The CLI is case sensitive.
Establish the serial connection and logging in the SBC

Confirm the SBC is powered off and connect one end of a straight-through Ethernet cable to the console port on the SBC and the other end to the console adapter that ships with the SBC, connect the console adapter (a DB9 adapter) to the DB9 port on a workstation, running a terminal emulator application such as PuTTY. Start the terminal emulation application using the following settings:

- Baud Rate=115200
- Data Bits=8
- Parity=None
- Stop Bits=1
- Flow Control=None

Power on the SBC and confirm that you see the following output from the bootup sequence.

Enter the following commands to login to the SBC and move to the configuration mode. Note that the default SBC password is "acme" and the default super user password is "packet".

Password: acme
oraclesbc1> enable
Password: packet
oraclesbc1# configure terminal

You are now in the global configuration mode.

Initial Configuration – Assigning the Management Interface an IP Address

To assign an IP address, one has to configure the bootparams on the SBC by going to

oraclesbc1# configure terminal --> bootparam

- Once you type "bootparam" you have to use the "carriage return" key to navigate down
- A reboot is required if changes are made to the existing bootparams. Note these example boot parameters are specific to the 4600 platform. Other platforms will have different boot parameters. Use nnECZ730m1p1.64.bz software for the 1100, 4500, 4600, and the 6300. Use nnECZ730m1p1.32.bz for the 3820.

```
oraclesbc1(config)# bootparam
.' = clear field; '-' = go to previous field; a = quit
Boot File : /boot/nnECZ730m1p1.64.bz
IP Address : 192.168.79.44
VLAN :
Netmask : 255.255.255.224
```
Configuring the Oracle Enterprise SBC (E-SBC)

The following section walks you through configuring the Oracle Enterprise SBC required to work with CUCM. It is outside the scope of this document to include all the interoperability working information as it will differ in every deployment.

High Availability (Local to a Particular Site)

The Mgmt1 and Mgmt2 (labeled wancom1 and wancom2 in the configuration) ports which are on the rear panel of the SBC are used for the purpose of High Availability on the E-SBC. Crossover cables must be connected between these ports on the SBCs, i.e. Mgmt1 to Mgmt1 and Mgmt2 to Mgmt2. Please refer to the “High Availability Nodes” in the ACLI configuration guide for ECZ730 for more details. Note that HA was not configured in this exercise.

Certificate-Records

Path: configure terminal > security > certificate-record

certificate-record
name CAcert
locality Bedford
organization Oracle
common-name Oracle PE Lab CA
key-size 2048

certificate-record
name SBCcert
locality Bedford
organization Oracle
unit PE
common-name trunking-sbc.pe.oracle.com
key-size 2048

Importing Trusted Certificates

All trusted Certificate Authority (CA) certificates must be imported into the SBC’s configuration. This includes the following types of certs:

- All CA(s) that signed the SBC’s certificates. This will typically be one CA.
- All CA(s) that signed the SBC’s peers’ (session-agents’) certs, e.g. the CA(s) that signed CUCM’s certificate.
Each trusted certificate must have a certificate-record configured (path: configure terminal > security > certificate-record), followed by a save/activate. The certs can then be imported one at a time using the "import-certificate try-all <certificate-record-name>" command, where the certificate is pasted into the Command Line Interface (CLI) after issuance of the command, followed by a semi-colon (";") to indicate the end of the certificate, and then a save/activate. Here is an example of the certificate importation process after the corresponding certificate-record has been configured and a save/activate has been performed.

oraclesbc1# import-certificate try-all ExampleCaCert

IMPORTANT:

Please enter the certificate in the PEM format.

Terminate the certificate with ";" to exit.......

-----BEGIN CERTIFICATE-----
MIICojCCAgugAwIBAgIBADANBgkqhkiG9w0BAQUFADBvMRUwEwYDVQQDEwxwOTIU
MjAwLjEuMTExEzARBgNVBAsTCnKvbnRyYWN0b3lxDDAKBgNVBAsTA1BLSTEEMIAOG
A1UECxMDGR9EMRgwFgYDVQQKEw9VLIGuiEdvdmVybmbnQXczAjBqNVMBTA1T
MB4XDTA5MDYwMTIxMzEzExMDTExMDYwMTIxMzEzExMDTExMDYwMTIxMzEzEVBM
LjwMC4xLjExMRwEOYDVQQLdwpDb250cmFjdG9yMjgOLQwCgYDVQQKEwNQS0l0
BgNBvAsTA0OVREYMBYGA1UEChMPVSSTLBBz3Icm5iZW50MQswCQYDVQQGEwJ
UzCBzxnANBgkqhkiG9w0BAQEFAAOBjAQAwYkEyAggCuvzS0K0j49zF7q/5
-----END CERTIFICATE-----

Certificate imported successfully....

WARNING: Configuration changed, run "save-config" command.

-----BEGIN CERTIFICATE-----
MIICojCCAgugAwIBAgIBADANBgkqhkiG9w0BAQUFADBvMRUwEwYDVQQDEwxwOTIU
MjAwLjEuMTExEzARBgNVBAsTCnKvbnRyYWN0b3lxDDAKBgNVBAsTA1BLSTEEMIAOG
A1UECxMDGR9EMRgwFgYDVQQKEw9VLIGuiEdvdmVybmbnQXczAjBqNVMBTA1T
MB4XDTA5MDYwMTIxMzEzExMDTExMDYwMTIxMzEzExMDTExMDYwMTIxMzEzEVBM
LjwMC4xLjExMRwEOYDVQQLdwpDb250cmFjdG9yMjgOLQwCgYDVQQKEwNQS0l0
BgNBvAsTA0OVREYMBYGA1UEChMPVSSTLBBz3Icm5iZW50MQswCQYDVQQGEwJ
UzCBzxnANBgkqhkiG9w0BAQEFAAOBjAQAwYkEyAggCuvzS0K0j49zF7q/5
-----END CERTIFICATE-----; ← Note the semi-colon that was entered after the certificate

Certificate imported successfully successfully....

WARNING: Configuration changed, run "save-config" command.

Generating the SBC's Certificate Signing Requests

The SBC only needs one certificate with the Common Name set to a Fully Qualified Domain Name (FQDN). To generate a certificate signing request, the certificate must be configured as a certificate-record with the appropriate fields (as dictated by the
signing CA’s policies), followed by a save/activate. Each certificate signing request can then be generated using the "generate-certificate-request <certificate-record-name>". The certificate signing request can then be given to the CA to be signed. Here is an example generation of a certificate signing request:

`generate-certificate-request ExampleSbcCertA`

Generating Certificate Signing Request. This can take several minutes....

-----BEGIN CERTIFICATE REQUEST-----
MIIByTCCATICAQAwXJELMAkGA1UEBhMCVVMxChAJBgNVBAgTAk1BMRMwEQYDVQQH
EwpCdXjaW5ndG9uMRQwEgYDVQQKEwFbmdpbmVlcmluZzEXMBUAGA1UEAxMOMTky
LjE2OC4xMy4xMTMwgZ8wDQYJKoZIhvcNAQEEBQADgY0AMIGJAoGBGANoAWTk8tHzE
tbICL88CFwx9s9oqKBr0u+ZSJQEKSv0OU8tPX60X5+Z94TORp1waZMcSTSHktmR
OrUsF8j9OV/5YvCJFWvxxMXOpivdO9Tbd7M44776Pf41welBRXN8v7aWvzqzc4gUX
IFXrC4x8ByZLlXlwO8ezXx3y8EUNAgMBAAAGkzApB9wNHQ8xIl8MgZGlmaXRh
bFNPzZ5zdHVyZ5rXIfbmmNpcGlhcm1ibnQwDQYJKoZIhvcNAQEEBQADgYEAcSZH
6nig6A2GgAnCTUTjraH/h/bMHoFOkeXOWcmU84u6VKyV/9EDnIE/hdjG5/32KiXP
d6zQ7lJ9GeavrKsq757r2aqbRRc/cQWPNAGAGToCndkZznGYm9Du4qPH4ceSh
stDibQj63Njk6KrQXwpB6VYtcATH6X++7VRco=
-----END CERTIFICATE REQUEST-----

WARNING: Configuration changed, run "save-config" command.

Then save and activate the configuration; the private key will be stored.
Copy and paste the request, including "-----BEGIN CERTIFICATE REQUEST-----" and
"-----END CERTIFICATE REQUEST-----" into a text file and give the file to the CA.

Importing the SBC’s Signed Certificates

When the signed certificates are received from the CA, they need to be imported into the SBC using the "import-certificate try-all <certificate-record-name>" command as outlined in the "Importing Trusted Certificates" section, followed by a save/activate.

Managing Certificate Expirations to Avoid Service Disruptions

The certificates expire and hence must be properly managed/renewed to avoid service disruptions.

Local Policy

Path: configure terminal > session-router > local-policy

```
local-policy
    from-address *
    to-address *
    source.realm cisco-core
    policy-attribute
        next-hop 192.168.2.60
        realm trunk
local-policy
    from-address *
    to-address *
    source.realm trunk
    policy-attribute
        next-hop 10.232.50.89
        realm cisco-core
```
Media Manager

Path: configure terminal > media-manager > media-manager > select > done

Media Security Policies

Path: configure terminal > security > media-security > media-sec-policy

<table>
<thead>
<tr>
<th>media-sec-policy</th>
<th>rtp</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td></td>
</tr>
<tr>
<td>media-sec-policy</td>
<td>NOTE THIS IS GIVEN AS AN EXAMPLE ONLY. SRTP WAS NOT TESTED.</td>
</tr>
<tr>
<td>name</td>
<td>srtp</td>
</tr>
<tr>
<td>inbound profile</td>
<td>sdes-profile</td>
</tr>
<tr>
<td>inbound mode</td>
<td>srtp</td>
</tr>
<tr>
<td>inbound protocol</td>
<td>sdes</td>
</tr>
<tr>
<td>outbound profile</td>
<td>sdes-profile</td>
</tr>
<tr>
<td>outbound mode</td>
<td>srtp</td>
</tr>
<tr>
<td>outbound protocol</td>
<td>sdes</td>
</tr>
</tbody>
</table>

Network Interfaces

Path: configure terminal > system > network-interface

<table>
<thead>
<tr>
<th>network-interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
</tr>
<tr>
<td>ip-address</td>
</tr>
<tr>
<td>netmask</td>
</tr>
<tr>
<td>gateway</td>
</tr>
<tr>
<td>hip-ip-list</td>
</tr>
<tr>
<td>icmp-address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>network-interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
</tr>
<tr>
<td>ip-address</td>
</tr>
<tr>
<td>netmask</td>
</tr>
<tr>
<td>gateway</td>
</tr>
<tr>
<td>hip-ip-list</td>
</tr>
<tr>
<td>icmp-address</td>
</tr>
</tbody>
</table>

Physical Interfaces

Path: configure terminal > system > phy-interface

<table>
<thead>
<tr>
<th>phy-interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
</tr>
<tr>
<td>operation-type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>phy-interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
</tr>
<tr>
<td>operation-type</td>
</tr>
<tr>
<td>slot</td>
</tr>
</tbody>
</table>
Realm Configs

Path: configure terminal > media-manager > realm-config

```
realm-config
  identifier              cisco-core
  network-interfaces     s1p0:0
  media-sec-policy       rtp
SRTP. Note that SRTP was not tested.
```

```
realm-config
  identifier              trunk
  network-interfaces     s0p0:0
  media-sec-policy       rtp
```

SDES Profile

Path: configure terminal > security > media-security > sdes-profile

NOTE: This is only required for SRTP, which was not tested.

```
sdes-profile
  name                      sdes-profile
  crypto-list               AES_CM_128_HMAC_SHA1_32
```

Session Agents

Path: configure terminal > session-router > session-agent

```
session-agent
  hostname          10.232.50.89
  ip-address        10.232.50.89
  port              5061
  transport-method  StaticTLS
  realm-id          cisco-core
  description       Cisco CUCM
  ping-method       OPTIONS;hops=0
  ping-interval     30
  out-translationid stripone
```

```
session-agent
  hostname          192.168.2.60
  ip-address        192.168.2.60
  realm-id          trunk
  description       SIP Trunk
  ping-method       OPTIONS;hops=0
  ping-interval     30
```

Session Translation

Path: configure terminal > session-router > session-translation
SIP Config

Path: `configure terminal > session-router > sip-config > select`

<table>
<thead>
<tr>
<th>session-translation</th>
<th>stripone</th>
<th>stripone</th>
<th>stripone</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rules-calling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rules-called</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIP Interfaces

Path: `configure terminal > session-router > sip-interface`

<table>
<thead>
<tr>
<th>sip-interface</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>realm-id</td>
<td>cisco-core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sip-port</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>address</td>
<td>10.232.50.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port</td>
<td>5061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>transport-protocol</td>
<td>TLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tls-profile</td>
<td>TlsProfile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>allow-anonymous</td>
<td>agents-only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>out-manipulationid</td>
<td>NAT_IP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sip-interface</th>
<th>trunk</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>realm-id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sip-port</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>address</td>
<td>192.168.2.210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>allow-anonymous</td>
<td>agents-only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>out-manipulationid</td>
<td>NAT_IP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIP Manipulations (Header Manipulation Rules – HMR)

Path: `configure terminal > session-router > sip-manipulation`

<table>
<thead>
<tr>
<th>sip-manipulation</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>NAT_IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>header-rule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>NatFromIp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>header-name</td>
<td>From</td>
<td></td>
<td></td>
</tr>
<tr>
<td>action</td>
<td>manipulate</td>
<td>request</td>
<td></td>
</tr>
<tr>
<td>msg-type</td>
<td>uri-host</td>
<td></td>
<td></td>
</tr>
<tr>
<td>element-rule</td>
<td>replace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>name</td>
<td>$LOCAL_IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new-value</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| header-rule | NatTo | | |</p>
<table>
<thead>
<tr>
<th>header-name</th>
<th>action</th>
<th>msg-type</th>
<th>element-rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>NatToIp</td>
<td>replace</td>
<td>uri-host</td>
<td>$REMOTE_IP</td>
</tr>
</tbody>
</table>
Steering Pools

Path: configure terminal > media-manager > steering-pool

```
steering-pool
  ip-address                      10.232.50.100
  start-port                      49152
  end-port                        65535
  realm-id                        cisco-core
steering-pool
  ip-address                      192.168.2.210
  start-port                      49152
  end-port                        65535
  realm-id                        trunk
```

System Config

Path: configure terminal > system > system-config > select

```
system-config
  description                     Oracle 4600 SBC for Cisco Trunk-Side Testing
  process-log-level               DEBUG
  comm-monitor
    state                         enabled
  monitor-collector
    address                      172.18.255.101
  NOTE: This is the IP address of the Oracle Enterprise Operations Monitor (EOM).
  default-gateway                192.168.79.33
  source-routing                  enabled
```

TLS Profile

Path: configure terminal > security > tls-profile

```
tls-profile
  name                           TlsProfile
  end-entity-certificate         SBCcert
  trusted-ca-certificates        CACert
  mutual-authenticate            enabled
  tls-version                    tlsV1
```
Translation Rule

Path: `configure terminal > session-router > translation-rule`

<table>
<thead>
<tr>
<th>translation-rules</th>
<th>stripone</th>
<th>type</th>
<th>delete-string</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>delete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delete-string</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Web Server Config

Path: `configure terminal > system > web-server-config > select`

<table>
<thead>
<tr>
<th>web-server-config</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enabled</td>
</tr>
</tbody>
</table>

Save, Activate, and Reboot

You will now save your configuration with the `save-config` command. This will make it persistent through reboots, but it will not take effect until after you issue the `activate-config` command. Some config elements are not Real-Time Configuration (RTC) supported, so a reboot is required after the initial configuration.

```
oraclesbc1# save-config
checking configuration
Save-Config received, processing.
waiting for request to finish
Request to 'SAVE-CONFIG' has Finished,
Save complete
Currently active and saved configurations do not match!
To sync & activate, run 'activate-config' or 'reboot activate'.
oraclesbc1# activate-config
Activate-Config received, processing.
waiting for request to finish
Setting phy0 on Slot=0, Port=0, MAC=00:08:25:03:FC:43,
VMAC=00:08:25:03:FC:43
Setting phy1 on Slot=1, Port=0, MAC=00:08:25:03:FC:45,
VMAC=00:08:25:03:FC:45
Request to 'ACTIVATE-CONFIG' has Finished,
Activate Complete
oraclesbc1# reboot force
```

The E-SBC configuration is now complete.
Phase 2 – Configuring the Oracle Enterprise Operations Monitor

In this section we describe the steps for configuring Oracle Enterprise Operations Monitor (EOM) for use with the Oracle Enterprise SBCs to monitor SIP signaling traffic on the network.

In Scope

The following guide for configuring the Oracle EOM assumes that this is a newly deployed device dedicated to a single customer. Please see the Oracle Communications Session Monitor Installation Guide on http://docs.oracle.com/cd/E60864_01/index.htm for a better understanding of the basic installation.

Out of Scope

- Basic installation as this is covered in Chapters 2 and 3 of the Oracle Communications Session Monitor Installation Guide.
- High availability.

What will you need

- Console access to the EOM server or virtual machine (VM).
- Browser-based HTTPS access to the EOM server after the initial configuration is complete.
- Administrator password for the EOM to be used.
- IP address to be assigned to EOM.

EOM – Getting Started

Ensure that the server or VM specifications meet those outlined in Chapter 1 of the Oracle Communications Session Monitor Installation Guide. Install the EOM software and configure the network parameters as outlined in Chapter 2 of the same guide. Chapter 3 details the subsequent browser-based installation. When prompted to select the “Machine Type”, select the “Communications Operations Monitor” checkbox.
Configuring EOM to Display All Legs of a Call in a Single Report

This allows all call legs on both sides of the E-SBC to be displayed in a single report, making analysis and troubleshooting easier.

1. Click on the user (admin in this example) in the top right corner, then click on Settings.
2. Under System Management select System Settings and search for “merge”. Double click on “Merge globally by Call-ID”.

3. Click on the Enabled check box and click Update.
4. Under Platform select Platform Devices. Click Add (or Edit if you’ve already added a device).

5. Select the SBC/B2BUA radio button regardless of the type of device you’re adding, then click Next.
6. Click on the "Use generic Palladion algorithm (recommended)" radio button, then click Next.

7. Enter the device’s IP address in both fields, then click Next.
8. Enter a name for the device and click Finish.

9. Repeat for all other devices in the call flow. Enter each side of the SBC (inside and outside) separately.
10. On the Dashboard, under Recent Calls, make sure the Auto Refresh is set to something other than Off.

11. Make a call. After the call is finished, the call will show up under Recent Calls with 2 or more segments if the call only traverses the SBC once, or with 4 or more segments if the call traverses the SBC twice. Double click on the call.
12. The call will show up with all segments. Click on the PDF button to generate a report.
13. Click on the Create button.
14. Choose to either save the file or open it.
15. View the Call Report in Acrobat Reader or another program. The report will show all segments of the call.
At the end of the report after all the SIP messages, there will be a call flow graph that shows each element in the call.
Phase 3 – Configuring the Cisco Unified Communications Manager (CUCM)

The enterprise has a fully functional Cisco CUCM. Backup the existing configuration before proceeding. Configuring CUCM to operate with the Oracle E-SBC consists of the following steps:

- Generating a Certificate Signing Request (CSR) for CallManager
- Importing the Certificate Authority (CA) certificate
- Importing the CallManager certificate signed by a CA
- Configuring a SIP Trunk Security Profile
- Creating a SIP Profile
- Configuring a SIP Trunk
- Creating a Route Pattern
- Setting the cluster to Mixed Mode

Generating a Certificate Signing Request (CSR) for CallManager

Log in to the Cisco Unified OS Administration.

[Image of Cisco Unified OS Administration console]

Copyright © 1999 - 2015 Cisco Systems, Inc.
All rights reserved.

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at our Export Compliance Product Report web site.

For information about Cisco Unified Communications Manager please visit our Unified Communications System Documentation web site.

For Cisco Technical Support please visit our Technical Support web site.
Click on Generate CSR.
Choose “CallManager” as the Certificate Purpose. Select a distribution, and then enter CUCM’s Fully Qualified Domain Name (FQDN) as the Common Name. Leave the Subject Alternate Names (SANs) Parent Domain blank. Select 2048 as the Key Length, and SHA256 as the Hash Algorithm. Then click on Generate.

![Generate Certificate Signing Request](https://10.232.50.89/cmplatform/certificateGenerateNewCsr.do)

- **Certificate Purpose**
 - CallManager

- **Distribution**
 - CUCM-Cisco.pe.oracle.com

- **Common Name**
 - CUCM-Cisco.pe.oracle.com

- **Subject Alternate Names (SANs)**
 - **Parent Domain**

- **Key Length**
 - 2048

- **Hash Algorithm**
 - SHA256

* indicates required item.
You will see a list of certificates. Click on the FQDN that has “CSR Only” listed as the type.
Click on Download CSR.
Click on Save File and save the file to your PC or server.

Send the CallManager.csr file to your Certificate Authority to be signed.
Importing the Certificate Authority (CA) Certificate

Import the Certificate Authority’s (CA’s) certificate in PEM format to the CallManager-trust store. Click on Upload Certificate/Certificate Chain.
For the Certificate Purpose, select CallManager-trust and give it a description. Click on Browse to find the CA certificate file on your local PC or server. Then click on Upload.
You should see “Success: Certificate Uploaded”.

Certificate Purpose: CallManager-trust

Description (friendly name):

Upload File: No file selected.
Importing the CallManager certificate signed by a CA

Import the CallManager certificate after it has been signed by the CA. Click on Upload Certificate/Certificate Chain.
Select CallManager as the Certificate Purpose. Click Browse to find the signed certificate on your PC or server. Then click Upload.

You should see “Success: Certificate Uploaded”.

Configuring a SIP Trunk Security Profile

Navigate to Cisco Unified CM Administration and login.
Click on System.

WARNING: It has been 5 day(s) without a successful backup. Please verify backup configuration.

Cisco Unified CM Administration

System version: 10.5.2.10000-5

VMware Installation: 2 xCPU Intel(R) Xeon(R) CPU E5-2640 0 @ 2.50GHz, disk 1: 80Gbytes, 8192Mbytes RAM, Partitions aligned

Last Successful Backup: 5 day(s) ago

User admin last logged in to this cluster on Wednesday, June 1, 2016 4:09:21 PM EDT to node 10.232.50.89, from 10.232.50.86 using HTTP5

All rights reserved.

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for complying with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at our Export Compliance Product Report web site.

For information about Cisco Unified Communications Manager please visit our Unified Communications System Documentation web site.

For Cisco Technical Support please visit our Technical Support web site.
Click on Security, then SIP Trunk Security Profile.
Click on Add New.
Give the trunk a name. “SIP Trunk Security Profile – TLS Test Trunk” is used in this example. Select Encrypted as the Device Security Mode, and TLS as both the Incoming and Outgoing Transport Type. Enter the SBC’s FQDN from the SBC’s certificate’s Common Name in the X.509 Subject Name field. “trunking-sbc.pe.oracle.com” is used in this example. This is the common-name in the SBC’s certificate-record. Make sure the Incoming Port is set to 5061.

![Cisco Unified CM Administration](image)

<table>
<thead>
<tr>
<th>SIP Trunk Security Profile Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SIP Trunk Security Profile – TLS Test Trunk</td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Incoming Transport Type</td>
<td>TLS</td>
</tr>
<tr>
<td>Outgoing Transport Type</td>
<td>TLS</td>
</tr>
<tr>
<td>Enable Digest Authentication</td>
<td>☑</td>
</tr>
<tr>
<td>X.509 Subject Name</td>
<td>trunking-sbc.pe.oracle.com</td>
</tr>
<tr>
<td>Incoming Port</td>
<td>5061</td>
</tr>
</tbody>
</table>

This image shows the configuration page for the SIP Trunk Security Profile in Cisco Unified CM Administration. The page is displaying the configuration parameters for the trunk, including the name, transport types, and port settings. The name specified is “SIP Trunk Security Profile – TLS Test Trunk,” and the transport types are set to TLS for both incoming and outgoing. The X.509 Subject Name is set to “trunking-sbc.pe.oracle.com,” which is used in the common-name of the SBC’s certificate. The incoming port is set to 5061.
The remaining checkboxes should be selected as shown below. Then click Save.
Creating a SIP Profile

Click on Device, then Device Settings, then SIP Profile.
Click on Add New.
Use “Standard SIP Profile – Early Offer” as the Name.
Scroll down to the Trunk Specific Configuration. Select “Mandatory (insert MTP if needed)” next to the Early Offer support for voice and video calls. Then click on Save.
Configuring a SIP Trunk

Click on Device, then Trunk.
Click on Add New.
Give the trunk a name. SIP_TLS_Test_Trunk was used in this example. Set the other values shown below as appropriate for your CUCM installation.
Scroll down to SIP Information. Enter the SBC’s “cisco-core” sip-interface IP address and port 5061. Select the previously created SIP Trunk Security Profile. Select the previously created SIP Profile. Then click Save.
After saving, click on Reset, then click on Reset again in the pop up window.
Creating a Route Pattern

Click on Call Routing.

WARNING: It has been 5 day(s) without a successful backup. Please verify backup configuration.
Click on Route/Hunt, then Route Pattern.
Click on Add New.
Enter an appropriate Route Pattern for your network. In this example, 6.@ was used which basically means that any number dialed beginning with 6 will route out the trunk. Select the Numbering Plan that is relevant to your network (NANP, or North American Numbering Plan, was used here). Select the previously configured trunk from the Gateway/Route List.
Scroll down to the Called Party Transformations. Select “PreDot” next to Discard Digits. This will discard the “6” in our example configuration. Then click on Save.
Click on OK in the pop up window.
Click OK again in the next pop up box.
Setting the cluster to Mixed Mode

Care should be followed during this procedure. Follow all Cisco documentation, and perform it during a maintenance window.

Secure Shell (SSH) to CUCM using a program such as PuTTY. Login as an administrator (admin is the username in our example).

Issue the following command:

utils ctl set-cluster mixed-mode

Then issue the following command:

utils system restart

Then enter "yes" without the quotes. CUCM will reboot.

After the system reboots, login to CUCM’s web interface and click on System.

![Cisco Unified CM Administration](image)
Select Enterprise Parameters.

|--------|-------------------|------------------------|----------------------------|--------------------|-----------------|-------------------|-------------------|-------------|----------------|-------|------|-------------------|-------------------------------|--------------|--------|-------------------|------|

Administration

- Intel(R) Xeon(R) CPU E5-2640 0 @ 2.50GHz, disk 1: 80Gbytes, 8192Mbytes RAM, Partitions aligned
- 5 days ago

CTI on Thursday, June 2, 2016 9:50:22 AM EDT, to node 10.232.56.89 from 10.232.56.88 using HTTPS.

More...
Scroll down to Security Parameters and verify the Cluster Security Mode is "1", indicating Mixed Mode.

The configuration of CUCM is now complete.
Test Plans & Results

Test Plan

The test plan consisted of the following test cases.

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Result</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Call - Oubound</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Basic Call - Inbound</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Long Duration Call</td>
<td>Pass</td>
<td>20 minute call</td>
</tr>
<tr>
<td>Conference calling</td>
<td>Pass</td>
<td>Tested with 3 phones</td>
</tr>
<tr>
<td>Call Progress Tones</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Call Waiting</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Direct Outward Dialing</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Do Not Disturb (DND)</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Dual Tone Multi-Frequency signaling (DTMF) pass-through</td>
<td>Pass</td>
<td>Verified RFC 2833 RTP Event Packets were passed by the SBC.</td>
</tr>
<tr>
<td>Call Hold</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Consultation on Hold</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Call Transfer - supervised</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Call Transfer - blind</td>
<td>Pass</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting Tools

If you find that you are not able to complete calls or have problems with the test cases, there are a few tools available for Windows, Macs, Linux and the Oracle E-SBC and EOM like logging and tracing which may be of assistance. In this section we will provide a list of tools which you can use to aid in troubleshooting any issues you may encounter.

Wireshark

Wireshark is a network protocol analyzer which is freely downloadable from www.wireshark.org. Note that Wireshark traces taken directly from the network will show encrypted SIP/TLS, which can be useful for troubleshooting TLS issues but not necessarily SIP signaling issues.

On the Oracle E-SBC

The Oracle SBC provides a rich set of statistical counters available from the CLI, as well as log file output with configurable detail. The follow sections detail enabling, adjusting and accessing those interfaces.

Resetting the statistical counters, enabling logging and restarting the log files.

At the console:
Examining the log files

Note: You will FTP to the management interface of the SBC with the username user and user mode password (the default is “acme”).

```plaintext
C:\Documents and Settings\user>ftp 192.168.5.24
Connected to 192.168.85.55.
220 oraclesbc1FTP server (VxWorks 6.4) ready.
User (192.168.85.55:(none)): user
331 Password required for user.
Password: acme
230 User user logged in.
ftp> cd /ramdrv/logs
250 CWD command successful.
ftp> get sipmsg.log
200 PORT command successful.
150 Opening ASCII mode data connection for '/ramdrv/logs/sipmsg.log' (3353 bytes).
226 Transfer complete.
ftp> get log.sipd
200 PORT command successful.
150 Opening ASCII mode data connection for '/ramdrv/logs/log.sipd' (204681 bytes).
226 Transfer complete.
ftp> bye
221 Goodbye.
```

You may now examine the log files with the text editor of your choice.

Through the Web GUI

You can also check the display results of filtered SIP session data from the Oracle E-SBC, and it provides traces in a common log format for local viewing or for exporting to your PC. Please check the “Monitor and Trace SIP Messages” section (page 140) of the E-SBC Web GUI User Guide available at http://docs.oracle.com/cd/E56581_01/index.htm.

Oracle Enterprise Operations Monitor (EOM)

The Oracle Enterprise Operations Monitor (EOM) can be used to analyze SIP signaling messages. See the example report at the end of the “Configuring EOM to Display All Legs of a Call in a Single Report” section above.
Appendix A

Accessing the ACLI

Access to the ACLI is provided by:
- The serial console connection;
- TELNET, which is enabled by default but may be disabled; and
- SSH.

Initial connectivity will be through the serial console port. At a minimum, this is how to configure the management (eth0) interface on the SBC.

ACLI Basics

There are two password protected modes of operation within the ACLI, User mode and Superuser mode. When you establish a connection to the SBC, the prompt for the User mode password appears. The default password is acme.

User mode consists of a restricted set of basic monitoring commands and is identified by the greater than sign (>) in the system prompt after the target name. You cannot perform configuration and maintenance from this mode.

From the Superuser mode, you can perform monitoring and administrative tasks; however you cannot configure any elements. To return to User mode, issue the exit command.

You must enter the Configuration mode to configure elements. For example, you can access the configuration branches and configuration elements for signaling and media configurations. To enter the Configuration mode, issue the `configure terminal` command in the Superuser mode.
Configuration mode is identified by the word configure in parenthesis followed by the pound sign (#) in the prompt after the target name, for example, `oraclesbc1(configure)#`. To return to the Superuser mode, issue the `exit` command.

In the configuration mode, there are six configuration branches:

- bootparam;
- ntp-sync;
- media-manager;
- session-router;
- system; and
- security.

The `ntp-sync` and `bootparams` branches are flat branches (i.e., they do not have elements inside the branches). The rest of the branches have several elements under each of the branches.

The `bootparam` branch provides access to SBC boot parameters.
The ntp-sync branch provides access to ntp server configuration commands for synchronizing the SBC time and date.

The security branch provides access to security configuration.

The system branch provides access to basic configuration elements as system-config, snmp-community, redundancy, physical interfaces, network interfaces, etc.

The session-router branch provides access to signaling and routing related elements, including H323-config, sip-config, iwf-config, local-policy, sip-manipulation, session-agent, etc.

The media-manager branch provides access to media-related elements, including realms, steering pools, dns-config, media-manager, and so forth.

You will use media-manager, session-router, and system branches for most of your working configuration.

Configuration Elements

The configuration branches contain the configuration elements. Each configurable object is referred to as an element. Each element consists of a number of configurable parameters.

Some elements are single-instance elements, meaning that there is only one of that type of the element - for example, the global system configuration and redundancy configuration.

Some elements are multiple-instance elements. There may be one or more of the elements of any given type. For example, physical and network interfaces.

Some elements (both single and multiple instance) have sub-elements. For example:

- SIP-ports - are children of the sip-interface element
- peers – are children of the redundancy element
- destinations – are children of the peer element

Creating an Element

1. To create a single-instance element, you go to the appropriate level in the ACLI path and enter its parameters. There is no need to specify a unique identifier property because a single-instance element is a global element and there is only one instance of this element.

2. When creating a multiple-instance element, you must specify a unique identifier for each instance of the element.

3. It is important to check the parameters of the element you are configuring before committing the changes. You do this by issuing the show command before issuing the done command. The parameters that you did not configure are filled with either default values or left empty.

4. On completion, you must issue the done command. The done command causes the configuration to be echoed to the screen and commits the changes to the volatile memory. It is a good idea to review this output to ensure that your configurations are correct.

5. Issue the exit command to exit the selected element.

Note that the configurations at this point are not permanently saved yet. If the SBC reboots, your configurations will be lost.

Editing an Element

The procedure of editing an element is similar to creating an element, except that you must select the element that you will edit before editing it.

1. Enter the element that you will edit at the correct level of the ACLI path.

2. Select the element that you will edit, and view it before editing it.

 The select command loads the element to the volatile memory for editing. The show command allows you to view the element to ensure that it is the right one that you want to edit.
3. Once you are sure that the element you selected is the right one for editing, edit the parameter one by one. The new value you provide will overwrite the old value.

4. It is important to check the properties of the element you are configuring before committing it to the volatile memory. You do this by issuing the `show` command before issuing the `done` command.

5. On completion, you must issue the `done` command.

6. Issue the `exit` command to exit the selected element.

Note that the configurations at this point are not permanently saved yet. If the SBC reboots, your configurations will be lost.

Deleting an Element

The `no` command deletes an element from the configuration in editing.

To delete a single-instance element,

1. Enter the `no` command from within the path for that specific element
2. Issue the `exit` command.

To delete a multiple-instance element,

1. Enter the `no` command from within the path for that particular element. The key field prompt, such as `<name>:<sub-port-id>`, appears.
2. Use the `<Enter>` key to display a list of the existing configured elements.
3. Enter the number corresponding to the element you wish to delete.
4. Issue the `select` command to view the list of elements to confirm that the element was removed.

Note that the configuration changes at this point are not permanently saved yet. If the SBC reboots, your configurations will be lost.

Configuration Versions

At any time, three versions of the configuration can exist on the SBC: the edited configuration, the saved configuration, and the running configuration.

- **The edited configuration** – this is the version that you are making changes to. This version of the configuration is stored in the SBC’s volatile memory and will be lost on a reboot.

 To view the editing configuration, issue the `show configuration` command.

- **The saved configuration** – on issuing the `save-config` command, the edited configuration is copied into the non-volatile memory on the SBC and becomes the saved configuration. Because the saved configuration has not been activated yet, the changes in the configuration will not take effect. On reboot, the last activated configuration (i.e., the last running configuration) will be loaded, not the saved configuration.

- **The running configuration** is the saved then activated configuration. On issuing the `activate-config` command, the saved configuration is copied from the non-volatile memory to the volatile memory. The saved configuration is activated and becomes the running configuration. Although most of the configurations can take effect once being activated without reboot, some configurations require a reboot for the changes to take effect.

 To view the running configuration, issue command `show running-config`.

Saving the Configuration

The `save-config` command stores the edited configuration persistently.

Because the saved configuration has not been activated yet, changes in configuration will not take effect. On reboot, the last activated configuration (i.e., the last running configuration) will be loaded. At this stage, the saved configuration is different from the running configuration.

Because the saved configuration is stored in non-volatile memory, it can be accessed and activated at later time.
Upon issuing the `save-config` command, the SBC displays a reminder on screen stating that you must use the `activate-config` command if you want the configurations to be updated.

```
oraclesbcl # save-config
Save-Config received, processing.
waiting 1200 for request to finish
Request to 'SAVE-CONFIG' has Finished,
Save complete
Currently active and saved configurations do not match!
To sync & activate, run 'activate-config' or 'reboot activate'.
```

Activating the Configuration

On issuing the `activate-config` command, the saved configuration is copied from the non-volatile memory to the volatile memory. The saved configuration is activated and becomes the running configuration.

Some configuration changes are service affecting when activated. For these configurations, the SBC warns that the change could have an impact on service with the configuration elements that will potentially be service affecting. You may decide whether or not to continue with applying these changes immediately or to apply them at a later time.

```
oraclesbcl# activate-config
Activate-Config received, processing.
waiting 120000 for request to finish
Request to 'ACTIVATE-CONFIG' has Finished,
Activate Complete
oraclesbcl#
```