4
Application Checklist for Continuo
Service with Autonomous Databas
Shared Infrastructure

ORACLE Technical Brief / November 9, 2022

ORACLE

[a) (o Te [UTo3 T0] o HUTTTE TP 3

Choose your Database SErVICEccovvvvuiiiiiiiieeeeeeeee e 4
Use the URL or Connection String provided for High Availability 4
Use Recommended Practices that Support Draining.............cccccvvevevveiiennnnns 5
Enable Application Continuity or Transparent Application Continuity 8
Steps for Using Application CoNtiNUItYccooeeeeiiiiiiiiiiiiiieeeeeeeeeiee e 9
Developer Best Practices for Continuous Availabilityccccccuveiinnnans 10
Verify Prote@Ction LEVEISuuiiiiiiiiiiiiiiiiiiiiiiiiiiiei e 12
CoNfIGUIE CHENTSuveiiie e 15
Tracking your Grants for Mutables. ... 16
Additional MaterialSooeee e 18

2 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

INTRODUCTION

The following checklist is useful for preparing your environment for continuous availability for
your applications. Even if Application Continuity is not enabled on your database service, or
is not used by your applications, the points discussed here provide great value in preparing
your systems to support Continuous Availability when using the Autonomous Database on
Shared Infrastructure (ADB-S).

The steps can be staged, they are building blocks:

» Choose your Database Service

Use the URL or Connection String for High Availability

» Use Recommended Practices that Support Draining

Enable Application Continuity or Transparent Application Continuity

Align Application Timeouts

You will need a minimum Oracle Database 12c client (or later) in order to use Application
Continuity with an Oracle Database 19c database client extending this to support
Transparent Application Continuity. However, you will get benefit from service usage, and
draining practices for earlier Oracle clients.

The primary audience for this checklist is application developers and application owners
using the Autonomous Database on Shared Infrastructure.

3 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

4

CHOOSE YOUR DATABASE SERVICE

Services provide transparency for the underlying ADB-S infrastructure. Draining, Transparent Application Continuity (TAC),
Application Continuity (AC), consumer groups and many other features and operations are predicated on the use of services.

Oracle’s Autonomous Database Shared (ADB-S) offers up to five preconfigured services to choose from. All provide in-band
FAN and draining for maintenance. An API is available to enable TAC or AC settings on all preconfigured services.

Pre-configured Services offered by the Oracle Autonomous Database

SERVICE NAME DESCRIPTION DRAINING INBAND FAN TAC/ AC ALLOWED
TPURGENT OLTP Highest Priority Yes Yes Yes
TP OLTP General Priority Yes Yes Yes

(Use as main service)

HIGH Reporting or Batch Yes Yes Yes
(Highest Priority)

MEDIUM Reporting or Batch Yes Yes Yes
(Medium Priority)

LOW Reporting or Batch Yes Yes Yes

(Lowest Priority)

To help in choosing the service for batch work:

HIGH: Queries run with a Degree of Parallelism equal to CPU_COUNT. There is a limit of three concurrent queries after which
statement queuing occurs.

MEDIUM: Queries run with a Degree of Parallelism of four. The maximum number of queries that can run simultaneously is
(CPU_COUNT*1.25).

LOW: Queries run serially. Queueing starts when concurrent queries exceed (2*CPU_COUNT).

USE THE URL OR CONNECTION STRING PROVIDED FOR HIGH AVAILABILITY

Oracle recommends that your application uses the following connection string configuration for successfully connecting during
basic startup, failover, and relocate.

You have received a ZIP file with the URL/TNS that you can customize. Set RETRY COUNT, RETRY DELAY,

CONNECT TIMEOUT and TRANSPORT CONNECT TIMEOUT parameters to allow connection requests to wait for service
availability and to connect successfully. Tune there values to allow the application to pause reconnecting during RAC failovers
and switchovers.

RULES: (see section: Align Application and Server Timeouts for more details)

Always set RETRY DELAY when using RETRY COUNT.

Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

5

Set(RETRY_COUNT +1) * RETRY DELAY > MAXIMUM of RAC and Data Guard recovery times.

Set TRANSPORT CONNECT TIMEOUT in the range 1-5 seconds unless using a slow wide area

network.

Set CONNECT_TIMEOUT to a high value to prevent login storms. Low values can result in ‘feeding frenzies’ logging in due
to the application or pool cancelling and retrying connection attempts.

Do not use Easy Connect Naming on the client as EZCONNECT prevents FAN auto-configuration capabilities.

Maintain your Connect String or URL in a central location such as LDAP or tnsnames.ora. Do not scatter the connect string
or URL in property files or private locations as doing so makes them extremely difficult to maintain. Using a centralized location
helps you preserve standard format, tuning and service settings.

This is the recommended Connection String for ALL Oracle drivers 12.2 and later, specific values may be tuned but the values
quoted in this example are reasonable starting points:

Alias (or URL) = (DESCRIPTION =
(CONNECT TIMEOUT=90) (RETRY COUNT=50) (RETRY DELAY=3)
(TRANSPORT CONNECT TIMEOUT=3)
(ADDRESS LIST =
(LOAD_ BALANCE=o0n)
(ADDRESS = (PROTOCOL = TCP) (HOST=primary-scan) (PORT=1521)))
(CONNECT_ DATA=(SERVICE NAME = [TPURGENT..])))

USE RECOMMENDED PRACTICES THAT SUPPORT DRAINING
There is never a need to restart application servers when planned maintenance follows best practice.

For planned maintenance, the recommended approach is to provide time for current work to complete before maintenance is
started. You do this by draining work. Several methods for draining are available in decreasing order of value. Choose the one
that best suits your application:

e Oracle Connection Pools (In-Band FAN is built into 19c¢ drivers to tell the clients when to drain)
e Standard Driver-Side Connection tests

e Server-side with SQL Connection tests

e Planned failover with Transparent Application Continuity

Use draining in combination with your chosen failover solution for those requests that do not complete within the allocated time
for draining. Your failover solution will try to recover sessions that did not drain in the allocated time.

Draining Method One : Use a Connection Pool

Use an Oracle Connection Pool

Using an Oracle connection pool is the recommended solution for hiding planned maintenance. There is no impact to users
when your application uses an Oracle Pool with In-Band FAN and returns connections to the pool between requests. Supported
Oracle Pools include UCP, WebLogic Active GridLink, Tuxedo, OCI Session Pool, and ODP.NET Managed and Unmanaged
providers. No application changes whatsoever are needed to drain other than making sure that your connections are returned to
pool between requests. Enabling connection tests is recommended.

Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

6

Use UCP with a Third-Party Connection Pool or a Pool with Request Boundaries

If you are using a third party, Java-based application server, the most effective method to achieve draining and failover is to
replace the pooled data source with UCP. This approach is supported by many application servers including: Oracle WebLogic
Server, IBM WebSphere, IBM Liberty, Apache Tomcat, Spring, Hibernate, and others. Using UCP as the data source allows
UCP features such as Fast Connection Failover, Runtime Load Balancing and Application Continuity to be used with full
certification. UCP may not be used for J2EE -based applications or with XA-based transactions.

If your application is using J2EE or Container Managed Transactions (CMT) with Red Hat JBoss, request boundaries are
provided with version Red Hat JBoss 7.4. This configuration supports draining with FAN (XA and non-XA usage) and
Application Continuity (non-XA usage).

NOTE: Return Connections to the Connection Pool

The application should return the connection to the connection pool on each request. It is best practice that an application
checks-out a connection only for the time that it needs it. Holding a connection instead of returning it to the pool does not
perform. An application should therefore check-out a connection and then check-in that connection immediately the work is
complete. The connections are then available for later use by other threads, or your thread when needed again. Returning
connections to a connection pool is a general recommendation for good performance.

Draining Method Two: Use Connection Tests to Drain your Application

If you cannot use an Oracle Pool, then the Oracle client drivers 19¢ (and later) will drain the sessions. When services are
relocated or stopped, or there is a switchover to a standby site via Oracle Data Guard, the Oracle Database and Oracle client
drivers are notified to look for safe places to release connections according to the following rules. Choose the one that best suits
your application:

e Standard driver-based connection tests for connection validity at borrow or return from a connection pool
e Custom SQL tests for connection validity

USE STANDARD CONNECTION TESTS WITH THIN JAVA DRIVER

If you would like to use connection tests that are local to the driver:

e Enable validate-on-borrow=true
e Set the Java system properties
o -Doracle.jdbc.fanEnabled=false
o -Doracle.jdbc.defaultConnectionValidation=SOCKET

and use one of the following tests, isvalid ()is the preferred method:

° java.sgl.Connection.isValid (int timeout) or
° oracle.jdbc.OracleConnection.pingDatabase () or
° oracle.jdbc.OracleConnection.pingDatabase (int timeout) or
e a HINT at the start of your test SQL:
o /*+ CLIENT CONNECTION VALIDATION */

IMPORTANT: If using in-Band FAN with UCP, you will need the fix for bug 31112088, and your application should return your
connections to the pool between requests. Doing so will drain at the end of the request.

Your connection tests is set in your connection pool property: See Standard Connection Tests for Some Common Application
Servers

Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

https://docs.oracle.com/en/database/oracle/oracle-database/19/racad/ensuring-application-continuity.html#GUID-2DD974C8-94C2-446B-B2BD-81B8135A26C3
https://docs.oracle.com/en/database/oracle/oracle-database/19/racad/ensuring-application-continuity.html#GUID-2DD974C8-94C2-446B-B2BD-81B8135A26C3

USE STANDARD CONNECTION TESTS WITH OCI DRIVER

If you would like to use the OCI driver directly, use OCI ATTR SERVER STATUS. This is the only method that is a code

change. In your code, check the server handle when borrowing and returning connections to see if the session is
disconnected. When the service is stopped or relocated, the value OCI ATTR SERVER STATUS is set to
OCI SERVER NOT CONNECTED. When using OCI session pool, this connection check is done for you.

The following code sample shows how to use OCI_ATTR_SERVER_ STATUS:

ub4 serverStatus = 0
OCIAttrGet ((dvoid *)srvhp, OCI HTYPE SERVER,
(dvoid *)&serverStatus, (ub4 *)0, OCI ATTR SERVER STATUS, errhp):;

if (serverStatus == OCI SERVER NORMAL)
printf ("Connection is up.\n");
else 1f (serverStatus == OCI SERVER NOT CONNECTED)

printf ("Connection is down.\n");

Draining Method Three: Use SQL Connection Tests to the Oracle Database
If you cannot use either an Oracle Pool or use connection tests at the Oracle client drivers, the Oracle Database 19c (and later)
can drain your sessions.

Use the view DBA_ CONNECTION TESTS to see the connection tests added and enabled. You can add, delete, enable or disable
connection tests for a service, a pluggable database, or non-container database. For example:

SQL> EXECUTE
dbms app cont admin.add sgl connection test ('SELECT COUNT (1) FROM DUAL');
SQL> EXECUTE
dbms app cont admin.enable connection test (dbms app cont admin.sql test,
'SELECT COUNT (1) FROM DUAL');
SQL> SET LINESIZE 120
SQL> SELECT * FROM DBA CONNECTION TESTS

Configure the same connection test that is enabled in your database (the same identical statement) at your connection pool or
application server. Also disable flushing and destroying the pool on connection test failure, or set it to at least two times the
maximum pool size or MAXINT.

Note: For connection tests you will need the fix for Bug 31863118, which is applicable to all SQL draining, released with DBRU19.10
and later release updates.

CHECK FOR DRAINING WITH ORACLE AUTONOMOUS DATABASE SHARED

Use the function userenv to determine whether your session is in draining mode. For example, use this function as a check
to exit PLSQL when in a long running PL/SQL loop processing records. This feature is available starting Oracle Database 19c,
release update 10 and later release updates (refer to Bug 32761229).

7 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

8

SQL> select SYS CONTEXT ('USERENV', 'DRAIN STATUS') from dual ;

SYS CONTEXT ('USERENV', 'DRAIN STATUS')

DRAINING
SQL> select SYS CONTEXT ('USERENV', 'DRAIN STATUS') from dual ;

SYS CONTEXT ('USERENV', 'DRAIN STATUS')

Alternate Method: Use Planned Failover with Transparent Application Continuity

Oracle Database 19c introduces the concept of Planned Failover to Application Continuity. For applications that are
discoverable by TAC, i.e. they close their cursors in fetch and clear or do not use Oracle complex PLSQL states, planned
failover with TAC is an out of the box solution for failing over at planned and unplanned outages.

When maintenance is underway, planned failover occurs at the start of new requests and when implicit boundaries are
detected by TAC. This failover includes long running and standalone requests that rely on implicit boundaries are discovered
by Transparent Application Continuity. Planned failover is used by sQL*PLUS with TAC starting 19c, (TIP: do not set
SERVEROUTPUT) and is beneficial for applications that mostly use SELECTS, INSERTS, UPDATES and DELETES..

This feature is available for OCI clients in Oracle Database 19¢ and JDBC thin clients 19RU12

Use Planned Failover with TAF SELECT Plus

Some older OCl-based configurations may use pre-compilers (PRO*C, PRO*COBOL) or Oracle ODBC, and some may use
OCI API's not yet covered by Application Continuity for OCI. For planned maintenance with older OCl-based applications, TAF
SELECT PLUS may be good option to drain. To use TAF SELECT PLUS, create a separate service, with the following service
attributes set: FAILOVER_TYPE=SELECT, FAILOVER_RESTORE=LEVEL1, COMMIT_OUTCOME=TRUE, and to drain
stopoption TRANSACTIONAL. Sessions will automatically failover during the drain timeout at COMMIT boundaries.

ENABLE APPLICATION CONTINUITY OR TRANSPARENT APPLICATION CONTINUITY

Application Continuity is highly recommended for failover when your application will not drain, for planned failover, and for
handing timeouts as well as for unplanned outages. It is not mandatory but adds significant benefits.

Application Continuity is enabled on the database service in one of two configurations, depending on the application:

Application Continuity (AC)

Application Continuity hides outages, starting with Oracle database 12.1 for thin Java-based applications, and Oracle
Database 12.2.0.1 for OCl and ODP.NET based applications with support for open-source drivers, such as Node.js, and
Python, beginning with Oracle Database 19c. Application Continuity rebuilds the session by recovering the session from a
known point which includes session states and transactional states. Application Continuity rebuilds all in-flight work. The
application continues as it was, seeing a slightly delayed execution time when a failover occurs. The standard mode for
Application Continuity is for OLTP applications using an Oracle connection pool.

Transparent Application Continuity (TAC)

Starting with Oracle Database19c, Transparent Application Continuity (TAC) transparently tracks and records session and
transactional state so the database session can be recovered following recoverable outages. This is done with no reliance on
application knowledge or application code changes, allowing Transparent Application Continuity to be enabled for your
applications. Application transparency and failover are achieved by consuming the state-tracking information that captures
and categorizes the session state usage as the application issues user calls.

Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

9

STEPS FOR USING APPLICATION CONTINUITY

Developers should work through these steps with the PDB Administrators for database configuration.

Enable Application Continuity on Your Service
You can change the failover type offered on your service by using the generic package DBMS APP CONT ADMIN. Use this

API to enable Application Continuity or Transparent Application Continuity, or to disable failover. New sessions will use the
new failover type.

To use these procedures you must have been granted the role PDBADMIN. Use your FULL service name in these examples.

To enable Transparent Application Continuity for your service:

execute DBMS APP CONT ADMIN.ENABLE TAC (‘TPURGENT’) ;

To enable Application Continuity for your service:

execute DBMS APP CONT ADMIN.ENABLE AC (‘TPURGENT’) ;

To disable failover for your service:

execute DBMS APP CONT ADMIN.DISABLE FAILOVER(‘HIGH');

Return Connections to the Connection Pool

The application should return the connection to the Oracle connection pool on each request. Best practice for application usage is to
check-out (borrow) connections for only the time that they are needed, and then check-in to the pool when complete for the
current actions. This is important for best application performance at runtime, for rebalancing work at runtime and during
maintenance and failover events. This practice is also important for draining.

When using an Oracle connection pool, such as Universal Connection Pool (UCP) or OCI Session Pool, or ODP.Net
Unmanaged Provider or when using WebLogic Active GridLink, following this practice embeds request boundaries that
Application Continuity uses to identify safe places to resume and end capture. This is required for Application Continuity and is
recommended for Transparent Application Continuity.

Transparent Application Continuity, in addition, will discover request boundaries if a pool is not in use or when replay is
disabled. The conditions for discovering a boundary in Oracle Database 19c are:

¢ No open transaction
e Cursors are returned to the statement cache or cancelled
e No un-restorable session state exists (refer to Clean Session State between Requests in this paper)

FAILOVER_RESTORE on the Service

FAILOVER RESTORE is set on your service to restore common session states at failover. All modifiable system parameters
outside of (and including) this common set, starting with Oracle Database 19c RU8, are restored at failover by using a wallet
with FAILOVER_RESTORE (refer to Ensuring Application Continuity in the Real Application Clusters Administration and
Deployment Guide in the Oracle documentation). This is preconfigured for you when using Oracle Autonomous Database.

Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

To configure additional custom values at connection establishment use:

e Alogon trigger.
e Connection Initialization Callback or UCP label for Java or TAF Callback for OCIl, ODP.Net or open source drivers
e UCP or WebLogic Server Connection Labeling

Enable Mutables Used in the Application

Mutable functions are functions that can return a new value each time they are executed. Support for keeping the original results
of mutable functions is provided for SYSDATE, SYSTIMESTAMP, CURRENT TIMESTAMP, LOCALTIMESTAMP, SYS GUID, and
sequence.NEXTVAL, Identity sequences are supported for owned sequences in SQL. If the original values are not kept and
different values are returned to the application at replay, replay is rejected.

Oracle Database 19c automatically KEEPs sequences for SQL. We recommend that you configure mutables using GRANT KEEP for
application users, and the KEEP clause for a sequence owner. When KEEP privilege is granted, replay applies the original function result
at replay.

For example:

SQL> GRANT KEEP DATE TIME to scott;
SQL> GRANT KEEP SYSGUID to scott;

SQL> GRANT KEEP SEQUENCE mySequence on mysequence.myobject to scott;

Side Effects
When a database request includes an external call such as sending MAIL or transferring a file then this is termed a side effect.

Side effects are external actions, they do not roll back. When configuring for replay, a choice can be made as to whether side
effects should be replayed or not. Many applications choose to repeat side effects such as journal entries and sending mail.
For Application Continuity (AC) side effects are replayed unless the request or user call is explicitly disabled for replay.
Conversely, TAC does not replay side effects. The capture is disabled, and re-enables at the next implicit boundary created by
TAC.

DEVELOPER BEST PRACTICES FOR CONTINUOUS AVAILABILITY

Return Connections to the Connection Pool

The most important developer practice is to return connections to the connection pool at the end of each request. This is
important for best application performance at runtime, for draining work and for rebalancing work at runtime and during
maintenance, and for handing failover events. Some applications have a false idea that holding onto connections improves
performance. Holding a connection neither performs nor scales. One customer reported 40% reduction in mid-tier CPU and
higher throughput just by returning their connections to the pool.

Clean Session State between Requests

When an application returns a connection to the connection pool, cursors in FETCH status, and session state set on that session
remain in place unless an action is taken to clear them. For example, when an application borrows and returns a connection to a
connection pool, next usages of that connection can see can see this session state if the application does not clean. At the end
of a request, it is best practice to return your cursors to the statement cache and to clear application related session state to
prevent leakage to later re-uses of that database session.

10 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

Prior to Oracle Database 21c, use dbms_session.modify package state(dbms session.reinitialize)to clear
PL/SQL global variables, use TRUNCATE to clear temporary tables, SYS_CONTEXT .CLEAR_CONTEXT to clear context and
cancel your cursors by returning them to the statement cache.

With Oracle Database 21c, RESET_STATE is one of the most valuable developer features. RESET_STATE clears session state
set by the application in a request with no code required. Setting the service attribute RESET STATE to LEVELL resets session
states at explicit end of request. RESET_STATE does not apply to implicit request boundaries. When RESET_STATE is used,
applications can rely on the state being reset at end of request. RESET_STATE is available for ADB-S Oracle Database 21c by
using DBMS APP CONT ADMIN,

Clearing session state improves your protection when using TAC, TAC can re-enable more often.

Do not embed COMMIT in PL/SQL and Avoid Commit on Success and Autocommit

It is recommended practice to use a top-level commit, (OCOMMIT or COMMIT () or OCITransCommit). If your application is
using COMMIT embedded in PL/SQL or AUTOCOMMIT or COMMIT ON SUCCESS, it may not be possible to recover following
an outage or timeout. PL/SQL is not re-entrant. Once a commit in PL/SQL has executed, that PL/SQL block cannot be
resubmitted. Applications either need to unpick the commit, which is not sound as that data may have been read, or for batch
use a checkpoint and restart technique. When using AUTOCOMMIT or COMMIT ON SUCCESS, the output is lost.

If your application is using a top-level commit, then there is full support for Transparent Application Continuity (TAC) and
Application Continuity (AC). If your application is using COMMIT embedded in PLSQL or AUTOCOMMIT or COMMIT ON
SUCCESS, it may not be possible to replay for cases where that the call including the COMMIT did not run to completion.

Use ORDER BY or GROUP BY in Queries

Application Continuity ensures that the application sees the same data at replay. If the same data cannot be restored,
Application Continuity will not accept the replay. When a SELECT uses ORDER BY or GROUP BY order is preserved. In a RAC
environment the query optimizer most often uses the same access path, which can help in the same ordering of the results.
Application Continuity also uses an As OF clause under the covers to return the same query results where AS OF is allowed.

Considerations for SQL*Plus

SQL*Plus is often our go to tool for trying things out. SQL*Plus of course does not reflect our actual application that will be
used in production, so it is always better to use the real application test suite to test your failover plan and to measure your
protection. SQL*Plus is not a pooled application so does not have explicit request boundaries. Some applications do use
SQL*Plus for example for reports. To use SQL*Plus with failover check the following:

e In-Band FAN is always enabled for SQL*Plus.
e When using SQL*plus the key is to minimize round trips to the database: https://blogs.oracle.com/opal/sqlplus-12201-
adds-new-performance-features
e SQL*Plus is supported for TAC starting Oracle 19c. For best results:
a. setalarge arraysize e.g. (set arraysize 1000).
b. Avoid enabling serveroutput as this creates unrestorable session state. (Check release notes for this
restriction removed.)

Restrictions

Be aware of these restrictions and considerations when using Application Continuity (Restrictions and Other Considerations
for Application Continuity).

11 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

https://blogs.oracle.com/opal/sqlplus-12201-adds-new-performance-features
https://blogs.oracle.com/opal/sqlplus-12201-adds-new-performance-features
https://docs.oracle.com/en/database/oracle/oracle-database/19/racad/ensuring-application-continuity.html#GUID-2400FAAD-0BB2-48AF-B1F6-358EBA724028
https://docs.oracle.com/en/database/oracle/oracle-database/19/racad/ensuring-application-continuity.html#GUID-2400FAAD-0BB2-48AF-B1F6-358EBA724028

VERIFY PROTECTION LEVELS

Use the statistics for request boundaries and protection level to monitor the level of coverage. Application Continuity collects
statistics from the system, the session, and the service, enabling you to monitor your protection levels. The statistics are
available in V$SESSTAT, V$SYSSTAT, and in Oracle Database 19c, V$SERVICE STATS. These statistics are saved in the
Automatic Workload Repository and are available in Automatic Workload Repository reports.

The following statistics are available for query:

Statistic

cumulative begin requests

cumulative end requests

cumulative user calls in requests

cumulative user calls protected by Application Continuity
successful replays by Application Continuity

rejected replays by Application Continuity

cumulative DB time protected in requests

To report protection history by service for example you could run:

12 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

set pagesize 60

set lines 120

col Service name format a30 trunc heading "Service"

break on con id skipl

col Total requests format 999,999,9999 heading "Requests"

col Total calls format 9,999,9999 heading "Calls in requests"
col Total protected format 9,999,9999 heading "Calls Protected"
col Protected format 999.9 heading "Protected %"

select con id, service name, total requests,
total calls,total protected,total protected*100/NULLIF (total calls,0) as
Protected
from(
select * from
(select a.con id, a.service name, c.name,b.value
FROM gv$session a, gv$sesstat b, gvS$Sstatname c

WHERE a.sid = b.sid

AND a.inst id = b.inst id

AND b.value '= 0

AND b.statistic# = c.statistic#

AND b.inst id = c.inst id

AND a.service name not in ('SYSSUSERS', 'SYSSBACKGROUND'))
pivot (

sum (value)

for name in ('cumulative begin requests' as total requests, 'cumulative end
requests' as Total end requests, 'cumulative user calls in requests' as
Total calls, 'cumulative user calls protected by Application Continuity' as
total protected)))
order by con_id, service name;

This would display output in the following format:

CON_ID Service Requests Calls in requests Calls Protected Time Prot Protected %
109 RDDAINSUH6UIOKC TESTY high.adb 11 7 63
RDDAINSUH6UIOKC TESTY tp.adb.o 7 9 9 100

Reports could also be structured to show results for a PDB:

13 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

set lines 85

col Service name format a30 trunc heading "Service"

break on con id skipl

col Total requests format 999,999,9999 heading "Requests"

col Total calls format 9,999,9999 heading "Calls in requests"
col Total protected format 9,999,9999 heading "Calls Protected"
col Protected format 999.9 heading "Protected %"

select con id, total requests,
total calls,total protected,total protected*100/NULLIF (total calls,0) as
Protected
from(
select * from
(select s.con id, s.name, s.value
FROM GVSCON SYSSTAT s, GVSSTATNAME n

WHERE s.inst id = n.inst id
AND s.statistic# = n.statistic#
AND s.value = 0)
pivot (
sum (value)
for name in ('cumulative begin requests' as total requests, 'cumulative end

requests' as Total end requests, 'cumulative user calls in requests' as
Total calls, 'cumulative user calls protected by Application Continuity' as
total protected)

))

order by con_id;

Similar to:
CON_ID Requests Calls in requests Calls Protected Protected %
854 70 283 113 39.9

Or for a period of time. In this example 3 days:

14 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

set lines 85

col Service name format a30 trunc heading"Service"

break on con id skipl

col Total requests format 999,999,9999 heading "Requests"

col Total calls format 9,999,9999 heading "Calls in requests"
col Total protected format 9,999,9999 heading "Calls Protected"
col Protected format 999.9 heading "Protected %"

total protected, total protected*100/NULLIF (total calls,0) as Protected
from(
select * from
(select a.snap id, a.instance number,a.stat name, a.value
FROM dba hist sysstat a
WHERE a.value =0)
pivot (
sum (value)

end requests' as Total end requests, 'cumulative user calls in requests'
Total calls, 'cumulative user calls protected by Application Continuity'
total protected)

)) a,

dba hist snapshot b

where a.snap id=b.snap id

and a.instance number=b.instance number

and begin interval time>systimestamp - interval '3' day

order by a.snap id,a.instance number;

select a.instance number,begin interval time, total requests, total calls,

for stat name in ('cumulative begin requests' as total requests, 'cumulative

as
as

CONFIGURE CLIENTS

JDBC THIN DRIVER CHECKLIST

1. Ensure that all recommended patches are applied at the client. Refer to the MOS Note Client Validation Matrix for

Application Continuity (Note 2511448.1)
JDBC THIN DRIVER CHECKLIST FOR APPLICATION CONTINUITY
1. Configure the Oracle JDBC Replay Data Source in the property file or on console:

a. For Universal Connection Pool (UCP)
Configure the Oracle JDBC Replay Data Source as a connection factory on UCP
PoolDataSource:

setConnectionFactoryClassName (“oracle.jdbc.replay.OracleDataSourceImpl”); Or

setConnectionFactoryClassName (“oracle.jdbc.replay.OracleXADataSourceImpl”); Or
preferred set these in the property file

For WebLogic server, use the Oracle WebLogic Server Administration Console, choosing the local replay
driver or XA replay driver:
Oracle Driver (Thin) for Active GridLink Application Continuity Connections

Oracle Driver (Thin XA) for Active GridLink Application Continuity Connections

15 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

c. Standalone Java applications or 3-party connection pools
Configure the Oracle JDBC 12c¢ Replay Data Source in the property file or in the thin JDBC application:
datasource=oracle.jdbc.replay.OracleDataSourceImpl (for non-XA) or
datasource=oracle.jdbc.replay.OracleXADataSourceImpl (for XA)

2. Use JDBC Statement Cache
Use the JDBC driver statement cache in place of an application server statement cache. This allows the driver to know
that statements are cancelled and allows memory to be freed at the end of requests.
To use the JDBC statement cache, use the connection property oracle.jdbc.implicitStatementCacheSize
(OracleConnection.CONNECTION PROPERTY IMPLICIT STATEMENT CACHE SIZE). The value for the cache
size matches your number of open cursors. For example:
oracle.jdbc.implicitStatementCacheSize=nnn

where nnn is typically between 50 and 200 and is equal to the number of open cursors your application maintains.

3. Tune the Garbage Collector
For many applications the default Garbage Collector tuning is sufficient. For applications that return and keep large
amounts of data you can use higher values, such as 2G or larger. For example:
java -Xms3072m -Xmx3072m
It is recommended to set the memory allocation for the initial Java heap size (ms) and maximum heap size (mx) to the
same value. This prevents using system resources on growing and shrinking the memory heap.

4. Commit
For JDBC applications, if the application does not need to use AUTOCOMMIT, disable AUTOCOMMIT either in the
application itself or in the connection properties. This is important when UCP or the replay driver is embedded in third-
party application servers such as Apache Tomcat, IBM WebSphere, IBM Liberty and Red Hat WildFly (JBossS) -
Set autoCommit to false through UCP PoolDataSource connection properties
connectionProperties="{autoCommit=false}"

5. JDBC Concrete Classes — Applies to jars 12.1 and 12.2 ONLY
For JDBC applications, Oracle Application Continuity does not support deprecated oracle.sgl concrete classes
BLOB, CLOB, BFILE, OPAQUE, ARRAY, STRUCT or ORADATA. (See MOS note 1364193.1 New JDBC
Interfaces). Use ORAchk -acchk on the client to know if an application passes. The list of restricted concrete classes
for IDBC Replay Driver is reduced to the following starting with Oracle JDBC-thin driver version 18c and later:
oracle.sqgl.OPAQUE, oracle.sqgl.STRUCT, oracle.sgl.ANYDATA

OCI (Oracle Call Interface) Driver Checklist (OCI-based clients include Node.js, Python, SODA and others starting Oracle 19c)

1. Ensure that all recommended patches are applied at the client. Refer to the MOS Note MOS Note Client Validation
Matrix for Application Continuity (Note 2511448.1)

ODP.NET UNMANAGED PROVIDER DRIVER CHECKLIST

1. Ensure that all recommended patches are applied at the client. Refer to the MOS Note MOS Note Client Validation
Matrix for Application Continuity (Note 2511448.1)

TRACKING YOUR GRANTS FOR MUTABLES
Use SQL similar to the following to know which grants for mutables are set on your database.

ALTER SESSION SET CONTAINER=&PDB_NAME ;

16 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1364193.1

set pagesize 60
set linesize 90

ttitle "Sequences Kept for Replay"

col sequence owner format A20 trunc heading "Owner"

col sequence name format A30 trunc heading "Sequence Name"
col keep value format AlO0 trunc heading "KEEP"

break on sequence owner

select sequence owner, sequence name, keep value
from all sequences, all users

where sequence_owner = username

and oracle maintained = 'N'

order by sequence_owner, sequence name;

ttitle "Date/Time Kept for Replay"

col grantee format A20 trunc heading "Grantee"

col PRIVILEGE format A20 trunc heading "Keep"

col ADMIN OPTION format A8 trunc heading "Admin|Option"
break on grantee

select grantee, PRIVILEGE, ADMIN OPTION
from dba sys privs, all users

where

grantee = username
and oracle maintained = 'N'
and PRIVILEGE like 'SKEEP%'
union

select distinct grantee, 'NO KEEP' PRIVILEGE, 'NO' ADMIN OPTION
from dba sys privs 11, all users
where

grantee = username
and oracle maintained = 'N'
and 11l.grantee not in

(select 1l2.grantee

from dba sys privs 12

where PRIVILEGE like 'SKEEP%')
order by privilege, grantee;

Which would show output similar to:

17 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

Tue Nov 16 page
Sequences Kept for Replay
Owner Sequence Name KEEP
MOVIESTREAM MDR571715A$ N
MDRS 17165$ N
Tue Nov 16 page
Date/Time Kept for Replay
Admin
Grantee Keep Option
ADMIN NO KEEP NO
GGADMIN NO KEEP NO
MOVIESTREAM NO KEEP NO
RMANSVPC NO KEEP NO

ADDITIONAL MATERIALS

Oracle Technology Network (OTN) Home page for Application Continuity

http://www.oracle.com/goto/ac

Application Continuity

Continuous Availability, Application Continuity for the Oracle Database

(https://www.oracle.com/[fechnetworEl/database/options/clusterinq/applicationcontinuitv/applicationcontinuitvformaa-
6348196.pdf)

Ensuring Application Continuity (https://docs.oracle.com/en/database/oracle/oracle-database/21/racad/ensuring-
application-continuity. html#GUID-C1EF6BDA-5F90-448F-A1E2-DC15AD5CFE75)

Application Continuity with Oracle Databasel12c Release 2
(http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/overview/application-continuity-
wp-12¢-1966213.pdf)

Embedding UCP with JAVA Application Servers:

WLS UCP Datasource, https://blogs.oracle.com/weblogicserver/wls-ucp-datasource

Design and Deploy WebSphere Applications for Planned, Unplanned Database Downtimes and Runtime Load
Balancing with UCP (http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rib-
ucp-websphere-2409214.pdf)

Reactive programming in microservices with MicroProfile on Open Liberty 19.0.0.4
(https://openliberty.io/blog/2019/04/26/reactive-microservices-microprofile-19004.html#oracle)

Design and deploy Tomcat Applications for Planned, Unplanned Database Downtimes and Runtime Load Balancing
with UCP (http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-

2265175.pdf

18 Application Checklist for Continuous Service with Autonomous Database on Shared Infrastructure

http://www.oracle.com/goto/ac
https://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/applicationcontinuityformaa-6348196.pdf
https://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/applicationcontinuityformaa-6348196.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/21/racad/ensuring-application-continuity.html#GUID-C1EF6BDA-5F90-448F-A1E2-DC15AD5CFE75
https://docs.oracle.com/en/database/oracle/oracle-database/21/racad/ensuring-application-continuity.html#GUID-C1EF6BDA-5F90-448F-A1E2-DC15AD5CFE75
http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/overview/application-continuity-wp-12c-1966213.pdf
http://www.oracle.com/technetwork/database/options/clustering/applicationcontinuity/overview/application-continuity-wp-12c-1966213.pdf
https://blogs.oracle.com/weblogicserver/wls-ucp-datasource
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-websphere-2409214.pdf
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-websphere-2409214.pdf
https://openliberty.io/blog/2019/04/26/reactive-microservices-microprofile-19004.html%23oracle
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf
http://www.oracle.com/technetwork/database/application-development/planned-unplanned-rlb-ucp-tomcat-2265175.pdf

ORACLE CORPORATION

Worldwide Headquarters
500 Oracle Parkway, Redwood Shores, CA 94065 USA

Worldwide Inquiries

TELE + 1.650.506.7000 + 1.800.O0RACLE1
FAX + 1.650.506.7200

oracle.com

CONNECT WITH US

Call +1.800.0RACLEZ1 or visit oracle.com. Outside North America, find your local office at oracle.com/contact.

E blogs.oracle.com/oracle n facebook.com/oracle u twitter.com/oracle

Integrated Cloud Applications & Platform Services

Copyright © 2022, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are
subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed
orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 1122

September 2022

Authors: Carol Colrain, Troy Anthony.

Contributing Authors: lan Cookson

@, | Oracle is committed to developing practices and products that help protect the environment

ORACLE

https://www.oracle.com/
http://www.oracle.com/contact

