Oracle Enterprise Session Border Controller-Acme Packet 3820 and Microsoft Lync 2013 for Enterprise SIP Trunking
Table of Contents

DOCUMENT OVERVIEW .. 3

INTRODUCTION ... 4

 AUDIENCE ... 4
 REQUIREMENTS .. 4
 ARCHITECTURE ... 4

PHASE I – CONFIGURE LYNC SERVER 2013 .. 6

 REQUIREMENTS ... 6
 ADDING THE PSTN GATEWAY .. 6
 CONFIGURE TLS ON LYNC .. 18
 CONFIGURING THE LYNC SERVER ROUTE .. 21
 ADDITIONAL STEPS ... 34

PHASE II - CONFIGURE SESSION DIRECTOR ... 35

 IN SCOPE ... 35
 OUT OF SCOPE .. 35
 WHAT YOU WILL NEED ... 35
 CONFIGURATION .. 36

PHASE III – TEST CONNECTIVITY TO SIP TRUNK .. 82

 OVERVIEW ... 82
 UCOIP TEST PLAN & RESULTS ... 82

TROUBLESHOOTING TOOLS ... 91

 MICROSOFT NETWORK MONITOR (NetMon) ... 91
 WIRESHARK ... 91
 EVENT VIEWER .. 91
 NET-NET ESD .. 92
 LYNC SERVER LOGGING TOOL .. 93

2. APPENDIX ... 94

 KNOWN ISSUES ... 94
Microsoft Lync Server 2013 offers the ability to connect to Internet telephony service providers (ITSP) using an IP-based SIP trunk. This reduces the cost and complexity of extending an enterprise’s telephony system outside its network borders. Microsoft recommends an E-SBC to provide interoperability and service assurance when connecting the Lync environment to a SIP trunk service. Acme Packet Net-Net Enterprise Session Director (Net-Net ESD) Session Border Controllers (SBCs) play an important role in SIP trunking as they are used by many ITSPs and enterprises as part of their SIP trunking infrastructure. Acme Packet solutions can also be used for enterprise Session Management applications involving Lync. In Session Management applications, the same methods described in this guide for interfacing with the Lync environment via SIP trunking apply.

This step-by-step deployment guide has been prepared as a means of ensuring that SIP trunking between Lync Server and Acme Packet SBCs is configured in the optimal manner. This guide can be used to support the SIP trunking reference topologies that are documented by Microsoft and Acme Packet in this TechNet article:

The Net-Net ESD is fully qualified by Microsoft under its Unified Communications Open Interoperability Program. It should be noted that while this deployment guide focuses on the optimal configurations for the Acme Packet Net-Net ESD SBC in a Lync Server environment, the same SBC configuration model can also be used for Microsoft OCS 2007 R2 environments. In addition, it should be noted that the Net-Net SD configuration provided in this guide focuses strictly on the Lync Server associated parameters. Many Net-Net ESD users may have additional configuration requirements that are specific to other applications. These configuration items are not covered in this guide. Please contact your Acme Packet representative for any additional information required. Additionally, the screenshots pertaining to Lync Server 2013 configuration and setup are taken to give an overview of how the setup is built and may or may not correspond to the actual configuration described elsewhere in the document.

For additional information on Lync Server, please visit the URL below:
http://www.microsoft.com/lync

For additional information on Acme Packet SBCs and Lync Server, please visit the URL below:
http://www.acmepacket.com/lync

Note: This document is to be used with Acme Packet Session Director and Enterprise Session Director platforms operating the C-series software. This includes the Net-Net 3820, 4500, and Enterprise Session Director Server Edition. For deployments involving other Acme Packet products, please contact your Acme Packet representative.
Introduction

Audience

This is a technical document intended for engineers with the purpose of configuring both the Net-Net ESD SBC and the Lync Server 2013. There will be steps that require navigating Microsoft Windows Server as well as the Acme Packet Command Line Interface (ACLI). Understanding the basic concepts of TCP/UDP, IP/Routing, and SIP/RTP are also necessary to complete the configuration and for troubleshooting, if necessary.

Requirements

- Fully functioning Lync Server deployment, including Active Directory and DNS
- A dedicated Mediation Server for the SIP trunking connection
- Acme Packet Net-Net SD running software SCx6.2.0m6p1 or later

Architecture

The following reference architecture shows a logical view of the connectivity between Lync Server and the Net-Net SD.

Figure 1 – Logical Reference Architecture
Area A represents the customer's on-premise infrastructure, which includes the Active Directory, DNS and Lync Server systems. Area B represents the service provider infrastructure which provides PSTN service via the SIP trunk. Area C represents the integration of these two environments over an IP network. This could be, through a VPN tunnel over the Internet, an MPLS managed network, or even a dedicated physical connection. The Lync Server Mediation Server and the Net-Net SD are the edge components that form the boundary of the SIP trunk. The configuration, validation and troubleshooting of the areas B and C is the focus of this document and will be described in three phases:

- Phase 1 – Configure Lync Server 2013 (define topology, pool, mediation server, add PSTN gateway and routes)
 - Phase 2 – Configure the Session Director (configure interfaces, routing, TLS/encryption)
 - Phase 3 – Test connectivity
Phase I – Configure Lync Server 2013

There are two parts for configuring Lync Server to operate with the Net-Net SD:

- Adding the Net-Net ESD as a PSTN gateway to the Lync Server infrastructure and
- Creating a route within the Lync Server infrastructure to utilize the SIP trunk connected to the Net-Net ESD

Requirements

The enterprise will have a fully functioning Lync Server infrastructure with Enterprise Voice deployed and a Mediation Server dedicated to this installation. If there is no Mediation Server present for this purpose, one will have to be deployed.

Adding the PSTN Gateway

What you will need:

- IP address of Mediation Server external facing NIC
- IP address to be used for the Net-Net SD external facing port
- Rights to administer Lync Server Topology Builder
- Access to the Lync Server Topology Builder

Steps to add the PSTN gateway

1. On the server where the Topology Builder is located start the console.
2. From the Charms Bar Start, select Lync Server Topology Builder
You will now be at the opening screen in the Topology Builder.
4. Click on the **Cancel** button.

5. Click on **Action** and select **Download Topology**.
6. You will then see a screen showing that you have successfully imported the topology. Click the Ok button.

7. Next you will be prompted to save the topology which you have imported.
8. You should revision the name or number of the topology according to the standards used within the enterprise.
 Note: This keeps track of topology changes and, if desired, will allow you to fall back from any changes you make during this installation.
9. Click the Save button.

You will now see the topology builder screen with the enterprise’s topology imported.
SIP domain
- Default SIP domain: acmepacket.net
- Additional supported SIP domains: Not configured

Simple URLs
- **Phone access URLs:**
 - Active
 - Simple URL: https://dalin.acmepacket.net
- **Meeting URLs:**
 - Active
 - Simple URL: https://meet.acmepacket.net
 - SIP domain: acmepacket.net
- **Administrative access URL:**
 - https://admin.acmepacket.net

Central Management Server
- Central Management Server:
 - Active
 - Front End: lync2013std.acmepacket.net
 - Site: Bedford
10. In the upper left hand corner, expand the site in which the PSTN gateway will be added. In our case, the site is **Test**. Then click on the **PSTN Gateways**.

11. Right click on **PSTN Gateways** and select **New PSTN Gateway**.
Define New IP/PSTN Gateway

Define the PSTN Gateway FQDN

Define the fully qualified domain name (FQDN) for the PSTN gateway.

FQDN: *

Define the IP address

- Enable IPv4
 - Use all configured IP addresses.
 - Limit service usage to selected IP addresses.
 - PSTN IP address:

- Enable IPv6
 - Use all configured IP addresses.
 - Limit service usage to selected IP addresses.
 - PSTN IP address:
12. Enter the FQDN or the IP address that will be the outbound interface for the SIP Trunk on the Net-Net SD. In our example the IP address is **192.168.85.55**.

13. Enter the **Listening Port**. In our example the listening port is **5060**.

14. Select the **“Sip Transport Protocol”**. In our example it is **TCP**. Select this radio button and click **Ok**.

The PSTN Gateway for Lync Server, which is the outbound side of the Net-Net SD has now been added.
Next we will add the newly created PSTN gateway entry to the Mediation Server.

15. Expand the **Mediation Pool** list and click on the Mediation Server to be utilized. In our example the Mediation Server is **lync2013.med1.acmepackt.net**.
You will now be back at the Topology Builder screen and you can now see that your PSTN Gateway is associated with the Mediation Server.

16. In the upper right hand corner of your screen under Actions select Topology then select Publish.
17. You will now see the Publish Topology window. Click on the Next button.

You will now be at a window showing the databases associated with site

18. Click Next.

When complete you should see a window from Topology Builder stating that your topology was successfully published.
Publish the topology

In order for Lync Server 2013 to correctly route messages in your deployment, you must publish your topology. Before you publish the topology, ensure that the following tasks have been completed:

- A validation check on the root node did not return any errors.
- A file share has been created for all file stores that you have configured in this topology.
- All simple URLs have been defined.
- For Enterprise Edition Front End pools and Persistent Chat pools and for Monitoring Servers and Archiving Servers: All SQL Server stores are installed and accessible remotely, and firewall exceptions for remote access to SQL Server are configured.
- For a single Standard Edition server, the “Prepare first Standard Edition server” task was completed.
- You are currently logged on as a SQL Server administrator (for example, as a member of the SQL sysadmin role).
- If you are removing a Front End pool, all users, common area phones, analog devices, application clients, and conference director have been removed from the pool.

When you are ready to proceed, click Next.
Click the **OK** button.

19. You will be at the Topology Builder main window, expand your site and double check that your PSTN entries are correct and that the appropriate Mediation Server has the PSTN gateway associated.
Configure TLS on Lync

1. Repeat steps from section “Adding PSTN Gateway” steps 1 thru 10. – Please NOTE: for TLS the PSTN Gateway must have a FQDN. IP Addresses are not supported.
2. Right click on PSTN Gateways and select New PSTN Gateway.

3. Enter the FQDN that will be the outbound interface for the SIP Trunk on the Net-Net ESD. In our example the FQDN is acmesbc.acmepacket.net.

4. Enter the Listening Port. In our example the listening port is 5067. Mediation server as a default listens on port 5066 for TCP signaling

5. Select the “Sip Transport Protocol”. In our example it is TLS. Select this radio button and click Finish.

The PSTN Gateway for Lync Server, which is the outbound side of the Net-Net ESD has now been added.
Next we will add the newly created PSTN gateway entry to the Mediation Server.

6. Expand the **Mediation Pool** list and click on the Mediation Server to be utilized. In our example the Mediation Server Pool is lync2013med.
You will now be back at the Topology Builder screen and you can now see that your PSTN Gateway is associated with the Mediation Server

7. In the upper right hand corner of your screen under **Actions** select **Topology** then select **Publish**.

8. You will now see the **Publish Topology** window. Click on the **Next** button.
Configuring the Lync Server Route

In order for the Lync Server Enterprise Voice clients to utilize the SIP trunking infrastructure that has been put in place, a route will need to be created to allow direction to this egress. Routes specify how Lync Server handles calls placed by enterprise voice users. When a user places a call, the server, if necessary, normalizes the phone number to the E.164 format and then attempts to match that phone number to a SIP Uniform Resource Identifier (URI). If the server is unable to make a match, it applies outgoing call routing logic based on the number. That logic is defined in the form of a separate voice route for each set of target phone numbers listed in the location profile for a locale. For this document we are only describing how to set up a route. Other aspects which apply to Lync Server Enterprise Voice deployments such as dial plans, voice policies, and PSTN usages are not covered.

What you will need:

- Rights to administer Communications Server Control Panel (CSCP)
 - Membership in the CS Administrator Active Directory Group
- Access to the Lync Server CSCP
Steps to add the Lync Server Route
On the server where the CSCP is located start the console.

1. Click **Start**, select **All Programs**, then select **Communications Server Control Panel**

You will be prompted for credentials enter your domain username and password.
2. Once logged on, you will now be at the CSCP “Welcome Screen”.

3. On the left hand side of the window click on **Voice Routing**.
You will now be in the Voice Routing section of the CSCP.

4. On the top row of tabs select **Route**.
5. On the content area toolbar, click **New**.

6. On the Create Voice Route page, in the Name field, enter the name you have selected for the Route. In our example, it is **Test**.
7. Next you build a Pattern Match for the phone numbers you want this route to handle. In our example we use ".*" since we were using a very simple dial plan for this route and wish to match any outgoing call.
8. Next you want to associate the Voice Route with the PSTN gateway you have just created. Scroll down to Associated Trunks, click on the Add button.

You will now be at a window showing available PSTN Gateways to associate your Voice Route.
<table>
<thead>
<tr>
<th>Service</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>PstrGateway:acmesbc.acmepa...</td>
<td>Bedford</td>
</tr>
<tr>
<td>PstrGateway:192.168.85.55</td>
<td>Bedford</td>
</tr>
</tbody>
</table>
9. Click on the PSTN gateway that you just created and then click the **OK** button.

You can now see that you have associated your PSTN gateway with the route you created.

Note that the **Suppress Caller ID**: allows the manipulation of caller ID information for outbound calls, in order to mask employees’ direct-dial extensions and replace them with the generic corporate or departmental numbers, this is not a necessary step for this installation, but may need to be addressed by customer policy.

An appropriate PSTN usage record will need to be assigned as well. In our example, we use one that was already created in the enterprise.

10. Click on the **Select** button under “Associated PSTN Usages”.
11. Select the appropriate PSTN Usage Record then click the **OK** button.
12. You will now see the Associated PSTN Gateway Usages which you have added. Click the **OK** button at the top New Voice Route screen.

![Voice Routing Screen](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>PSTN usage</th>
<th>Pattern to match</th>
</tr>
</thead>
<tbody>
<tr>
<td>global</td>
<td>Committed</td>
<td>global</td>
<td><code>*</code></td>
</tr>
<tr>
<td>new test</td>
<td>Uncommitted</td>
<td>^+14255775035</td>
<td></td>
</tr>
</tbody>
</table>
13. Click the **Commit** drop-down menu, and then **Commit All**.
14. On the Uncommitted Voice Configuration Settings window, click **Commit**.
15. On the **Lync Server Control Panel** prompt, click **OK**.

16. If there are no errors, the new Voice Route has now been successfully created and the State will show as Committed.

Additional Steps

There are other aspects to a Lync Server Enterprise Voice deployment such as:

- Site, local, and global dial plans;
- Voice Policies;
- Assigning Voice Policies to users; and
- PSTN usage policies.

To go through them all is out of scope for this document.
Phase II - Configure Session Director

In this section we describe the steps for configuring a Net-Net SD for use with Lync Server in a SIP trunking scenario.

In Scope

The following Step-by-Step guide configuring the Net-Net ESD assumes that this is a newly deployed device dedicated to a single customer.

Note that Acme Packet offers several products and solutions that can interface with Lync Server. This document covers the setup for the Net-Net SD platforms software S-Cx 6.2.0m6p1 or later. A Net-Net 3800-series (NN3820) platform was used as the platform for developing this guide. If instructions are needed for other Acme Packet products, please contact your Acme Packet representative.

Out of Scope

- Configuration of Network management including SNMP and RADIUS; and
- Redundancy configuration

What you will need

- Serial Console cross over cable with RJ-45 connector
- Terminal emulation application such as PuTTY or HyperTerm
- Passwords for the User and Superuser modes on the Net-Net SD
- Signaling IP address and port of Lync Mediation Server
- Signaling and media IP addresses and ports to be used on the Net-Net SD facing Lync and service provider SIP trunk
- Signaling IP address and port of the next hop network element in the service provider SIP trunk network
- IP address of the enterprise DNS server
Once the Net-Net SD is racked and the power cable connected, you are ready to set up physical network connectivity.

Plug the slot 0 port 0 (s0p0) interface into your SIP trunk provider (SIP trunk facing) network and the slot 0 port 1 (s1p0) interface into your Lync (Lync mediation server-facing) network as shown in the diagram above. Once connected, perform you are ready to power on and perform the following steps.

All commands are in bold, such as `configure terminal`; parameters in bold red such as `ACME1A` are parameters which are specific to an individual deployment. **Note:** The ACLI is case sensitive.
1. **Establish the serial connection to the Net-Net SD.**

 Confirm the Net-Net SD is powered off and connect the serial console cable to the Net-Net SD to a workstation running a terminal emulator application such as PuTTY. Start the terminal emulation application using the following settings:
 - Baud Rate=115200
 - Data Bits=8
 - Parity=None
 - Stop Bits=1
 - Flow Control=None

 Start the Net-Net SD and confirm that you see the following output from the bootup sequence.

 ![Bootup Sequence Image]

2. **Login to the Net-Net SD and enter the configuration mode**

 Enter the following commands to login to the Net-Net SD and move to the configuration mode. Note that the default Net-Net SD password is “acme” and the default super user password is “packet”.

   ```
   Password: acme
   ACME1A> enable
   Password: packet
   ACME1A# configure terminal
   ACME1A (configure)#
   ```

 You are now in the Global Configuration mode.
3. Configure system element values

To configure system element values, use the `system-config` command under the system branch. Then enter values appropriate to your environment, including your default gateway IP address for your management Ethernet interface.

```
ACME1A (configure)# system
ACME1A (system)# system-config
ACME1A (system-config)# hostname ACME1A
ACME1A (system-config)# description "Lync Server 2013 SIP Trunking"
ACME1A (system-config)# location "Redmond, WA"
ACME1A (system-config)# mib-system-contact "brian@cs.loc"
ACME1A (system-config)# default-gateway 10.176.32.1
ACME1A (system-config)# done
```

Once the `system-config` settings have completed and you enter `done`, the Net-Net SD will output a complete listing of all current settings. This will apply throughout the rest of the configuration and is a function of the `done` command. Confirm the output reflects the values you just entered as well as any configuration defaults.

```
system-config
hostname
description Lync Server 2013 SIP Trunking
location Redmond, WA
mib-system-contact
mib-system-name
mib-system-location Redmond, WA
snmp-enabled enabled
enable-snmp-auth-traps disabled
enable-snmp-syslog-notify disabled
```
enable-snmp-monitor-traps disabled
enable-env-monitor-traps disabled
snmp-env-monitor-table-length 1
snmp-syslog-level WARNING
system-log-level WARNING
process-log-level NOTICE
process-log-ip-address 0.0.0.0
process-log-port 0
collect
sample-interval 5
push-interval 15
boot-state disabled
start-time now
end-time never
red-collect-state disabled
red-max-trans 1000
red-sync-start-time 5000
red-sync-comp-time 1000
push-success-trap-state disabled
call-trace disabled
internal-trace disabled
log-filter all
default-gateway 10.176.32.1
restart enabled
exceptions
telnet-timeout 0
console-timeout 0
remote-control enabled
cli-audit-trail enabled
link-redundancy-state disabled
source-routing disabled
cli-more disabled
terminal-height 24
debg-timeout 0
trap-event-lifetime 0
default-v6-gateway ::
ipv6-support disabled

4. Configure Physical Interface values

To configure physical Interface values, use the phy-interface command under the system branch. To enter the system branch from system-config, you issue the exit command then the phy-interface command.

You will first configure the slot 0, port 0 interface designated with the name s0p0 on the rear of the system. This will be the interface/port that connects to your SIP trunk provider.
ACME1A(system-config)# exit
ACME1A(system-interface)# phy-interface
ACME1A(phy-interface)# name M00
ACME1A(phy-interface)# operation-type media
ACME1A(phy-interface)# slot 0
ACME1A(phy-interface)# port 0
ACME1A(phy-interface)# done

Once the **phy-interface** settings have completed for slot 0 port 0 and you enter **done**, the Net-Net ESD will output a complete listing of all current settings. Confirm the output reflects the values you just entered.

```
phy-interface
  name            M00
  operation-type  Media
  port            0
  slot            0
  virtual-mac     
  admin-state     enabled
  auto-negotiation enabled
  duplex-mode    FULL
  speed          100
  overload-protection disabled
```

You will now configure the slot 1 port 0 phy-interface, specifying the appropriate values. This will be the interface/port that connects to the Lync Mediation server (lync facing) network.

```
ACME1A(phy-interface)# name M10
ACME1A(phy-interface)# operation-type media
ACME1A(phy-interface)# slot 1
ACME1A(phy-interface)# port 0
ACME1A(phy-interface)# done

phy-interface
  name            M10
  operation-type  Media
  port            0
  slot            1
  virtual-mac     
  admin-state     enabled
  auto-negotiation enabled
  duplex-mode    FULL
  speed          100
  overload-protection disabled
```
5. Configure Network Interface values

To configure Network Interface values, use the network-interface command under the system branch. To enter the system branch from phy-interface, you issue the `exit` command then enter the `network-interface` command.

You will first configure the IP characteristics for the M10 interface defined above. A hostname for the network-interface is defined which represents the FQDN of the PSTN gateway in Lync topology and this FQDN will be configured as common-name in the Certificate-record when configuring TLS on the E-SBC.

```
ACMELA(phy-interface)# exit
ACMELA(system)# network-interface
ACMELA(network-interface)# name M10
ACMELA(network-interface)# description "Mediation Server-facing interface"
ACMELA(network-interface)# hostname acme1.st02.loc
ACMELA(network-interface)# ip-address 2.2.1.4
ACMELA(network-interface)# netmask 255.255.255.0
ACMELA(network-interface)# gateway 2.2.1.1
ACMELA(network-interface)# dns-ip-primary 2.2.1.5
ACMELA(network-interface)# dns-domain st02.loc
ACMELA(network-interface)#add-hip-ip 2.2.1.4
ACMELA(network-interface)#add-icmp-ip 2.2.1.4
```

```
network-interface
name                          M10
sub-port-id                    0
description                   Mediation Server-facing interface
hostname                       acme1.st02.loc
ip-address                     2.2.1.4
pri-utility-addr              
sec-utility-addr              
netmask                        255.255.255.0
gateway                        2.2.1.1
sec-gateway                   
gw-heartbeat                   
state                          disabled
heartbeat                      0
retry-count                    0
retry-timeout                  1
health-score                   0
dns-ip-primary                 2.2.1.5
dns-ip-backup1                
dns-ip-backup2                
dns-domain                    st02.loc
dns-timeout                   11
hip-ip-list                    2.2.1.4
ftp-address                    
```
You will now configure the slot 0 port 0 subport 0 network-interface, specifying the appropriate values.

```
ACME1A(network-interface)# name M00
ACME1A(network-interface)# description "SIP trunk facing interface"
ACME1A(network-interface)# ip-address 10.10.1.4
ACME1A(network-interface)# netmask 255.255.255.0
ACME1A(network-interface)# gateway 10.10.1.1
ACME1A(network-interface)# add-hip-ip 10.10.1.4
ACME1A(network-interface)# add-icmp-ip 10.10.1.4
ACME1A(network-interface)# done
```

```
network-interface
name                          M00
sub-port-id                   0
description                   SIP Trunk facing interface
hostname                      
ip-address                    10.10.1.4
pri-utility-addr             
sec-utility-addr             
netmask                       255.255.255.0
gateway                       10.10.1.10
sec-gateway                   
gw-heartbeat                  
state                         disabled
heartbeat                     0
retry-count                   0
retry-timeout                 1
health-score                  0
dns-ip-primary                
dns-ip-backup1                
dns-ip-backup2                
dns-domain                    
dns-timeout                   11
hip-ip-list                   10.10.1.4
ftp-address                   
icmp-address                  10.10.1.4
snmp-address                  
telnet-address                
ssh-address                   
```
6. Configure Global SIP configuration

To configure the Global SIP values, use the `sip-config` command under the `session-router` branch. To enter the `session-router` branch from `network-interface`, you issue the `exit` command twice, followed by the `sip-config` command.

```
ACME1A(network-interface)## exit
ACME1A(system)## exit
ACME1A(configure)## session-router
ACME1A(session-router)## sip-config
ACME1A(sip-config)## operation-mode dialog
ACME1A(sip-config)## home-realm-id core
ACME1A(sip-config)## extra-method-stats enabled
ACME1A(sip-config)## done
```

```
sip-config
state enabled
operation-mode dialog
dialog-transparency enabled
home-realm-id core
egress-realm-id
nat-mode None
registrar-domain
registrar-host
registrar-port 0
register-service-route always
init-timer 500
max-timer 4000
trans-expire 32
invite-expire 180
inactive-dynamic-conn 32
enforcement-profile
pac-method
pac-interval 10
pac-strategy PropDist
pac-load-weight 1
pac-session-weight 1
pac-route-weight 1
pac-callid-lifetime 600
pac-user-lifetime 3600
red-sip-port 1988
red-max-trans 10000
red-sync-start-time 5000
red-sync-comp-time 1000
add-reason-header disabled
sip-message-len 4096
enum-sag-match disabled
extra-method-stats enabled
rph-feature disabled
```
7. Configure Global Media configuration

To configure the Media values, use the media-manager command under the media-manager branch. To enter the media-manager branch from sip-config, you issue the exit command twice, followed by the media-manager command twice.

By issuing the select then done commands at this level, you will be creating the media-manager element, enabling the media management functions in the Net-Net ESD with the default values.

```
ACME1A(sip-config)# exit
ACME1A(session-router)# exit
ACME1A(configure)# media-manager
ACME1A(media-manager)# media-manager
ACME1A(media-manager-config)# select
ACME1A(media-manager-config)# done
```

```
media-manager
state enabled
latching enabled
flow-time-limit 86400
initial-guard-timer 300
subsq-guard-timer 300
tcp-flow-time-limit 86400
tcp-initial-guard-timer 300
tcp-subsq-guard-timer 300
tcp-number-of-ports-per-flow 2
hnt-rtcp disabled
algd-log-level NOTICE
mbcd-log-level NOTICE
red-flow-port 1985
red-mgcp-port 1986
red-max-trans 10000
red-sync-start-time 5000
red-sync-comp-time 1000
media-policing enabled
max-signaling-bandwidth 10000000
max-untrusted-signaling 100
```
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>min-untrusted-signaling</td>
<td>30</td>
</tr>
<tr>
<td>app-signaling-bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>tolerance-window</td>
<td>30</td>
</tr>
<tr>
<td>rtcp-rate-limit</td>
<td>0</td>
</tr>
<tr>
<td>trap-on-demote-to-deny</td>
<td>disabled</td>
</tr>
<tr>
<td>min-media-allocation</td>
<td>2000</td>
</tr>
<tr>
<td>min-trusted-allocation</td>
<td>4000</td>
</tr>
<tr>
<td>deny-allocation</td>
<td>64000</td>
</tr>
<tr>
<td>anonymous-sdp</td>
<td>disabled</td>
</tr>
<tr>
<td>arp-msg-bandwidth</td>
<td>32000</td>
</tr>
<tr>
<td>fragment-msg-bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>rfc2833-timestamp</td>
<td>disabled</td>
</tr>
<tr>
<td>default-2833-duration</td>
<td>100</td>
</tr>
<tr>
<td>rfc2833-end-pkts-only-for-non-sig</td>
<td>enabled</td>
</tr>
<tr>
<td>translate-non-rfc2833-event</td>
<td>disabled</td>
</tr>
<tr>
<td>media-supervision-traps</td>
<td>disabled</td>
</tr>
<tr>
<td>dnsalg-server-failover</td>
<td>disabled</td>
</tr>
</tbody>
</table>
8. **Configure Realms configuration**

To configure the realm values, use the realm-config command under the media-manager branch. To enter the media-manager branch from media-manager-config, you issue the `exit` command, followed by the `realm-config` command.

You will create two realms:

- The core, which represents the mediation server-facing network; and
- The pstn, which represents the SIP trunk facing network.

```
ACME1A(media-manager-config)# exit
ACME1A(media-manager)# realm-config
ACME1A(realm-config)# identifier core
ACME1A(realm-config)# description "Mediation Server facing"
ACME1A(realm-config)# network-interfaces s0p0:0
ACME1A(realm-config)# done
```

```
realm-config
identifier                     core
description                    Mediation Server-facing
addr-prefix                    0.0.0.0
network-interfaces             M10:0
mm-in-realm                    disabled
mm-in-network                  enabled
mm-same-ip                     enabled
mm-in-system                   enabled
bw-cac-non-mm                  disabled
msm-release                    disabled
qos-enable                     disabled
generate-UDPchecksum          disabled
max-bandwidth                  0
fallback-bandwidth             0
max-priority-bandwidth         0
max-latency                    0
max-jitter                     0
max-packet-loss                0
observe-window-size            0
parent-realm                   
dns-realm                      
media-policy                   
media-sec-policy               
in-translationid               
out-translationid              
in-manipulationid              
out-manipulationid             
manipulation-string            
manipulation-pattern          
```
class-profile
average-rate-limit 0
access-control-trust-level none
invalid-signal-threshold 0
maximum-signal-threshold 0
untrusted-signal-threshold 0
nat-trust-threshold 0
deny-period 30
ext-policy-svr
symmetric-latching disabled
pai-strip disabled
trunk-context
early-media-allow
enforcement-profile
additional-prefixes
restricted-latching none
restriction-mask 32
accounting-enable enabled
user-cac-mode none
user-cac-bandwidth 0
user-cac-sessions 0
icmp-detect-multiplier 0
icmp-advertisement-interval 0
icmp-target-ip
monthly-minutes 0
net-management-control disabled
delay-media-update disabled
refer-call-transfer disabled
dyn-refer-term disabled
codec-policy
codec-manip-in-realm disabled
constraint-name
call-recording-server-id
xng-state xng-unknown
hairpin-id 0
stun-enable disabled
stun-server-ip 0.0.0.0
stun-server-port 3478
stun-changed-ip 0.0.0.0
stun-changed-port 3479
match-media-profiles
qos-constraint
sip-profile
sip-isup-profile
block-rtcp disabled
hide-egress-media-update disabled
last-modified-by admin@console
last-modified-date 2010-07-15 17:01:33
You will now configure the pstn realm for SIP Trunk side of the SBC, specifying the appropriate values.

```
ACME1A(realm-config)# identifier pstn
ACME1A(realm-config)# description "To Sip Trunk"
ACME1A(realm-config)# network-interfaces M00:0
ACME1A(realm-config)# done
```

realm-config
identifier pstn
description To SIP Trunk
addr-prefix 0.0.0.0
network-interfaces
 M00:0
 mm-in-realm disabled
 mm-in-network enabled
 mm-same-ip enabled
 mm-in-system enabled
 bw-cac-non-mm disabled
 msm-release disabled
 qos-enable disabled
 generate-UDP-checksum disabled
 max-bandwidth 0
 fallback-bandwidth 0
 max-priority-bandwidth 0
 max-latency 0
 max-jitter 0
 max-packet-loss 0
 observ-window-size 0
 parent-realm
 dns-realm
 media-policy
 media-sec-policy
 in-translationid
 out-translationid
 in-manipulationid
 out-manipulationid
 manipulation-string
 manipulation-pattern
 class-profile
 average-rate-limit 0
 access-control-trust-level none
 invalid-signal-threshold 0
 maximum-signal-threshold 0
 untrusted-signal-threshold 0
 nat-trust-threshold 0
 deny-period 30
 ext-policy-svr
 symmetric-latching disabled
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pai-strip</td>
<td>disabled</td>
</tr>
<tr>
<td>trunk-context</td>
<td></td>
</tr>
<tr>
<td>early-media-allow</td>
<td></td>
</tr>
<tr>
<td>enforcement-profile</td>
<td></td>
</tr>
<tr>
<td>additional-prefixes</td>
<td></td>
</tr>
<tr>
<td>restricted-latching</td>
<td>none</td>
</tr>
<tr>
<td>restriction-mask</td>
<td>32</td>
</tr>
<tr>
<td>accounting-enable</td>
<td>enabled</td>
</tr>
<tr>
<td>user-cac-mode</td>
<td>none</td>
</tr>
<tr>
<td>user-cac-bandwidth</td>
<td>0</td>
</tr>
<tr>
<td>user-cac-sessions</td>
<td>0</td>
</tr>
<tr>
<td>icmp-detect-multiplier</td>
<td>0</td>
</tr>
<tr>
<td>icmp-advertisement-interval</td>
<td>0</td>
</tr>
<tr>
<td>icmp-target-ip</td>
<td></td>
</tr>
<tr>
<td>monthly-minutes</td>
<td>0</td>
</tr>
<tr>
<td>net-management-control</td>
<td>disabled</td>
</tr>
<tr>
<td>delay-media-update</td>
<td>disabled</td>
</tr>
<tr>
<td>refer-call-transfer</td>
<td>disabled</td>
</tr>
<tr>
<td>dyn-refer-term</td>
<td>disabled</td>
</tr>
<tr>
<td>codec-policy</td>
<td></td>
</tr>
<tr>
<td>codec-manip-in-realm</td>
<td>disabled</td>
</tr>
<tr>
<td>constraint-name</td>
<td></td>
</tr>
<tr>
<td>call-recording-server-id</td>
<td></td>
</tr>
<tr>
<td>xng-state</td>
<td>xng-unknown</td>
</tr>
<tr>
<td>hairpin-id</td>
<td>0</td>
</tr>
<tr>
<td>stun-enable</td>
<td>disabled</td>
</tr>
<tr>
<td>stun-server-ip</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>stun-server-port</td>
<td>3478</td>
</tr>
<tr>
<td>stun-changed-ip</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>stun-changed-port</td>
<td>3479</td>
</tr>
<tr>
<td>match-media-profiles</td>
<td></td>
</tr>
<tr>
<td>qos-constraint</td>
<td></td>
</tr>
<tr>
<td>sip-profile</td>
<td></td>
</tr>
<tr>
<td>sip-isup-profile</td>
<td></td>
</tr>
<tr>
<td>block-rtcp</td>
<td>disabled</td>
</tr>
<tr>
<td>hide-egress-media-update</td>
<td>disabled</td>
</tr>
<tr>
<td>last-modified-by</td>
<td>admin@console</td>
</tr>
<tr>
<td>last-modified-date</td>
<td>2010-07-15 17:02:11</td>
</tr>
</tbody>
</table>

9. Configure SIP signaling configuration

To configure the SIP signaling values, use the `sip-interface` command under the session-router branch. To enter the session-router branch from realm-config, you issue the `exit` command twice, followed by the `sip-interface` command.

Here you will be configuring the IP addresses and TCP ports on which the Net-Net SD will listen for and transmit SIP messages. These will be the same IP addresses as configured on the associated network-interface elements.
ACME1A(realm-config) # exit
ACME1A(media-manager) # exit
ACME1A(configure) # session-router
ACME1A(session-router) # sip-interface
ACME1A(sip-interface) # realm pstn
ACME1A(sip-interface) # description "SIP Trunk facing"
ACME1A(sip-interface) # sip-ports
ACME1A(sip-port) # address 10.10.1.4
ACME1A(sip-port) # transport-protocol TCP
ACME1A(sip-port) # allow-anonymous agents-only
ACME1A(sip-port) # done

To ensure that the SBC is doing topology hiding and replacing host-portions in SIP URIs of From and To headers, in-built sip manipulation ACME_NAT_TO_FROM_IP will need to be configured as the out-manipulationid on this sip-interface

ACME1A(sip-port) # exit
ACME1A(sip-interface) # out-manipulationid ACME_NAT_TO_FROM_IP
ACME1A(sip-interface) # done

sip-interface
state enabled
realm-id pstn
description SIP Trunk-facing interface
sip-port
address 10.10.1.4
port 5060
transport-protocol TCP
tls-profile
allow-anonymous agents-only
ims-aka-profile
carriers
trans-expire 0
invite-expire 0
max-redirect-contacts 0
proxy-mode
redirect-action
contact-mode none
nat-traversal none
nat-interval 30
tcp-nat-interval 90
registration-caching disabled
min-reg-expire 300
registration-interval 3600
route-to-registrar disabled
secured-network disabled
teluri-scheme disabled
uri-fqdn-domain
trust-mode all
max-nat-interval 3600
nat-int-increment 10
nat-test-increment 30
sip-dynamic-hnt disabled
stop-recurse 401,407
port-map-start 0
port-map-end 0
in-manipulationid ACME_NAT_TO_FROM_IP
out-manipulationid manipulation-string
manipulation-pattern manipulation
sip-ims-feature disabled
operator-identifier
anonymous-priority none
max-incoming-conns 0
per-src-ip-max-incoming-conns 0
inactive-conn-timeout 0
untrusted-conn-timeout 0
network-id
ext-policy-server default-location-string
charging-vector-mode pass
charging-function-address-mode pass
ccf-address
ecf-address
term-tgrp-mode none
implicit-service-route disabled
rfc2833-payload 101
rfc2833-mode transparent
constraint-name response-map
local-response-map
ims-aka-feature disabled
enforcement-profile route-unauthorized-calls
tcp-keepalive none
add-sdp-invite disabled
add-sdp-profiles sip-profile
sip-profile
sip-isup-profile
last-modified-by admin@console
You will now configure the Lync mediation server-facing SIP interface.

```
ACME1A(sip-interface)# realm-id peer
ACME1A(sip-interface)# description "Mediation Server Facing interface"
ACME1A(sip-interface)# sip-ports
ACME1A(sip-port)# address 2.2.1.4
ACME1A(sip-port)# transport-protocol TCP
ACME1A(sip-port)# allow-anonymous agents-only
ACME1A(sip-port)# done

sip-port
address                        2.2.1.4
port                           5060
transport-protocol             TCP
tls-profile
allow-anonymous                agents-only
ims-aka-profile

ACME1A(sip-port)# exit
ACME1A(sip-interface)# out-manipulationid ACME_NAT_TO_FROM_IP
ACME1A(sip-interface)# done

sip-interface
state                          enabled
realm-id                       peer
description                    Mediation Server-facing interface
sip-port
address                        2.2.1.4
port                           5060
transport-protocol             TCP
tls-profile
allow-anonymous                agents-only
ims-aka-profile
carriers
trans-expire                   0
invite-expire                  0
max-redirect-contacts          0
proxy-mode
redirect-action                none
contact-mode                   none
nat-traversal                  none
nat-interval                   30
tcp-nat-interval               90
registration-caching           disabled
min-reg-expire                 300
registration-interval         3600
route-to-registrar             disabled
```
secured-network disabled
teluri-scheme disabled
uri-fqdn-domain
trust-mode all
max-nat-interval 3600
nat-int-increment 10
nat-test-increment 30
sip-dynamic-hnt disabled
stop-recurse 401,407
port-map-start 0
port-map-end 0
in-manipulationid
out-manipulationid ACME_NAT_TO_FROM_IP
manipulation-string
manipulation-pattern
sip-ims-feature disabled
operator-identifier
anonymous-priority none
max-incoming-conns 0
per-src-ip-max-incoming-conns 0
inactive-conn-timeout 0
untrusted-conn-timeout 0
network-id
ext-policy-server
default-location-string
charging-vector-mode pass
charging-function-address-mode pass
ccf-address
ecf-address
term-tgrp-mode none
implicit-service-route disabled
rfc2833-payload 101
rfc2833-mode transparent
constraint-name
response-map
local-response-map
ims-aka-feature disabled
enforcement-profile
route-unauthorized-calls
tcp-keepalive none
add-sdp-invite disabled
add-sdp-profiles
sip-profile
sip-isup-profile
10. Configure next-hop signaling elements

To configure the next-hop signaling elements (i.e., the mediation server and service provider next-hop network element) you define session-agents. Use the `session-agent` command under the session-router branch. To enter the session-router branch from sip-interface, you issue the `exit` command, followed by the `session-agent` command.

Here you will be configuring the IP addresses and TCP ports to which the Net-Net SD will send and from which it will expect to receive SIP messages for your next-hop signaling elements.

Lync Server 2013 Gateway specification outlines the need for the SBC to have capability to do DNS load balancing among a pool of mediation servers. This is currently supported on SW version SCX6.2 by the Acme Packet SBC via DNS A or DNS SRV records, however not necessarily in a round-robin manner. In this document and testing, the SBC load balances between two mediation servers that are defined in a group (session-group) with round-robin algorithm configured. It is assumed that when using this kind of a configuration at any point another mediation server is added to the pool of servers, it will need to be explicitly configured on the SBC and added to the session-group which will be the responsibility of the enterprise network administrator.

We will first configure the service provider next-hop gateway/network element.

```
ACME1A(sip-interface)# exit
ACME1A(session-router)# session-agent
ACME1A(session-agent)# hostname 10.10.1.8
ACME1A(session-agent)# ip-address 10.10.1.8
ACME1A(session-agent)# port 5060
ACME1A(session-agent)# app-protocol sip
ACME1A(session-agent)# transport-method statictcp
ACME1A(session-agent)# realm-id pstn
ACME1A(session-agent)# done
```

```
session-agent
hostname                      10.10.1.8
ip-address                    10.10.1.8
port                           5060
state                          enabled
app-protocol                  SIP
app-type                       
transport-method               StaticTCP
realm-id                       pstn
egress-realm-id               
description                   
carriers                       
allow-next-hop-lp              enabled
constraints                    disabled
max-sessions                   0
```
max-inbound-sessions 0
max-outbound-sessions 0
max-burst-rate 0
max-inbound-burst-rate 0
max-outbound-burst-rate 0
max-sustain-rate 0
max-inbound-sustain-rate 0
max-outbound-sustain-rate 0
min-seizures 5
min-asr 0
time-to-resume 0
ttr-no-response 0
in-service-period 0
burst-rate-window 0
sustain-rate-window 0
req-uri-carrier-mode None
proxy-mode
redirect-action
loose-routing enabled
send-media-session enabled
response-map
ping-method
ping-interval
ping-send-mode keep-alive
ping-all-addresses disabled
ping-in-service-response-codes
out-service-response-codes
media-profiles
in-translationid
out-translationid
trust-me disabled
request-uri-headers
stop-recurse
local-response-map
ping-to-user-part
ping-from-user-part
li-trust-me disabled
in-manipulationid
out-manipulationid
manipulation-string
manipulation-pattern
p-asserted-id
trunk-group
max-register-sustain-rate 0
early-media-allow
invalidate-registrations disabled
rfc2833-mode none
rfc2833-payload 0
codec-policy
You will now define the mediation server. For the sake of simplicity, two mediation servers are defined and assigned to a group called 'Mediation'. The SBC then load balances among these mediation servers.

```
acmela(session-group)# group-name Mediation
acmela(session-group)# strategy RoundRobin
acmela(session-group)# dest OP1-0704.st02.loc
acmela(session-group)# dest + OP1-0706.st02.loc
acmela(session-group)# sag-recursion enabled
acmela(session-group) # done
```

Defining Mediation Server 1

```
acmela(session-agent)# hostname OP1-0704.st02.loc
acmela(session-agent)# ip-address 2.2.1.8
acmela(session-agent)# port 5066
acmela(session-agent)# app-protocol sip
acmela(session-agent)# transport-method staticTCP
acmela(session-agent)# realm core
acmela(session-agent)# ping-method OPTIONS
acmela(session-agent)# ping-interval 60
acmela(session-agent)# refer-call-transfer enabled
acmela(session-agent)# done
```

session-agent

```
hostname                OP1-0704.st02.loc
ip-address              2.2.1.8
port                    5066
state                   enabled
app-protocol            SIP
app-type                 Transport-method
transport-method        StaticTCP
realm-id                 core
egress-realm-id          Description
```
allow-next-hop-lp enabled
constraints disabled
max-sessions 0
max-inbound-sessions 0
max-outbound-sessions 0
max-burst-rate 0
max-inbound-burst-rate 0
max-outbound-burst-rate 0
max-sustain-rate 0
max-inbound-sustain-rate 0
max-outbound-sustain-rate 0
min-seizures 5
min-asr 0
time-to-resume 0
ttr-no-response 0
in-service-period 0
burst-rate-window 0
sustain-rate-window 0
req-uri-carrier-mode None
proxy-mode
redirect-action
loose-routing enabled
send-media-session enabled
response-map
ping-method OPTIONS;next-hop=0
ping-interval 60
ping-send-mode keep-alive
ping-all-addresses enabled
ping-in-service-response-codes
out-service-response-codes
media-profiles
in-translationid
out-translationid
trust-me disabled
request-uri-headers
stop-recurse
local-response-map
ping-to-user-part
ping-from-user-part
li-trust-me disabled
in-manipulationid
out-manipulationid
manipulation-string
manipulation-pattern
p-asserted-id
trunk-group
max-register-sustain-rate 0
early-media-allow
invalidate-registrations disabled
Defining Mediation Server 2

```bash
acmela(session-agent)# hostname OP1-0706.st02.loc
acmela(session-agent)# ip-address 2.2.1.9
acmela(session-agent)# port 5066
acmela(session-agent)# app-protocol sip
acmela(session-agent)# transport-method staticTCP
acmela(session-agent)# realm core
acmela(session-agent)# ping-method OPTIONS
acmela(session-agent)# ping-interval 60
acmela(session-agent)# refer-call-transfer enabled
acmela(session-agent)# done
```

session-agent

- hostname: OP1-0706.st02.loc
- ip-address: 2.2.1.9
- port: 5066
- state: enabled
- app-protocol: SIP
- app-type:
- transport-method: StaticTCP
- realm-id: core
- egress-realm-id
- description
- carriers
- allow-next-hop-lp: enabled
- constraints: disabled
- max-sessions: 0
- max-inbound-sessions: 0
- max-outbound-sessions: 0
- max-burst-rate: 0
- max-inbound-burst-rate: 0
- max-outbound-burst-rate: 0
- max-sustain-rate: 0
- max-inbound-sustain-rate: 0
- max-outbound-sustain-rate: 0
- min-seizures: 5
- min-asr: 0
<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>time-to-resume</td>
<td>0</td>
</tr>
<tr>
<td>ttr-no-response</td>
<td>0</td>
</tr>
<tr>
<td>in-service-period</td>
<td>0</td>
</tr>
<tr>
<td>burst-rate-window</td>
<td>0</td>
</tr>
<tr>
<td>sustain-rate-window</td>
<td>0</td>
</tr>
<tr>
<td>req-uri-carrier-mode</td>
<td>None</td>
</tr>
<tr>
<td>proxy-mode</td>
<td></td>
</tr>
<tr>
<td>redirect-action</td>
<td></td>
</tr>
<tr>
<td>loose-routing</td>
<td>enabled</td>
</tr>
<tr>
<td>send-media-session</td>
<td>enabled</td>
</tr>
<tr>
<td>response-map</td>
<td></td>
</tr>
<tr>
<td>ping-method</td>
<td>OPTIONS;next-hop=0</td>
</tr>
<tr>
<td>ping-interval</td>
<td>60</td>
</tr>
<tr>
<td>ping-send-mode</td>
<td>keep-alive</td>
</tr>
<tr>
<td>ping-all-addresses</td>
<td>enabled</td>
</tr>
<tr>
<td>ping-in-service-response-codes</td>
<td></td>
</tr>
<tr>
<td>out-service-response-codes</td>
<td></td>
</tr>
<tr>
<td>media-profiles</td>
<td></td>
</tr>
<tr>
<td>in-translationid</td>
<td></td>
</tr>
<tr>
<td>out-translationid</td>
<td></td>
</tr>
<tr>
<td>trust-me</td>
<td>disabled</td>
</tr>
<tr>
<td>request-uri-headers</td>
<td></td>
</tr>
<tr>
<td>stop-recurse</td>
<td></td>
</tr>
<tr>
<td>local-response-map</td>
<td></td>
</tr>
<tr>
<td>ping-to-user-part</td>
<td></td>
</tr>
<tr>
<td>ping-from-user-part</td>
<td></td>
</tr>
<tr>
<td>li-trust-me</td>
<td>disabled</td>
</tr>
<tr>
<td>in-manipulationid</td>
<td></td>
</tr>
<tr>
<td>out-manipulationid</td>
<td></td>
</tr>
<tr>
<td>manipulation-string</td>
<td></td>
</tr>
<tr>
<td>manipulation-pattern</td>
<td></td>
</tr>
<tr>
<td>p-asserted-id</td>
<td></td>
</tr>
<tr>
<td>trunk-group</td>
<td></td>
</tr>
<tr>
<td>max-register-sustain-rate</td>
<td>0</td>
</tr>
<tr>
<td>early-media-allow</td>
<td></td>
</tr>
<tr>
<td>invalidateregistrations</td>
<td>disabled</td>
</tr>
<tr>
<td>rfc2833-mode</td>
<td>none</td>
</tr>
<tr>
<td>rfc2833-payload</td>
<td>0</td>
</tr>
<tr>
<td>codec-policy</td>
<td></td>
</tr>
<tr>
<td>enforcement-profile</td>
<td></td>
</tr>
<tr>
<td>refer-call-transfer</td>
<td>enabled</td>
</tr>
<tr>
<td>reuse-connections</td>
<td>NONE</td>
</tr>
<tr>
<td>tcp-keepalive</td>
<td>none</td>
</tr>
<tr>
<td>tcp-reconn-interval</td>
<td>0</td>
</tr>
<tr>
<td>max-register-burst-rate</td>
<td>0</td>
</tr>
<tr>
<td>register-burst-window</td>
<td>0</td>
</tr>
</tbody>
</table>
11. Configure SIP routing

To configure the SIP routing, use the local-policy command under the session-router branch. To enter the session-router branch from session-agent, you issue the exit command, followed by the local-policy command.

We will first configure the route from the gateway to the mediation server.

```
ACME1A(session-agent)# exit
ACME1A(session-router)# local-policy
ACME1A(local-policy)# from-address *
ACME1A(local-policy)# to-address *
ACME1A(local-policy)# source-realm pstn
ACME1A(local-policy)# policy-attributes
ACME1A(local-policy-attributes)# next-hop SAG:Mediation
ACME1A(local-policy-attributes)# action replace-uri
ACME1A(local-policy-attributes)# app-protocol sip
ACME1A(local-policy-attributes)# done
```

```
policy-attribute
next-hop                SAG:Mediation
  realm
  action                   replace-uri
  terminate-recursion     disabled
  carrier
  start-time               0000
  end-time                 2400
  days-of-week             U-S
  cost                     0
  app-protocol             SIP
  state                    enabled
  methods
  media-profiles
  lookup                   single
  next-key
  eloc-str-1kup            disabled
  eloc-str-match

ACME1A(local-policy-attributes)# exit
ACME1A(local-policy-attributes)# done
```

```
local-policy
from-address
  *
  to-address
  *
source-realm
  pstn
description
```
activate-time: N/A
deactivate-time: N/A
state: enabled
policy-priority: none
next-hop: SAG:Mediation

realm
action replace-uri
terminate-recursion disabled
carrier
start-time 0000
end-time 2400
days-of-week: U-S
cost: 0
app-protocol: SIP
state: enabled
methods
media-profiles
lookup single
next-key
eloc-str-1kup: disabled
eloc-str-match

We will now configure the route from the mediation server to the gateway.

```
ACME1A(local-policy)# from-address *
ACME1A(local-policy)# to-address *
ACME1A(local-policy)# source-realm core
ACME1A(local-policy)# policy-attributes
ACME1A(local-policy-attributes)# next-hop 10.10.1.8
ACME1A(local-policy-attributes)# realm pstn
ACME1A(local-policy-attributes)# app-protocol sip
ACME1A(local-policy-attributes)# done
```

```
policy-attribute
next-hop: 10.10.1.8
realm: pstn
**action** replace-uri
**terminate-recursion** disabled
carrier
**start-time** 0000
**end-time** 2400
days-of-week: U-S
cost: 0
app-protocol: SIP
state: enabled
methods
media-profiles
**lookup** single
**next-key**
```
eloc-str-1kup disabled
eloc-str-match

ACME1A(local-policy-attributes)# exit
ACME1A(local-policy)# done

local-policy
 from-address *
 to-address *

 source-realm core
description
describe activate-time N/A
deactivate-time N/A
state enabled
policy-priority none
 policy-attribute
 next-hop 10.10.1.8
realm pstn
action replace-uri
terminate-recursion disabled
carrier
start-time 0000
end-time 2400
days-of-week U-S
cost 0
app-protocol SIP
state enabled
methods
media-profiles
lookup single
next-key
eloc-str-1kup disabled
eloc-str-match

11 a. Call Transfer Scenarios

Lync Server 2013 authorizes transfers of all Lync initiated calls whether it is Lync to Lync or Lync to PSTN. Acme Packet Net-Net SBC provides REFER handling by terminating the REFER from Lync and generating an INVITE for the referred party towards Lync Mediation server. Lync then process the INVITE, authorizes the call transfer and sends either a new INVITE (for call transferred to PSTN) to the SBC or transfers call internally to transferred Lync client
To handle call transfer and refer scenarios – when Lync client 1 refers/transfers the call to Lync Client 2 or to a party on the PSTN, we will need two routes to route to the two mediation servers depending on the referred party

```
ACME1A(local-policy)# from-address *
ACME1A(local-policy)# to-address OP1-0704.st02.loc
ACME1A(local-policy)# source-realm pstn
ACME1A(local-policy)# description "for referred party OP1-0704.st02.loc"
ACME1A(local-policy)# policy-attributes
ACME1A(local-policy-attributes)# next-hop OP1-0704.st02.loc
ACME1A(local-policy-attributes)# realm core
ACME1A(local-policy-attributes)# action replace-uri
ACME1A(local-policy-attributes)# done
ACME1A(local-policy-attributes)# exit
ACME1A(local-policy)# done

ACME1A(local-policy)# from-address *
ACME1A(local-policy)# to-address OP1-0706.st02.loc
ACME1A(local-policy)# source-realm pstn
ACME1A(local-policy)# description "for referred party OP1-0706.st02.loc"
ACME1A(local-policy)# policy-attributes
ACME1A(local-policy-attributes)# next-hop OP1-0706.st02.loc
ACME1A(local-policy-attributes)# realm core
ACME1A(local-policy-attributes)# action replace-uri
ACME1A(local-policy-attributes)# done
ACME1A(local-policy-attributes)# exit
ACME1A(local-policy)# done

local-policy
from-address *
to-address OP1-0704.st02.loc
source-realm pstn
description "for referred party OP1-0704.st02.loc"
activate-time N/A
deactivate-time N/A
state enabled
policy-priority none
last-modified-by admin@10.176.33.30
last-modified-date 2011-06-22 14:46:32
policy-attribute
next-hop OP1-0704.st02.loc
realm core
action replace-uri
terminate-recursion disabled
carrier
start-time 0000
end-time 2400
```
12. Configure media handling

To configure the media handling, use the `steering-pool` command under the media-manager branch. To enter the steering-pool branch from local-policy, you issue the `exit` command twice, followed by the `media-manager` then the `steering-pool` command.
You will use the same IP address for the steering pool as the one used for the SIP interface. Note that the port ranges provide a means of limiting the number of concurrent media sessions within a given realm. For example, assigning 100 ports to a realm would limit it to 50 concurrent bidirectional calls, where two ports are assigned (one per unidirectional media stream).

```
ACME1A(local-policy)# exit
ACME1A(session-router)# exit
ACME1A(configure)# media-manager
ACME1A(media-manager)# steering-pool
ACME1A(steering-pool)# ip-address 10.10.1.8
ACME1A(steering-pool)# start-port 40000
ACME1A(steering-pool)# end-port 60000
ACME1A(steering-pool)# realm-id pstn
ACME1A(steering-pool)# done
```

steering-pool
ip-address 10.10.1.8
start-port 40000
end-port 60000
realm-id pstn

You will now configure the media handling for the core (Lync mediation server) realm.

```
ACME1A(steering-pool)# ip-address 2.2.1.4
ACME1A(steering-pool)# start-port 40000
ACME1A(steering-pool)# end-port 60000
ACME1A(steering-pool)# realm-id core
ACME1A(steering-pool)# done
```

steering-pool
ip-address 2.2.1.4
start-port 40000
end-port 60000
realm-id core

13. Configuring SIP PRACK interworking

In order to establish an early media session for outbound calls, Lync Server 2013 gateway specification mandates the PSTN gateways to offer a reliable provisional response and for inbound calls offer INVITEs with supported header The SBC can interwork and provide RFC
3262 PRACK interworking towards Lync and it is mandatory configuration in all Acme Packet – Microsoft Lync deployments. For this the following need to be configured:

- Configure option 100rel-interworking on the sip-interface facing mediation server
- Configure a sip-feature to pass the 100rel in supported and require headers
- Configure a sip-manipulation to add a Require:100rel header in incoming SIP INVITE from mediation server and delete the Supported:100rel header

```
ACME1A(session-router)# sip-interface
ACME1A(sip-interface)# select
<realm-id>:
1: core 2.2.1.4:5067
2: pstn 10.10.1.4:5060
selection: 1
ACME1A(sip-interface)#options 100rel-interworking
```

Configure Sip-feature to pass Supported and Require headers in SIP messages

```
ACME1A(session-router)#sip-feature
ACME1A(sip-feature)#name 100rel-interworking
ACME1A(sip-feature)#realm pstn
ACME1A(sip-feature)# support-mode-inbound Pass
ACME1A(sip-feature)# require-mode-inbound Pass
ACME1A(sip-feature)# proxy-require-mode-inbound Pass
ACME1A(sip-feature)# support-mode-outbound Pass
ACME1A(sip-feature)# require-mode-outbound Pass
ACME1A(sip-feature)# proxy-require-mode-outbound Pass
ACME1A(sip-feature)#done
```

```
sip-feature
  name 100rel
  realm pstn
  support-mode-inbound Pass
  require-mode-inbound Pass
  proxy-require-mode-inbound Pass
  support-mode-outbound Pass
  require-mode-outbound Pass
  proxy-require-mode-outbound Pass
```

```
ACME1A(sip-manipulation)# name Forearlymedia
ACME1A(sip-manipulation)# header-rules
ACME1A(sip-header-rules)# name delsupported
ACME1A(sip-header-rules)# header-name Supported
ACME1A(sip-header-rules)# action delete
ACME1A(sip-header-rules)# comparison-type case-sensitive
ACME1A(sip-header-rules)# msg-type request
ACME1A(sip-header-rules)# methods INVITE
ACME1A(sip-header-rules)# done
ACME1A(sip-header-rules)# name addrequireinINVITE
ACME1A(sip-header-rules)# header-name Require
ACME1A(sip-header-rules)# action add
ACME1A(sip-header-rules)# comparison-type case-sensitive
```
ACME1A(sip-header-rules)# msg-type request
ACME1A(sip-header-rules)# methods INVITE
ACME1A(sip-header-rules)# done
ACME1A(sip-header-rules)# exit
ACME1A(sip-manipulation)# done

sip-manipulation
name Forearlymedia
description split-headers
join-headers
header-rule
name delsupported
header-name Supported
action delete
comparison-type case-sensitive
msg-type request
methods INVITE
match-value
new-value
header-rule
name addrequireinINVITE
header-name Require
action add
comparison-type case-sensitive
msg-type request
methods INVITE

Reference the sip-manipulation name/id as an in-manipulationid on the 2.2.1.4 sip-interface

ACME1A(session-router)# sip-interface
ACME1A(sip-interface)# select
<realm-id>:
1: core 2.2.1.4:5067
2: pstn 10.10.1.4:5060
selection: 1
ACME1A(sip-interface)# in-manipulationid Forearlymedia
ACME1A(sip-interface)# done

14. TLS & SRTP configuration on Net-Net SD

In some applications, it may be required for the E-SBC to establish a TLS connection and use media encryption (support SRTP) with Lync server. The Net-Net ESD can interwork and terminate SIP over TLS and SRTP between Lync and the Sip trunk provider. This portion of the guide provides instructions on how to achieve this. Note that the Net-Net ESD must have the appropriate hardware (IPSec NIUs) and at a minimum a software TLS license to support this capability. If you have any questions regarding these, please contact your Acme Packet representative.

14.1 TLS Configuration on the Net-Net SD
To configure TLS on the Net-Net Session Director, the following steps will need to be followed:

- Create certificate-record, generate certificate request and import signed certificate
- Create a TLS profile
- Apply tls-profile on the sip-interface
- Change transport-protocol on Session-agent (from TCP to TLS)

14 1.1 Create certificate-record

To configure certificate-record use the certificate-record menu under the security branch. Since Lync server requires mutual TLS authentication, both parties (SBC and mediation server) will need to provide their own certificate to the peer during the TLS handshake for the purpose of authenticating themselves to each other.

Create certificate record holder for Microsoft Certificate authority (Enterprise CA)

```bash
Acme1a(configure terminal)#security
Acme1a(security)#certificate-record
Acme1a(certificate-record)#name ST02-OP1-0703-CA
Acme1a(certificate-record)#country US
Acme1a(certificate-record)#state WA
Acme1a(certificate-record)locality Redmond
Acme1a(certificate-record)key-size 2048
Acme1a(certificate-record)done
```

<table>
<thead>
<tr>
<th>certificate-record</th>
<th>ST02-OP1-0703-CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>ST02-OP1-0703-CA</td>
</tr>
<tr>
<td>country</td>
<td>US</td>
</tr>
<tr>
<td>state</td>
<td>WA</td>
</tr>
<tr>
<td>locality</td>
<td>Redmond</td>
</tr>
<tr>
<td>organization</td>
<td>loc</td>
</tr>
<tr>
<td>unit</td>
<td>ST02</td>
</tr>
<tr>
<td>common-name</td>
<td></td>
</tr>
<tr>
<td>key-size</td>
<td>2048</td>
</tr>
<tr>
<td>alternate-name</td>
<td></td>
</tr>
<tr>
<td>trusted</td>
<td>enabled</td>
</tr>
<tr>
<td>key-usage-list</td>
<td></td>
</tr>
<tr>
<td>extended-key-usage-list</td>
<td></td>
</tr>
<tr>
<td></td>
<td>digitalSignature</td>
</tr>
<tr>
<td></td>
<td>keyEncipherment</td>
</tr>
<tr>
<td></td>
<td>serverAuth</td>
</tr>
</tbody>
</table>

You will now configure an additional certificate record holder for the Net-Net Session Director (end-entity certificate). The common-name needs to be an FQDN per Lync server 2013 gateway specification and is exchanged in the CN part of the Subject field of X.509 TLS certificate that is presented by the Net-Net SBC. This FQDN is also provisioned in Lync that resolves to the Lync mediation server facing Sip-interface IP address of the SBC.
Once the certificate records are created, you will generate a certificate request and have the CA sign the SBC certificate request.

As an example a screenshot below is provided to generate a certificate request and import the signed certificate from the CA.

```plaintext
comptnr-ddos# generate-certificate-request acme-rccd
Generating Certificate Signing Request. This can take several minutes....
-----BEGIN CERTIFICATE REQUEST-----
MIIBjCCAT8CAQAwVDELMAkGA1UEBhMCVVMxTGAjBgNVBAgTAK1BMRMwEQYDVQQH
EwpCdXJsaW5ndG9uMRQwEgYDVQQKEwtFbmdpbmVlcm1uZzENMAsgG1UEAxMEYWNt
ZTCBnzANBgkqhkiG9w0BAQEFBAAOBJQAwYkCgYEAvJF6D8gnSv9Ug4aCkyIqQeW
kgkyk+kNYXESQXoOHTdqe9R6IB5f1UdsM/8k1TTpyBwMn+GooeOc8iJ4wks+7VG
Qe3s2EawyDFoTClwQcppUsEFjOQWtynybF3zLVBBP4Mcowi7qKJK/Pf4aCgfEhue
27Bwo/HHd212ZMlhyhECAwEAAQBBQA1UDJENETwzZJ2ZJBedXRoIDAqBggV
HQ8x1xMhZGlmaXRhbFNpZ25hdHVyZSBzLi0xM1Bhcm1lbhN0gQAOGCSqGSIb3
DQEBAQUAA4GBAK0wXNVG3sBrNcLcndMrzEA5xONY7q2f2PXhm7dfgrgS2e2XNo2
rgh1i27aBtairaCidRAEGYVL1EFVOCT1Mo9++B7dyfa3K5eG6m78GILqoonZ1ulqba
Y7Z0kFmAgiyR6S2jpmjFz1hNjpH4qWyT49fDW47NfKrNKd8o1A6US
-----END CERTIFICATE REQUEST-----
```

WARNING: Configuration changed, run "save-config" command.
Once the certificate request is generated, be sure to run the save-config and activate-config command. The certificate request can be FTP’d to the CA (the highlighted portion is saved in a text file)

FTP the signed certificate file “xyz.crt” to /ramdrv/; or copy to clipboard so that you can paste from ACLI (example shown below)

```
comptnr-ddos# import-certificate try-all acme-rcred

IMPORTANT:
Please enter the certificate in the PEM format.
Terminate the certificate with ";" to exit.

-----BEGIN CERTIFICATE-----
MIICQCIBADAwSBIBADAdBgNVJRUEFzRwcz格局fQGHu4DgUyUuGzAYIKoEcHh0dHA6Ly93d3cuY2FyY2UsZG93bmxvYWluLmNvbS9tdXVwbFxAYIKuoDict2XGzBZXIyMDEwMDM4MjIwMjIwMDIwMjAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDaw 1

Certificate imported successfully....

WARNING: Configuration changed run "save-config" command.

When you see the “Certificate imported successfully” message, ensure the save-config and activate-config commands are run. As a tip, look out for terminal client (like PuTty, Tera Term, etc.) related signed certificate text copy/paste error issues, which may or may not be successful and you may run into certificate import errors. You can delete certificate-record configuration objects and issue a save-config/activate-config to start again (in case of issues) and remove the private key in the SBC associated with the previous certificate.

14.1.2 Create a tls-profile

To create a TLS profile use the tls-profile menu under the security branch.

```bash
Acmela(configure terminal)# security
Acmela(security)#tls-profile
Acmela(tls-profile)#name core
Acmela(tls-profile)#end-entity-certificate acmelaServerCert
Acmela(tls-profile)# trusted-ca-certificates ST02-OP1-0703-CA
Acmela(tls-profile)#done
```
tls-profile
name core
end-entity-certificate acmelaServerCert
trusted-ca-certificates ST02-OP1-0703-CA
cipher-list ALL
verify-depth 10
mutual-authenticate enabled
tls-version compatibility
cert-status-check disabled
cert-status-profile-list

14.1.3 Apply TLS profile on the sip-interface

Exit out of the tls-profile sub-menu and security branch and enter session-router, sip-interface sub-menu.

```
Acme1a(tls-profile)#exit
Acme1a(security)#exit
Acme1a(configure)#session-router
Acme1a(session-router)#sip-interface
Acme1a(sip-interface)#select <realm-id>:
 1: core 2.2.1.4:5067
 2: pstn 10.10.1.4:5060
selection: 1
Acme1a(sip-interface)#sip-ports
Acme1a(sip-port)#address 2.2.1.4
Acme1a(sip-port)#port 5067
Acme1a(sip-port)#tls-profile core
Acme1a(sip-port)#transport-protocol TLS
Acme1a(sip-port)#allow-anonymous agents-only
Acme1a(sip-port)#done
```

```
sip-port
address 2.2.1.4
port 5067
transport-protocol TLS
tls-profile core
allow-anonymous agents-only
ims-aka-profile
Acme1a(sip-port)#exit
Acme1a(sip-interface)#done
```

```
sip-interface
state enabled
realm-id core
description
sip-port
address 2.2.1.4
port 5067
transport-protocol TLS
```
<table>
<thead>
<tr>
<th>Configuration</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tls-profile</td>
<td>core</td>
</tr>
<tr>
<td>allow-anonymous</td>
<td>agents-only</td>
</tr>
<tr>
<td>ims-aka-profile</td>
<td></td>
</tr>
<tr>
<td>carriers</td>
<td></td>
</tr>
<tr>
<td>trans-expire</td>
<td>0</td>
</tr>
<tr>
<td>invite-expire</td>
<td>0</td>
</tr>
<tr>
<td>max-redirect-contacts</td>
<td>0</td>
</tr>
<tr>
<td>proxy-mode</td>
<td></td>
</tr>
<tr>
<td>redirect-action</td>
<td></td>
</tr>
<tr>
<td>contact-mode</td>
<td>none</td>
</tr>
<tr>
<td>nat-traversal</td>
<td>none</td>
</tr>
<tr>
<td>nat-interval</td>
<td>30</td>
</tr>
<tr>
<td>tcp-nat-interval</td>
<td>90</td>
</tr>
<tr>
<td>registration-caching</td>
<td>disabled</td>
</tr>
<tr>
<td>min-reg-expire</td>
<td>300</td>
</tr>
<tr>
<td>registration-interval</td>
<td>3600</td>
</tr>
<tr>
<td>route-to-registrar</td>
<td>disabled</td>
</tr>
<tr>
<td>secured-network</td>
<td>disabled</td>
</tr>
<tr>
<td>teluri-scheme</td>
<td>disabled</td>
</tr>
<tr>
<td>uri-fqdn-domain</td>
<td></td>
</tr>
<tr>
<td>options</td>
<td>100rel-interworking</td>
</tr>
<tr>
<td>trust-mode</td>
<td>all</td>
</tr>
<tr>
<td>max-nat-interval</td>
<td>3600</td>
</tr>
<tr>
<td>nat-intcrement</td>
<td>10</td>
</tr>
<tr>
<td>nat-test-increment</td>
<td>30</td>
</tr>
<tr>
<td>sip-dynamic-hnt</td>
<td>disabled</td>
</tr>
<tr>
<td>stop-recurse</td>
<td>401,407</td>
</tr>
<tr>
<td>port-map-start</td>
<td>0</td>
</tr>
<tr>
<td>port-map-end</td>
<td>0</td>
</tr>
<tr>
<td>in-manipulationid</td>
<td>Forearlymedia</td>
</tr>
<tr>
<td>out-manipulationid</td>
<td></td>
</tr>
<tr>
<td>manipulation-string</td>
<td></td>
</tr>
<tr>
<td>manipulation-pattern</td>
<td></td>
</tr>
<tr>
<td>sip-ims-feature</td>
<td>disabled</td>
</tr>
<tr>
<td>operator-identifier</td>
<td></td>
</tr>
<tr>
<td>anonymous-priority</td>
<td>none</td>
</tr>
<tr>
<td>max-incoming-conns</td>
<td>0</td>
</tr>
<tr>
<td>per-src-ip-max-incoming-conns</td>
<td>0</td>
</tr>
<tr>
<td>inactive-conn-timeout</td>
<td>0</td>
</tr>
<tr>
<td>untrusted-conn-timeout</td>
<td>0</td>
</tr>
<tr>
<td>network-id</td>
<td></td>
</tr>
<tr>
<td>ext-policy-server</td>
<td></td>
</tr>
<tr>
<td>default-location-string</td>
<td></td>
</tr>
<tr>
<td>charging-vector-mode</td>
<td>pass</td>
</tr>
<tr>
<td>charging-function-address-mode</td>
<td>pass</td>
</tr>
<tr>
<td>ccf-address</td>
<td></td>
</tr>
<tr>
<td>ecf-address</td>
<td></td>
</tr>
<tr>
<td>term-tgrp-mode</td>
<td>none</td>
</tr>
<tr>
<td>implicit-service-route</td>
<td>disabled</td>
</tr>
<tr>
<td>rfc2833-payload</td>
<td>101</td>
</tr>
<tr>
<td>rfc2833-mode</td>
<td>transparent</td>
</tr>
<tr>
<td>constraint-name</td>
<td></td>
</tr>
<tr>
<td>response-map</td>
<td></td>
</tr>
<tr>
<td>local-response-map</td>
<td></td>
</tr>
<tr>
<td>ims-aka-feature</td>
<td>disabled</td>
</tr>
<tr>
<td>enforcement-profile</td>
<td></td>
</tr>
<tr>
<td>route-unauthorized-calls</td>
<td></td>
</tr>
</tbody>
</table>
14.2. SRTP Configuration on Net-Net SD

Configuration elements – A brief explanation of the elements needed for SRTP configuration is provided below:

- Configure sdes (or mikey) profile to define the algorithm and cryptos to be used
- Configure a media-sec-policy to instruct the SBC on how to handle media related parameters in SDP received/sent in a realm (RTP, SRTP). Media-sec-policy will be referenced in the realm
- Configure security-policy element which creates a security association in the SBC to do the SRTP encryption and decryption

14.2.1 Algorithm and Crypto configuration on the SBC

Firstly you would configure an element which defines the algorithm and cryptos to be used which is the sdes or mikey profile. Exit out of the sip-interface/session-router branch and go to security -- >media-security -- >sdes-profile

```
Acme(sdes-profile)#name sdes1
Acme(sdes-profile)#crypto-list "AES_CM_128_HMAC_SHA1_80
AES_CM_128_HMAC_SHA1_32"
Acme(sdes-profile)#egress-offer-format same-as-ingress
Acme(sdes-profile)#done
```

```
sdes-profile
 name sdes1
 crypto-list AES_CM_128_HMAC_SHA1_80
 AES_CM_128_HMAC_SHA1_32
 srtp-auth
 srtp-encrypt
 srtpcp-encrypt enabled
 mki disabled
 egress-offer-format same-as-ingress
 use-ingress-session-params
 key
 salt
```
14.2.2 Media Security Policy for SRTP and RTP

Configure a media-sec-policy for SRTP and RTP and reference it in the appropriate realms (srtp policy for mediation server facing realm and rtp for SIP Trunk facing realm). Exit out of the sdes-profile sub-menu and go to media-sec-policy under security branch.

```
Acme1a(security)#media-sec-policy
Acme1a(media-sec-policy)name sdespolicy
Acme1a(media-sec-policy)inbound
Acme1a(media-sec-inbound)#profile sdes1
Acme1a(media-sec-inbound)#mode srtp
Acme1a(media-sec-inbound)#protocol sdes
Acme1a(media-sec-inbound)#done

inbound
profile sdes1
mode srtp
protocol sdes
Acme1a(media-sec-inbound)#exit

Acme1a(media-sec-policy)#outbound
Acme1a(media-sec-inbound)#profile sdes1
Acme1a(media-sec-inbound)#mode srtp
Acme1a(media-sec-inbound)#protocol sdes
Acme1a(media-sec-policy)#name rtponly
Acme1a(media-sec-policy)#inbound
Acme1a(media-sec-inbound)#mode rtp
Acme1a(media-sec-policy)#done
```

media-sec-policy

<table>
<thead>
<tr>
<th>name</th>
<th>sdespolicy</th>
</tr>
</thead>
<tbody>
<tr>
<td>pass-through</td>
<td>disabled</td>
</tr>
<tr>
<td>inbound</td>
<td></td>
</tr>
<tr>
<td>profile</td>
<td>sdes1</td>
</tr>
<tr>
<td>mode</td>
<td>srtp</td>
</tr>
<tr>
<td>protocol</td>
<td>sdes</td>
</tr>
<tr>
<td>outbound</td>
<td></td>
</tr>
<tr>
<td>profile</td>
<td>sdes1</td>
</tr>
<tr>
<td>mode</td>
<td>srtp</td>
</tr>
<tr>
<td>protocol</td>
<td>sdes</td>
</tr>
<tr>
<td>last-modified-by</td>
<td>admin@10.80.20.43</td>
</tr>
<tr>
<td>last-modified-date</td>
<td>2011-04-28 16:55:45</td>
</tr>
</tbody>
</table>
Once media-sec-policy is configured, it will need to be referenced in the realms. Select core realm from the realm-config sub-menu and reference media-sec-policy sdespolicy. Select pstn realm and reference the rtponly policy.
14.2.3. Configure Security Policy

Configure security-policy to create security association in the SBC for encryption/decryption of SRTP. Since the same network-interface will be associated with doing SRTP, you will need to define an explicit tls signal and dns security policy with action set to allow to permit the interface to allow tls sip signaling and dns queries. Exit out of the realm-config/media-manager branch and go to security/ipsec/security-policy

```
Acme1a(security-policy)#name core-tls-signal
Acme1a(security-policy)#network-interface M10:0
Acme1a(security-policy)#priority 1
Acme1a(security-policy)#local-ip-addr-match 2.2.1.4
Acme1a(security-policy)#local-port-match 5067
Acme1a(security-policy)#action allow
Acme1a(security-policy)#done
```

```
security-policy
name core-tls-signal
network-interface M10:0
priority 1
local-ip-addr-match 2.2.1.4
remote-ip-addr-match 0.0.0.0
local-port-match 5067
remote-port-match 0
trans-protocol-match ALL
direction both
local-ip-mask 255.255.255.255
remote-ip-mask 0.0.0.0
action allow
ike-sainfo-name
outbound-sa-fine-grained-mask
local-ip-mask 255.255.255.255
remote-ip-mask 255.255.255.255
local-port-mask 0
remote-port-mask 0
trans-protocol-mask 0
valid enabled
vlan-mask 0xFFF
last-modified-by admin@10.176.33.21
last-modified-date 2011-03-29 15:43:58
```

```
Acme1a(security-policy)#name core-srtp
Acme1a(security-policy)#network-interface M10:0
Acme1a(security-policy)#priority 100
Acme1a(security-policy)#local-ip-addr-match 2.2.1.4
Acme1a(security-policy)#action srtp
Acme1a(security-policy)#outbound-sa-fine-grained-mask
Acme1a(outbound-sa-fine-grained-mask)#select
Acme1a(outbound-sa-fine-grained-mask)#local-ip-mask 0.0.0.0
Acme1a(outbound-sa-fine-grained-mask)#remote-port-mask 65535
Acme1a(outbound-sa-fine-grained-mask)#trans-protocol-mask 255
Acme1a(outbound-sa-fine-grained-mask)#done
```
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>local-ip-mask</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>remote-ip-mask</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>local-port-mask</td>
<td>0</td>
</tr>
<tr>
<td>remote-port-mask</td>
<td>65535</td>
</tr>
<tr>
<td>trans-protocol-mask</td>
<td>255</td>
</tr>
<tr>
<td>valid</td>
<td>enabled</td>
</tr>
<tr>
<td>vlan-mask</td>
<td>0xFFFF</td>
</tr>
</tbody>
</table>

```
Acmela (outbound-sa-fine-grained-mask)#
Acmela (outbound-sa-fine-grained-mask)#exit
Acmela (security)#done
```

```
security-policy
 name core-srtp
 network-interface M10:0
 priority 100
 local-ip-addr-match 2.2.1.4
 remote-ip-addr-match 0.0.0.0
 local-port-match 0
 remote-port-match 0
 trans-protocol-match UDP
 direction both
 local-ip-mask 255.255.255.255
 remote-ip-mask 0.0.0.0
 action srtp
 ike-sainfo-name
 outbound-sa-fine-grained-mask
 local-ip-mask 0.0.0.0
 remote-ip-mask 255.255.255.255
 local-port-mask 0
 remote-port-mask 65535
 trans-protocol-mask 255
 valid enabled
 vlan-mask 0xFFFF
 last-modified-by admin@10.80.20.43
 last-modified-date 2011-04-28 13:15:28
```

```
Acmela(security-policy)#name core-dns
Acmela(security-policy)#network-interface M10:0
Acmela(security-policy)#priority 2
Acmela(security-policy)# local-ip-addr-match 2.2.1.4
Acmela(security-policy)# remote-ip-addr-match 2.2.1.5
Acmela(security-policy)#action allow
Acmela(security-policy)#done
```
security-policy
name core-dns
network-interface M10:0
priority 2
local-ip-addr-match 2.2.1.4
remote-ip-addr-match 2.2.1.5
local-port-match 0
remote-port-match 0
trans-protocol-match ALL
direction both
local-ip-mask 255.255.255.255
remote-ip-mask 255.255.255.255
action allow
ike-sainfo-name
outbound-sa-fine-grained-mask
  local-ip-mask 255.255.255.255
  remote-ip-mask 255.255.255.255
  local-port-mask 0
  remote-port-mask 0
  trans-protocol-mask 0
  valid enabled
  vlan-mask 0xFFF
last-modified-by admin@10.80.20.43
last-modified-date 2011-04-27 18:52:23

### 14.2.4 Change transport-method and port on Lync mediation server Session-agent

Mediation server listens for TLS signaling on port 5067 (as default) so that along with transport-method will need to be reflected in the E-SBC session-agent. Exit out from security branch and go to session-router, session-agent branch of the CLI

```
ACME1A(session-router)# session-agent
ACME1A(session-router)# select
<hostname>:

1: OP1-0704.st02.loc realm=core ip=2.2.1.8
2: OP1-0706.st02.loc realm=core ip=2.2.1.9
3: 10.10.1.8 realm=pstn ip=

Selection: 1
ACME1A(session-agent)#transport-method staticTLS
ACME1A(session-agent)#port 5067
ACME1A(session-agent)#done
```

Similarly, make the change for Mediation server 2 (with hostname OP1-0706.st02.loc)
15. Media Bypass handling

In order for Media Bypass to work, both Client and gateway (SBC) need to use the same RTP format, either SRTP (by default) or RTP. In default configuration of MS Lync, Lync client is required to use media encryption, so Media Bypass is mainly when media is encrypted (SRTP) and exchanged between Lync client and PSTN gateway (Net-Net SD).

Media Bypass from SD’s perspective is to be able route RTP traffic to an endpoint/lync client on a private routable network directly (instead of RTP going to mediation server). To enable the SBC to handle media bypass feature in Lync, one will need to set restricted-latching to sdp in the core realm (facing mediation server). Select the core realm from the media-manager --- > realm-config configuration branch

```
acmela(realm-config)#restricted-latching sdp
acmela(realm-config)#done
```

```
realm-config
identifier core
description Mediation Server-facing
addr-prefix 0.0.0.0
network-interfaces M10:0
mm-in-realm disabled
mm-in-network enabled
mm-same-ip enabled
mm-in-system enabled
bw-cac-non-mm disabled
msm-release disabled
qos-enable disabled
generate-UDP-checksum disabled
max-bandwidth 0
fallback-bandwidth 0
max-priority-bandwidth 0
max-latency 0
max-jitter 0
max-packet-loss 0
observ-window-size 0
parent-realm
dns-realm
media-policy
media-sec-policy
in-translationid
out-translationid
in-manipulationid
out-manipulationid
manipulation-string
manipulation-pattern
class-profile
```
average-rate-limit    0
access-control-trust-level none
invalid-signal-threshold 0
maximum-signal-threshold 0
untrusted-signal-threshold 0
nat-trust-threshold 0
deny-period 30
ext-policy-svr
symmetric-latching disabled
pai-strip disabled
trunk-context early-media-allow
enforcement-profile
additional-prefixes
restricted-latching sdp
restriction-mask 32
accounting-enable enabled
user-cac-mode none
user-cac-bandwidth 0
user-cac-sessions 0
icmp-detect-multiplier 0
icmp-advertisement-interval 0
icmp-target-ip
monthly-minutes 0
net-management-control disabled
delay-media-update disabled
refer-call-transfer disabled
dyn-refer-term disabled
codec-policy
codec-manip-in-realm disabled
constraint-name
call-recording-server-id
xng-state xng-unknown
hairpin-id 0
stun-enable disabled
stun-server-ip 0.0.0.0
stun-server-port 3478
stun-changed-ip 0.0.0.0
stun-changed-port 3479
match-media-profiles
qos-constraint
sip-profile
sip-isup-profile
block-rtcp disabled
hide-egress-media-update disabled

Exit out and do a save-config and an activate-config to make the configuration complete and persistent. This will make it persistent through reboots.
ACME1A# save-config
  checking configuration
  Save-Config received, processing.
  waiting for request to finish
  Request to 'SAVE-CONFIG' has Finished,
  Save complete
  Currently active and saved configurations do not match!
  To sync & activate, run 'activate-config' or 'reboot activate'.
ACME1A# activate-config
  Activate-Config received, processing.
  waiting for request to finish
  Setting phy0 on Slot=0, Port=0, MAC=00:08:25:03:FC:43,
  VMAC=00:08:25:03:FC:43
  Setting phy1 on Slot=1, Port=0, MAC=00:08:25:03:FC:45,
  VMAC=00:08:25:03:FC:45
  Request to 'ACTIVATE-CONFIG' has Finished,
  Activate Complete

16. Verify configuration integrity

You will verify your configuration referential integrity before saving and activating it with the verify-config command. This command is available from Superuser Mode. To enter the Superuser Mode from steering-pool, you issue the exit command three times.

ACME1A(steering-pool)# exit
ACME1A(media-manager)# exit
ACME1A(configure)# exit
ACME1A# verify-config
-----------------------------------------------------------------------
Verification successful! No errors nor warnings in the configuration

Configuration is now complete.

A basic configuration on the Net-Net ESD to route calls to and from the Lync Server 2013 environment is now complete. You can now test connectivity and verify calls working following the tests outlined in the next section.
Phase III – Test connectivity to SIP Trunk

Overview

Once the Lync Server 2013 and the Net-Net Session Director have been configured, the final phase is to test connectivity and the SIP trunk interface. Acme Packet Net-Net Session Director 3820 and NN4500 have been qualified with Lync Server 2013 as part of the Unified Communications open Interoperability Program (UCOIP) test plan. Some of the test cases to verify connectivity and inbound/outbound calling are enlisted below. This section provides an overview of the topology/setup and a list of tests to verify is the deployment was successful. It is highly recommended that you use this test plan as a baseline in addition to any other tests that you may plan to run.

UCOIP Test Plan & Results

The following diagram shows the test topology.
<table>
<thead>
<tr>
<th>Test Case#</th>
<th>Description of Test Case</th>
<th>Result</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>408347</td>
<td>Lync End Point receives a call from PSTN End Point with G.711 A-law and/or G.711 U-law codecs</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408351</td>
<td>PSTN End Point places a call from Lync End Point on hold for 15 minutes and then resumes</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408348</td>
<td>PSTN End Point1 calls Lync End Point that forwards the call to PSTN End Point2</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408352</td>
<td>PSTN End Point calls Lync End Point1 that performs Blind Transfer to Lync End Point2 with REFER</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408349</td>
<td>PSTN End Point1 calls Lync End Point that escalates the call to a conference by inviting PSTN End Point2</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408350</td>
<td>Device fails over incoming call to Mediation Server2 when Mediation Server1 sends 503 Service Unavailable response</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408282</td>
<td>Device utilizes 'pool' certificates for a secure call</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408127</td>
<td>Device adds at least one &quot;crypto&quot; attribute for each media description line in the SDP</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408117</td>
<td>Device handles 488 Not Acceptable Here response from the Mediation Server operating in RTP only mode</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408124</td>
<td>Device sends Crypto attributes in SDP for call from PSTN End Point to Lync End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408118</td>
<td>Device sends its own FQDN in contact header for TLS call from Lync End Point to PSTN End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408070</td>
<td>PSTN End Point calls Lync End Point and hangs up while Lync End Point is still ringing</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408125</td>
<td>PSTN End Point calls Lync End Point with security enabled and Lync End Point later hangs up</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408080</td>
<td>Inbound call to Lync End Point from PSTN End Point with a very long Request-URI in the INVITE</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408065</td>
<td>Device correctly handles non-E.164 number in outbound Request</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>URI</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408085</td>
<td>Device establishes call to Lync End Point with configured value of ptime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408063</td>
<td>Device generates 603 Decline response for a call rejected by PSTN End Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408078</td>
<td>Device handles call from Mediation Server with an alias name in the FROM header</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408073</td>
<td>Device processes call from Lync End Point with E.164 number in FROM Header URI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408071</td>
<td>Device processes phone-context in Request and To URI from Lync End Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408066</td>
<td>Lync End Point calls PSTN End Point and hangs up before receiving 200 OK from Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408062</td>
<td>Lync End Point calls PSTN End Point with a call duration longer than 32 seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408077</td>
<td>Lync End Point calls an IVR number and navigates through the IVR menu after call connection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408074</td>
<td>Lync End Point response to PSTN End Point is delayed due to network delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408072</td>
<td>Lync End Point sends INVITE with E.164 number and extension in Request and To URI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408081</td>
<td>Mediation Server renegotiates an existing voice session with a different IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408069</td>
<td>PSTN End Point disconnects established call from Lync End Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408068</td>
<td>PSTN End Point disconnects established call to Lync End Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408067</td>
<td>PSTN End Point displays Lync End Point Caller ID for Outbound Call</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408183</td>
<td>Device negotiates Comfort Noise in a call from Lync End Point to PSTN End Point. (IPv6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Case</td>
<td>Description</td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>408101</td>
<td>Lync End Point is able to establish a call with PSTN End Point using G.711 A-law codec</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408092</td>
<td>Lync End Point makes a call to PSTN End Point with G.711 A-law and/or G.711 U-law codecs</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408090</td>
<td>PSTN End Point is able to establish a call with Lync End Point using G.711 A-law codec</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408112</td>
<td>Device sends PRACK for reliable Early Media for a call from PSTN End Point to Lync End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408113</td>
<td>Device sends PRACK for reliable Early Media for call from PSTN End Point to Lync End Point with SRTP Optional</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408064</td>
<td>Lync End Point calls IVR number and navigates through the IVR menu before call Connection</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408106</td>
<td>Lync End Point hears Early Media for a call to PSTN End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408104</td>
<td>Device does not change the SSRC of an established inbound RTP session</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408100</td>
<td>Device does not change the SSRC of an established outbound RTP session</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408126</td>
<td>Device does not change the SSRC of an established inbound SRTP session</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408123</td>
<td>Device does not change the SSRC of an established outbound SRTP session</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408093</td>
<td>Device handles multiple RTP streams for a call to Lync End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408097</td>
<td>Device sends RTCP packets when Lync End Point places call on hold</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408128</td>
<td>Device sends RTCP packets while playing music on hold</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408103</td>
<td>Device sends RTCP sender and receiver reports</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408105</td>
<td>Device sends RTCP sender and receiver reports for a secure call</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408109</td>
<td>Device disconnects a forked call if PSTN End Point hangs up while phones are ringing</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408079</td>
<td>PSTN End Point1 calls Lync End Point that is set to simultaneous ring to Lync End Point and PSTN End Point2 answers</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408110</td>
<td>Device disconnects a forked secure call if PSTN End Point hangs up while phones are ringing</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408094</td>
<td>Device handles multiple SRTP streams for a secure call to Lync End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408095</td>
<td>Device handles multiple SRTP streams for a secure call to Lync End Point when Media Bypass is OFF</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408107</td>
<td>Lync End Point hears Early Media for a secure call to PSTN End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408108</td>
<td>Lync End Point hears Early Media for a secure call to PSTN End Point when Media Bypass OFF</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408129</td>
<td>Lync End Point makes a secure call to PSTN End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408122</td>
<td>Lync End Point makes a secure call to PSTN End Point and PSTN End Point later hangs up</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408130</td>
<td>Lync End Point makes a secure call to PSTN End Point with call duration more than 32 seconds and SRTP set to Optional</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408120</td>
<td>Lync End Point receives a secure call with G.711 U-law codec with Media Bypass OFF</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408091</td>
<td>PSTN End Point is able to establish a secure call with Lync End Point using G.711 A-law codec</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408199</td>
<td>Device receives History-Info headers in the SIP Invite without</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Test Case</td>
<td>Description</td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>408200</td>
<td>3rd Party Presence headers do not cause Device failure</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408225</td>
<td>PSTN End Point places a call with Media Bypass OFF from Lync End Point on hold for 15 minutes and then resumes</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408235</td>
<td>PSTN End Point places a secure call from Lync End Point on hold and then resumes</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408224</td>
<td>PSTN End Point places a secure call to Lync End Point on hold and resumes after 15 minutes</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408236</td>
<td>PSTN End Point places a secure call to Lync End Point on hold and then resumes</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408226</td>
<td>PSTN End Point puts Lync End Point on hold and resumes after 15 minutes for a secure call</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408234</td>
<td>Lync End Point places a call from PSTN End Point on hold for 15 minutes and then resumes</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408229</td>
<td>Lync End Point places a call to PSTN End Point on hold and resumes after 12 minutes</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408232</td>
<td>Lync End Point places a secure call from PSTN End Point on hold and resumes after 15 minutes</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408230</td>
<td>Lync End Point places a secure call to PSTN End Point on hold and resumes after 12 minutes</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408227</td>
<td>Lync End Point resumes call to PSTN End Point after playing music on hold for 15 minutes</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408228</td>
<td>Lync End Point plays music on hold when it holds a secure call from PSTN End Point to Lync End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408231</td>
<td>Lync End Point plays music when it holds call from PSTN End Point to Lync End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408207</td>
<td>PSTN End Point1 calls Lync End Point that forwards all calls to PSTN End Point2 when Media Bypass OFF</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408206</td>
<td>PSTN End Point1 makes a secure call to Lync End Point that forwards the call to PSTN End Point2 with Media Bypass OFF</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Test ID</td>
<td>Description</td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>408205</td>
<td>PSTN End Point1 makes a secure call to Lync End Point that has call forwarded to PSTN End Point2</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408258</td>
<td>Device generates INVITE with Replaces and Referred-By headers when it receives a REFER request</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408254</td>
<td>Device includes REFER in ALLOW header in INVITE sent to Mediation Server</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408259</td>
<td>Device maintains the original session when rejecting a call transfer with REFER</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408257</td>
<td>Device supports Hairpin Elimination for Blind Transfer with REFER</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408260</td>
<td>Device supports Hairpin Elimination for secure Blind Transfer with REFER</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408255</td>
<td>PSTN End Point1 calls Lync End Point and Lync End Point Blinds Transfers the call to PSTN End Point2</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408256</td>
<td>PSTN End Point1 makes a secure call to Lync End Point and Lync End Point Blinds Transfers the call to PSTN End Point2</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408263</td>
<td>Device does not drop the call when Consultative Transfer by Lync End Point to second PSTN End Point fails</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408264</td>
<td>Device supports Hairpin Elimination for Consultative Transfer with REFER</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408265</td>
<td>Device supports Hairpin Elimination for secure Consultative Transfer with REFER</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408261</td>
<td>PSTN End Point1 calls Lync End Point and Lync End Point Consultative Transfers to PSTN End Point2</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408262</td>
<td>PSTN End Point1 makes a secure call to Lync End Point and Lync End Point Consultative Transfers to PSTN End Point2</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408213</td>
<td>Lync End Point1 calls Lync End Point2 and escalates the call to a conference, inviting PSTN End Point and later removing it</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408214</td>
<td>PSTN End Point establishes a call with the Conference Auto Attendant</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408215</td>
<td>Conference call involving two Lync End Points and PSTN End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Description</td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------------------------------------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>408309</td>
<td>Device distributes new calls among DNS configured Mediation Servers</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408311</td>
<td>Device honors TTL when distributing new calls among DNS configured Mediation Servers</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408286</td>
<td>Device responds to OPTIONS as keep alive to Mediation Server over TCP</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408288</td>
<td>Device responds to OPTIONS as keep alive to Mediation Server over TLS</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408289</td>
<td>Device resumes sending calls to Mediation Server when it starts receiving OPTIONS response from that Mediation Server</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408292</td>
<td>Device routes calls from newly added Mediation Server after DNS cache is updated</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408287</td>
<td>Device sends periodic OPTIONS message as keep alive to Mediation Server</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408285</td>
<td>Device uses load balancing to distribute inbound calls among Mediation Servers in a cluster</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408290</td>
<td>Lync End Point establishes a call with PSTN End Point when interface between Device and Mediation Server1 goes down</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408291</td>
<td>PSTN End Point establishes a call with Lync End Point when interface of Mediation Server1 goes down</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408294</td>
<td>Device does not offer new calls to a failed Mediation Server</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408293</td>
<td>Device fails over incoming call to a second Mediation Server when the first Mediation Server times out</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408306</td>
<td>Device utilizes failover and does not offer new calls to a failed Mediation Server</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408058</td>
<td>PSTN End Point calls Lync End Point with Caller ID set to 'Anonymous' on Device</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Test ID</td>
<td>Description</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>408321</td>
<td>Device disconnects call when Mediation Server sends 408 Request Timeout for call from PSTN End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408327</td>
<td>Device disconnects call when Mediation Server sends 501 Not Implemented for call from PSTN End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408328</td>
<td>Device disconnects call when Mediation Server sends 606 Not Acceptable for call from PSTN End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408319</td>
<td>Device generates 482 Loop Detected response to a call from Lync End Point when a loop is detected</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408325</td>
<td>Device generates 486 Busy Here response from a busy PSTN End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408324</td>
<td>Device handles call from Lync End Point to a user that does not exist in the domain</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408318</td>
<td>Device processes 482 Loop Detected response from Lync End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408326</td>
<td>Device processes 486 Busy Here response from a busy Lync End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408317</td>
<td>Device processes 488 Not Acceptable Here response for unsupported codec from Mediation Server</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408322</td>
<td>Device processes 603 Decline from Lync End Point for a secure call</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408323</td>
<td>Device processes 603 Decline response from Lync End Point</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408320</td>
<td>Device rejects call from Lync End Point to PSTN End Point when the associated PRI line is down</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408329</td>
<td>Device responds with 488 Not Acceptable Here when Mediation Server offers a codec unsupported on the device</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408315</td>
<td>Device sends 414 Request-URI Too Long when unable to handle very long Request URI</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>408316</td>
<td>Device times out after 180 seconds of no response from Lync End Point following 100 Trying</td>
<td>Pass</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting Tools

If you find that there are issues with call setup, signaling, etc. or have problems with the test cases, there are a few tools available for Windows Server, Lync Server, and the Net-Net ESD like logging and tracing which may be of assistance. In this section we will provide a list of tools which you can use to aid in troubleshooting some minor issues you may encounter.

Microsoft Network Monitor (NetMon)

NetMon is a network protocol analyzer which is freely downloadable from Microsoft. It can be found at www.microsoft.com/downloads. NetMon could be installed on the Lync Server mediation server, the Lync Server Standard Edition server, or Enterprise Edition front end server.

Wireshark

Wireshark is also a network protocol analyzer which is freely downloadable from www.wireshark.org. Wireshark could be installed on the Lync Server mediation server, the Lync Server Standard Edition server, or MCS Enterprise Edition front end server.

Event Viewer

There are several locations in the event viewer where you can find valuable information to aid in troubleshooting issues with your deployment.

With the requirement that there is a completely functioning Lync Server with Enterprise Voice deployment in place, there are a few areas in which one would use the Event Viewer for troubleshooting:

- The Enterprise Voice client
- The Lync Front End server
- Lync Mediation server
The Net-Net ESD provides a rich set of statistical counters available from the ACLI, as well as log file output with configurable detail. The follow sections detail enabling, adjusting and accessing those interfaces.

**Resetting the statistical counters, enabling logging and restarting the log files.**

At the Net-Net ESD Console:

```
ACME1A# reset sipd
ACME1A# notify sipd siplog
ACME1A# notify sipd debug
enabled SIP Debugging
ACME1A# notify all rotate-logs
```

**Examining the log files.**

**Note:** You will FTP to the management interface of the Net-Net SBC with the username user and user mode password (the default is “acme”).

```
C:\Documents and Settings>ftp 192.168.5.24
Connected to 192.168.5.55.
220 ACME1A FTP server (VxWorks 6.4) ready.
User (192.168.55:(none)): user
331 Password required for user.
Password: acme
230 User user logged in.
ftp> cd /ramdrv/logs
250 CWD command successful.
ftp> get sipmsg.log
200 PORT command successful.
150 Opening ASCII mode data connection for '/ramdrv/logs/sipmsg.log' (3353 bytes).
226 Transfer complete.
ftp: 3447 bytes received in 0.00Seconds 3447000.00Kbytes/sec.
ftp> get log.sipd
200 PORT command successful.
150 Opening ASCII mode data connection for '/ramdrv/logs/log.sipd' (204681 bytes).
226 Transfer complete.
ftp: 206823 bytes received in 0.11Seconds 1897.46Kbytes/sec.
ftp> bye
221 Goodbye.
```
You may now examine the log files with the text editor of your choice.

**Lync Server Logging Tool**

The Lync Server 2013 Logging Tool provides internal traces and messaging between different Lync Server 2013 elements like Front-end, Mediation server, Lync Clients, etc. File name is OCSReskit.msi. Once installed, it can be accessed from any one of the Lync Server servers by running Start/Microsoft Lync Server 2013/Lync Server Logging Tool.
Appendix

Known Issues

No Ring Back Tone heard for inbound calls from PSTN to MS Lync through E-SBC

Recently, in some accounts where MS Lync and Acme Packet SBCs are deployed for enterprise voice and SIP trunk termination to an enterprise, there have been complaints of the PSTN caller hearing a silence when a call is placed from PSTN to a Lync user on the enterprise especially when Media Bypass is enabled on MS Lync.

The configuration note below aims to explain this scenario briefly, steps taken to rectify this issue and proposed workaround by Acme Packet. The workaround is an interim solution while a permanent solution is being researched and developed by Acme Packet Engineering.

Media Bypass

As explained earlier in the document, in order for Media Bypass to work, both Client and gateway (SBC) need to use the same RTP format, either SRTP (by default) or RTP. In default configuration of MS Lync, Lync client is required to use media encryption, so Media Bypass is mainly when media is encrypted (SRTP) and exchanged between Lync client and PSTN gateway (E-SBC).

Signaling between mediation server and SBC is a little different (Two 183s with SDP coming from mediation server) when media bypass is enabled on Lync.

The following is the call flow:
Note that after signaling 183 with SDP, Lync never plays any early media and expects gateway (E-SBD) to signal appropriately to the SIP Trunk provider to follow RFC 3960 and play local RBT. The second 183w SDP coming from Mediation server which is forwarded to the SIP trunk and stops the local RBT which was started after 180 Ringing was sent, hence PSTN caller would hear a silence before Lync client answers call.

**Acme Packet Work Around**

The interim solution is to present 180 ringing (convert all 183s on lync side to 180 ringing towards SIP trunk and strip the SDP) to trigger RBT in ISUP. The call flow is modified with the help of Acme Packet’s robust Sip Manipulation and Sip Response Map features to the following:
Configuration Changes required

In-manipulation Forearlymedia to be applied on Lync facing sip-interface

```plaintext
sip-manipulation
 name Forearlymedia
description
split-headers
```
<table>
<thead>
<tr>
<th>Header Rule</th>
<th>Action</th>
<th>Comparison Type</th>
<th>Message Type</th>
<th>Methods</th>
<th>Match-Value</th>
<th>New-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>delsupported</td>
<td>delete</td>
<td>case-sensitive</td>
<td>request</td>
<td>INVITE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>addrequireinINVITE</td>
<td>add</td>
<td>case-sensitive</td>
<td>request</td>
<td>INVITE</td>
<td>100rel</td>
<td></td>
</tr>
<tr>
<td>formod183</td>
<td>sip-manip</td>
<td>case-sensitive</td>
<td>any</td>
<td>any</td>
<td>Stripsdp183</td>
<td></td>
</tr>
</tbody>
</table>
sip-manipulation

name Stripsdp183

description For incoming 183 from Lync, strip SDP

split-headers

join-headers

header-rule

name check183

header-name @status-line

action store

comparison-type pattern-rule

msg-type any

methods

match-value

new-value

element-rule

name is183

parameter-name

type status-code

action store

match-val-type any

comparison-type pattern-rule

match-value 183

new-value

header-rule

name delSDP

header-name Content-Type

action manipulate

comparison-type case-insensitive
msg-type: any
methods
match-value: $check183.$is183
new-value
element-rule
  name: del183SDP
  parameter-name: application/sdp
  type: mime
  action: delete-element
  match-val-type: any
  comparison-type: boolean
  match-value
  new-value
header-rule
  name: delContentType
  header-name: Content-Type
  action: manipulate
  comparison-type: boolean
  msg-type: any
  methods
  match-value: $check183.$is183
  new-value
element-rule
  name: delCT
  parameter-name: *
  type: header-param
  action: delete-header
  match-val-type: any
SIP Response Map to be applied on SIP Trunk facing Sip-interface

<table>
<thead>
<tr>
<th>comparison-type</th>
<th>case-sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>match-value</td>
<td></td>
</tr>
<tr>
<td>new-value</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>response-map</th>
</tr>
</thead>
<tbody>
<tr>
<td>last-modified-by</td>
</tr>
<tr>
<td>last-modified-date</td>
</tr>
<tr>
<td>name</td>
</tr>
<tr>
<td>entries</td>
</tr>
</tbody>
</table>

183 -> 180 (Ringing)

<table>
<thead>
<tr>
<th>sip-interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
</tr>
<tr>
<td>realm-id</td>
</tr>
<tr>
<td>description</td>
</tr>
<tr>
<td>sip-port</td>
</tr>
<tr>
<td>address</td>
</tr>
<tr>
<td>port</td>
</tr>
<tr>
<td>transport-protocol</td>
</tr>
<tr>
<td>tls-profile</td>
</tr>
<tr>
<td>allow-anonymous</td>
</tr>
</tbody>
</table>

response-map change183to180