ORACLE

Deploying Oracle Database Operator
Cluster Add-on for Oracle Kubernetes
Engine (OKE) on Compute
Cloud@Customer or Private Cloud
Appliance

Version 1.0
Copyright © 2026, Oracle and/or its affiliates
Public

ORACLE

Purpose statement

The purpose of this document is to describe how the Oracle Database Operator cluster add-on for Oracle Kubernetes Engine
(OKE) on Compute Cloud@Customer and Private Cloud Appliance enables automated, Kubernetes-native management of
Oracle Database workloads.

This paper provides guidance for deploying and configuring the operator to help development, database, DevOps, and GitOps
teams simplify operations, reduce deployment complexity, and accelerate the lifecycle management of Oracle databases on
Kubernetes.

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of
Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software
license and service agreement, which has been executed and with which you agree to comply. This document and information
contained herein may not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written
consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation and
upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or
functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the product
architecture, it may not be possible to safely include all features described in this document without risking significant
destabilization of the code.

This document may include some forward-looking content for illustrative purposes only. Some products and features discussed
are indicative of the products and features of a prospective future launch in the United States only or elsewhere. Not all
products and features discussed are currently offered for sale in the United States or elsewhere. Products and features of the
actual offering may differ from those discussed in this document and may vary from country to country. Any timelines
contained in this document are indicative only. Timelines and product features may depend on regulatory approvals or
certification for individual products or features in the applicable country or region.

2 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

Table of contents

Purpose statement

Introduction

Prerequisites

Deployment

OKE Cluster Access and Security Configuration
Prerequisites

Certificate Management and Oracle Database Operator Status on
OKE (Compute Cloud@Customer / PCA)

Enabling Role Bindings

Deploying SIDB (Single-Instance Database) with the Oracle
Database Operator

Labeling Worker Nodes for Oracle Database Deployments
Single Instance Database Deployment Manifest

Single Instance Database Pod Creation and Initialization
Post-Deployment Validation and Database Connectivity Checks

3 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

0 e U U AN

10

12
13
13
15
20

ORACLE

Introduction

On Compute Cloud@Customer and Private Cloud Appliance, cluster add-ons are optional components that can be deployed on
Kubernetes clusters to extend core Kubernetes capabilities and enhance cluster manageability and performance.

The Oracle Database Operator cluster add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer and Private
Cloud Appliance extends the Kubernetes API by introducing custom resources and controllers that automate the Oracle
Database lifecycle. This enables developers, database administrators, DevOps, and GitOps teams to significantly reduce the
time, effort, and operational complexity associated with deploying, operating, and managing Oracle databases on Kubernetes.

This solution paper provides detailed guidance on how to deploy and configure the Oracle Database Operator cluster add-on
for OKE on Compute Cloud@Customer and Private Cloud Appliance.

Note: This content is provided for informational purposes and self-supported guidance only. Consultancy or other assistance
related to the content is not covered under the Oracle Support contract or associated service requests. If you have questions or
additional needs, then please reach out to your Oracle Sales contact directly.

4 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

Prerequisites

Before deploying the Oracle Database Operator cluster add-on for Oracle Kubernetes Engine (OKE) on Compute
Cloud@Customer or Private Cloud Appliance, ensure that the following prerequisites are met.

e At least an Oracle Kubernetes Engine (OKE) deployed on Compute Cloud@Customer or Private Cloud Appliance.
e The Certificate Manager add-on must be in ACTIVE state before you can use the Database Operator add-on.

NOTE: Oracle Database Operator add-on can only be enabled on an existing OKE cluster.

Deployment

Follow the steps listed below to deploy the Oracle Database Operator cluster add-on for Oracle Kubernetes Engine (OKE) on
Compute Cloud@Customer or Private Cloud Appliance:

1. On Compute Cloud@Customer or Private Cloud Appliance management UI, navigate to Dashboard, then select
Containers. Under the Containers section, click Kubernetes Clusters (OKE) and select your OKE cluster. This opens
the cluster configuration page. Scroll to the bottom of the page and, under Resources, click Add-ons to display the list
of available cluster add-ons.

NOTE: Since this is the first time configuring cluster add-ons on this Compute Cloud@Customer

or Private Cloud Appliance, all add-ons will be listed as disabled by default.

Resources Add-ons
Name ¢ Status Automatic Updates Version < Actions
Node Pools (1)
Work Requests (0) Certificate Manager @ Disabled
Add-ons (4) Oracle Database Operator @ Disabled
WLS Operator @ Disabled
Nvidia GPU Plugin @ Disabled

Figure 1. List of OKE Add-ons available on Compute Cloud@Customer or Private Cloud Appliance.

2. Activate the Certificate Manager add-on before activating the Database Operator add-on. Click on the three dots
under the Actions column.
3. Select the Enable checkbox for the add-on you want to deploy and enable for this cluster.

5 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

Resources Add-ons
Node Pools (1) Name ©
Work Requests (0) Certificate Manager
Add-ons (4)

Oracle Database Operator

WLS Operator

Nvidia GPU Plugin

Status Automatic Updates Version Actions
@ Disabled @
@ Disabled

@ Disabled

@ Disabled

Figure 2. Activating Add-ons for OKE on Compute Cloud@Customer or Private Cloud Appliance.

4. Add-on Version Update Options: When enabling a cluster add-on on Compute Cloud@Customer, you must define
how the add-on version is managed as new releases become available and as additional Kubernetes versions are

supported by Oracle Kubernetes Engine (OKE). Two update strategies are supported: Automatic Updates or Manual

Version Selection.

e Automatic Updates (Default): The add-on is automatically deployed using the latest version compatible with the
Kubernetes version running on the cluster. When newer add-on versions are released, the add-on is

automatically updated, provided the new version is compatible with both the cluster’s Kubernetes version and
the versions supported by OKE. We recommend keeping Kubernetes clusters upgraded to supported versions to
ensure continued compatibility and timely add-on updates.

e Manual Version Selection: This option allows you to pin the add-on to a specific version, which remains in place
until manually changed. The selected add-on version must be compatible with the Kubernetes version running
on the cluster. When using the OCI Console, only compatible versions are displayed.

5. Configuration: When you enable the Certificate Manager cluster add-on, you can pass the following configuration in
key/value pairs as arguments. On this example, I am using 2 replicas only.

a. Select Add configuration to select a configuration option and specify a value.

b. Select Add configuration to set another configuration parameter.

Listed below are the screenshots with the Configuration part and the list of configurable parameters which can be set on

Certificate Manager Add-on and Oracle DB Operator.

Certificate Manager
Enable Add-On Certificate Manager

Certificate Manager or cert-manager simpiifies the process of abtaining, renewing
ond using those Certificates in your Kubsmetes Chuster,

® Automatic Updates
Select to automaticaly update your addor
O Choose a version

Sefect a specific addon version
Configurations

Option .
numOfReplicas 2

Oracle Database Operator

Enable Add-On Oracle Database Operator
The Operator for K i APt with
rces and cantrollers for automating Oracke Dotabase Bfecyde

custorn resou
ranogement

@ Automatic Updates
Sefect to qutom

cally updote your oddan
O Choose a version

Select a specific addon version

Configurations

+ Add configuration

Figure 3. Configuration for Certificate Manager and Oracle Database Operator Add-ons for OKE on Compute Cloud@Customer or Private Cloud
Appliance.

6 Deploying Uracle Database Uperator Cluster Add-on for Uracle Kubernetes Engine (UKE) on Compute Cloud@€Customer or Private Cloud Appliance Public

ORACLE

PARAMETER NAME CONSOLE / CLI DESCRIPTION

numOfReplicas numOfReplicas Required

The integer number of replicas of the add-on deployment.

cert-manager-controller container resources cert-manager- Optional

controller.ContainerResources) 3 .
You can specify the resource quantities that the add-on containers request, and set resource usage limits that the

add-on containers cannot exceed.

{"limits": ("¢
"100Mi"}}b

: *500m", "memory": "200Mi*), "requests®: {"cpu": "100m", “memory":

Create add-on containers that request 100 millicores of CPU, and 100 mebibytes of memory. Limit add-on containers
to 500 millicores of CPU, and 200 mebibytes of memory.

cert-manager-cainjector container resources cert-manager- Qptional

cainjector.ContainerResources)
You can specify the resource quantities that the add-on containers request, and set resource usage limits that the

add-on containers cannot exceed.

*500m", "memor

"200Mi*), "requests": ["cpu”: "100m", “memory":

Create add-on containers that request 100 millicores of CPU, and 100 mebibytes of memory. Limit add-on containers
to 500 millicores of CPU, and 200 mebibytes of memory:.

weblogic-operator-webhook container resources weblogic-operator- Optional

webhook.ContainerResources)) .
You can specify the resource quantities that the add-on containers request, and set resource usage limits that the

add-on containers cannot exceed.

{"limits®: ("cpu®: "500m", “memory": "200Mi%), "requests”: ("cpu®: "100m", “memory®:
“100Mi"}}h

Create add-on containers that request 100 millicores of CPU, and 100 mebibytes of memory. Limit add-on containers
to 500 millicores of CPU, and 200 mebibytes of memory.

Figure 4. Configuration Options for Certificate Manager Add-ons for OKE on Compute Cloud@Customer or Private Cloud Appliance.

PARAMETER NAME CONSOLE / CLI DESCRIPTION

numOfReplicas nunOfReplicas Required

The integer number of replicas of the add-on deployment.

manager container resources manager.ContainerResources Optional

You can specify the resource quantities that the add-on containers request, and set resource usage limits that the
add-on containers cannot exceed.

Use JSON format in plain text or Baseb4 encoded.
If you do not specify a request, the default request values are:
Limits
« cpu: 400m
« memory: 400Mi
Requests
« Ccpu: 400m
+ memory: 400Mi

Example:

Create add-on containers that request 100 millicores of CPU, and 100 mebibytes of memory. Limit add-on containers
to 500 millicores of CPU, and 200 mebibytes of memory.

{"limits®: {“cpu”: "500m", “memor

"100Mi"}}

Figure 5. Configuration Options for Oracle Database Operator Add-ons for OKE on Compute Cloud@Customer or Private Cloud Appliance.

7 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

(Default) Automatic Updates: If possible, this option automatically updates the add-on when new versions become available.
This is the default behavior. The newest version of the add-on that supports the Kubernetes version that is specified for the
cluster is deployed when you install the add-on. When a newer version of the add-on is released, the add-on is automatically
updated if the new add-on version is compatible with the versions of Kubernetes that are supported by OKE at that time and
the version of Kubernetes that the cluster is running. Best practice is to keep your clusters upgraded so that they are always
running versions of Kubernetes that are listed as currently supported by OKE. See Supported Versions of

Kubernetes in Kubernetes Engine (OKE) on Compute Cloud@Customer and Updating an OKE Cluster.

Choose a Version: This option keeps the add-on on the specific version that you select until you change it.

If you specify that you want to choose the version of the add-on to deploy, the version you choose is enabled. Ensure that the
add-on version is compatible with the Kubernetes version that you have selected for the cluster or that is already running on
the cluster. When you use the Console, you select the version from a list. All versions on the list are compatible with the
Kubernetes version that you have selected for the cluster or that is already running on the cluster.

If you select Choose a Version, then you must select a version from the list.

Add-ons

Name © Status C Automatic Updates © Version * Actions

Certificate Manager B Active Enabled vinnz

Oracle Database Operator

WLS Operator

Nvidia GPU Plugin

@ Active Enabled vi20

@ Disabled

@ Disabled

Figure 6. Certificate Manager and Oracle Database Operator Add-ons Status
OKE Cluster Access and Security Configuration

Prerequisites

Before accessing the Oracle Kubernetes Engine (OKE) cluster running on Compute Cloud@Customer (C3) or Oracle Private
Cloud Appliance (PCA), ensure the following prerequisites are met on the client system (Oracle Linux, macOS, or Windows):

¢ OCI Command Line Interface (OCI CLI) is downloaded, installed, and configured with valid OCI IAM credentials
(tenancy OCID, user OCID, API signing key, and region).

Network connectivity from the client system to the C3 or PCA control plane endpoint.

e TLS trust configuration that allows the client to validate the Kubernetes API server certificate.

kubectl installed and available in the system PATH.

Refer to the OCI CLI installation guides by operating system:

e Oracle Linux / Linux: https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall htm#InstallingCLI linux
¢ macOS: https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall. htm#InstallingCLI macos homebrew
e Windows: https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall. htm#InstallingCL] _windows

8 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

https://docs.oracle.com/en-us/iaas/compute-cloud-at-customer/cmn/oke/container-engine-for-kubernetes.htm#container-engine-for-kubernetes
https://docs.oracle.com/en-us/iaas/compute-cloud-at-customer/cmn/oke/updating-a-kubernetes-cluster.htm#updating-a-kubernetes-cluster
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm#InstallingCLI__linux
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm#InstallingCLI__macos_homebrew
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm#InstallingCLI__windows

ORACLE

During the initial configuration of Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer (C3) or Oracle Private
Cloud Appliance (PCA), the following commands perform two essential setup tasks required for deploying Oracle Database
using the Oracle Database Operator.

The curl command is used to validate connectivity to the C3 or PCA control plane and to retrieve the certificate authority
(CA) chain. This step ensures that the Kubernetes API endpoint is trusted by the client system and that TLS communication
can be established securely. Run the following curl command line below and copy the content to a new file ("/.oci/ca.crt).

curl -vk https://iaas.<fqdn_of_your_c3_or_pca/cachain

The oci ce cluster create-kubeconfig trigger then generates and configures the local Kubernetes kubeconfig file, enabling
authenticated access to the OKE cluster using OCI JAM-based authentication tokens. This configuration allows standard
Kubernetes tooling, such as kubectl, to securely interact with the cluster. Run the following command line below to create a
new kubeconfig file.

oci ce cluster create-kubeconfig --cluster-id ocidl.ccccluster.ocl.us-sanjose-
1.ivcyvpvg5wa.amaaaaaakdrwrhiam44wud3tmz2gketgmjzgenjzgswdeylegryde3jrna2q --file $HOME/.kube/config --token-
version 2.0.0 --kube-endpoint PUBLIC_ENDPOINT --cert-bundle ~/.oci/ca.crt

New config written to the Kubeconfig file $HOME/.kube/config

Together, these steps establish secure, authenticated communication with the OKE cluster and prepare the environment for
managing Oracle Database deployments through the Oracle Database Operator on C3 or PCA.

Certificate Management and Oracle Database Operator Status on OKE
(Compute Cloud@Customer / PCA)

The kubectl get all -n cert-manager command provides a consolidated view of all Kubernetes resources deployed by cert-
manager within the cert-manager namespace on an OKE cluster running on Oracle Compute Cloud@Customer or Private
Cloud Appliance (PCA). The output confirms that all core cert-manager components are healthy and operational: the cert-
manager controller (which reconciles Certificate and Issuer resources), the CA injector (which automatically injects trusted
CA bundles into Kubernetes objects), and the webhook (which validates and mutates certificate-related resources). Each
component is deployed as a Kubernetes Deployment with one ready Pod and exposed internally via ClusterIP Services,
indicating a stable TLS automation framework for Kubernetes workloads.

Additionally, the kubectl get pods -n oracle-database-operator-system command confirms that the Oracle Database Operator
controller is running successfully. This operator manages the full lifecycle of Oracle Databases on Kubernetes, including

provisioning, configuration, and ongoing operations.

Together, these results demonstrate a healthy Kubernetes environment that supports secure TLS certificate automation and
enterprise-grade database services on OKE running in customer-managed private cloud environments.

9 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

kubectl get all -n cert-manager

NAME READY STATUS RESTARTS AGE
pod/cert-manager-57547f5ddd-xz77p 1/1 Running © 3di6h
pod/cert-manager-cainjector-7f5bcd98bf-1g99g 1/1 Running © 3d16h
pod/cert-manager-webhook-6684bdd794-dznn8 1/1 Running © 3di6h

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/cert-manager ClusterIP 10.136.86.242 <none> 9402/TCP 3d16h
service/cert-manager-cainjector ClusterIP 10.138.67.127 <none> 9402/TCP 3dié6h
service/cert-manager-webhook ClusterIP 10.139.239.138 <none> 443 /TCP,9402/TCP 3d16h
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/cert-manager 1/1 1 1 3d16h
deployment.apps/cert-manager-cainjector 1/1 1 1 3d16h
deployment.apps/cert-manager-webhook 1/1 1 1 3d16h

NAME DESIRED CURRENT READY AGE
replicaset.apps/cert-manager-57547f5ddd 1 1 1 3d16h
replicaset.apps/cert-manager-cainjector-7f5bcd98bf 1 1 1 3di6h
replicaset.apps/cert-manager-webhook-6684bdd794 1 1 1 3di6h

ansouza@ansouza-mac .oci %

kubectl get pods -n oracle-database-operator-system
NAME READY
oracle-database-operator-controller-manager-5bfbbc869-m487g 1/1

STATUS RESTARTS AGE
Running © 3d16h

Enabling Role Bindings

To enable proper operation of the Oracle Database Kubernetes Operator, cluster-level RBAC permissions are required. The
operator is responsible for orchestrating database lifecycles that depend on cluster-scoped resources such as PersistentVolumes,
Nodes, and DaemonSets, which are not confined to a single namespace. For this reason, a dedicated ClusterRole is defined to
grant read and write access to these resources, and a corresponding ClusterRoleBinding associates these permissions with the
ServiceAccount under which the operator runs. This RBAC configuration allows the operator to provision and manage
database storage, understand node topology for high availability and RAC placement, and deploy node-level components
required for database initialization and management. Without these cluster-level permissions, the operator would be unable to
reconcile database state or provision storage correctly, resulting in failed or incomplete database deployments.

Listed below is a sample of a role bindings.yaml to enable proper operation of the Oracle Database Kubernetes Operator and

how to apply the role_bindings.yaml file. Apply the role bindings.yaml file using the kubectl apply -f role_bindings.yaml
command line listed below.

10 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

cat role_bindings.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: pv-cluster-scope-role
rules:
- apiGroups:

resources:

- persistentvolumes

- daemonsets

- nodes

verbs:

- get

- list

- watch

- Create

- delete

- update
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: pv-cluster-scope-rolebinding
roleRef:

apiGroup: rbac.authorization.k8s.io

kind: ClusterRole

name: pv-cluster-scope-role
subjects:
- kind: ServiceAccount

name: default

namespace: oracle-database-operator-system
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: oracle-database-operator-oracle-database-operator-manager-rolebinding
roleRef:

apiGroup: rbac.authorization.k8s.io

kind: ClusterRole

name: oracle-database-operator-manager-role
subjects:
- kind: ServiceAccount

name: default

namespace: oracle-database-operator-system

kubectl apply -f role_bindings.yaml
clusterrole.rbac.authorization.k8s.io/pv-cluster-scope-role created
clusterrolebinding.rbac.authorization.k8s.io/pv-cluster-scope-rolebinding created

clusterrolebinding.rbac.authorization.k8s.io/oracle-database-operator-oracle-database-operator-manager-rolebinding
created

Since the Oracle Database Operator is managed by a deployment, you should restart the deployment, this way, new pod starts
with the updated RBAC. Run the following command line listed below:

kubectl rollout restart deployment oracle-database-operator-controller-manager \
-n oracle-database-operator-system

deployment.apps/oracle-database-operator-controller-manager restarted

Verify if the deployment has been restarted correctly:

11 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

kubectl get pods -n oracle-database-operator-system

NAME READY STATUS RESTARTS AGE
oracle-database-operator-controller-manager-78bfbc698f-9knc5 1/1 Running © 3mlls

Check operator logs for RBAC errors (should be clean)

kubectl logs -n oracle-database-operator-system \
deployment/oracle-database-operator-controller-manager | grep -i rbac

(no output = good)

Verify permissions explicitly
kubectl auth can-i get persistentvolumes --as=system:serviceaccount:oracle-database-operator-system:default

Expected output: yes
The output above means:

e Controller initialized successfully

e Informers/watches were created

e RBAC permissions are now valid

e Operator is fully ready to reconcile databases

Deploying SIDB (Single-Instance Database) with the Oracle Database
Operator

With OKE cluster access and security configurations properly configured as described in the previous section, the
environment is now prepared for deploying the Single Instance Database (SIDB) on OKE worker nodes. This section provides
the detailed steps for executing this deployment.

During SIDB deployment, two Kubernetes secrets are created to support secure database provisioning. The first secret stores
the Oracle database administrator password and is consumed by the Oracle Database Operator during database initialization.
The second secret contains authentication credentials for Oracle Container Registry, enabling Kubernetes to securely pull the
Oracle Database container images required to run the database. Together, these secrets allow the operator to provision and
start the Single-Instance Database without embedding credentials directly in manifests or pod specifications.

1. Setthe database admin password: The kubectl command line listed below creates a Kubernetes secret that stores the
Oracle database administrator password. Internally the oracle_pwd is base64-encoded password format. For example:

kubectl create secret generic db-admin-secret --from-literal=oracle_pwd=Oracle_26ai

secret/db-admin-secret created

2. Oracle Container Registry credentials: Creates a Docker registry authentication secret that allows Kubernetes to pull
Oracle Database container images from external registry. For example:

kubectl create secret docker-registry oracle-container-registry-secret \
--docker-server=container-registry.oracle.com \
--docker-username=user@your-email.com\
--docker-password=<OCR_AUTH_TOKEN> \
--docker-email=user@your-email.com

12 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

secret/oracle-container-registry-secret created

NOTE: The <OCR_AUTH_TOKEN> is the token you need to generate in Oracle Container

Registry. Refer to

3. Check if the secret has been added:

kubectl get secret

NAME TYPE DATA AGE
db-admin-secret Opaque 1 17m
oracle-container-registry-secret kubernetes.io/dockerconfigjson 1 2m4s

Labeling Worker Nodes for Oracle Database Deployments

If your OKE cluster contains more than one node pool, it is recommended to label the worker nodes that will host Oracle
Database workloads managed by the Oracle Database Kubernetes Operator. Node labeling ensures that database pods are
scheduled only on the intended nodes, providing proper workload isolation, predictable performance, and operational
consistency.

Before applying labels, you must first identify the correct node names in the cluster. This can be done using the following
command:

kubectl get nodes

Once the appropriate nodes have been identified, apply a dedicated label (for example, node-role=database) to each node that
will be used for Oracle Database deployments:

kubectl label node \
oke-amaaaaaakdrwrhiamjydkm3gnrzgyzti-8cfct \
oke-amaaaaaakdrwrhiamjydkm3gnrzgyzti-ncngb \
oke-amaaaaaakdrwrhiamjydkm3gnrzgyzti-7mhsp \
node-role=database

After labeling the nodes, verify that the labels have been applied correctly by filtering the nodes using the label selector:
kubectl get nodes -1 node-role=database

A successful configuration will return only the nodes designated for Oracle Database workloads, confirming that they are
ready to be used by the Oracle Database Operator for scheduling Single Instance Database pods.

Single Instance Database Deployment Manifest

With the required secrets properly configured, the next step is to define the Kubernetes manifest (.yaml file) used to deploy a
Single Instance Oracle Database using the Oracle Database Kubernetes Operator.

The sidb-create-v1.yaml file listed below, defines a Single Instance Oracle Database deployment on Kubernetes using the
Oracle Database Operator. This manifest leverages Kubernetes Custom Resource Definitions (CRDs) to declaratively provision,
configure, and manage the lifecycle of an Oracle Database instance running as a containerized workload on OKE clusters
deployed on Oracle Compute Cloud@Customer or Private Cloud Appliance (PCA).

13 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

https://container-registry.oracle.com/

ORACLE

At a high level, this YAML file instructs the Oracle Database Operator to create a fully functional Oracle Database Enterprise
Edition instance, including persistent storage, security credentials, database configuration parameters, and container image
details. Listed below are the explanation of each section of the file.

API Version and Resource Type: The apiVersion: database.oracle.com/v4 and kind: SingleInstanceDatabase specify that this
resource is managed by the Oracle Database Operator. The operator continuously reconciles this resource to ensure the
database instance is created, configured, and maintained in the desired state.

Metadata: The metadata section defines the Kubernetes object name (sidb-sample) and namespace (default). This name
uniquely identifies the database instance within the cluster and is used by the operator to track and manage the database
lifecycle.

Database Identity and Configuration

e sid: ORCL1 defines the Oracle System Identifier (SID) for the database instance. The SID uniquely identifies the
database within the container.

e edition: enterprise specifies that Oracle Database Enterprise Edition is deployed, enabling advanced enterprise
features.

e charset: AL32UTF8 configures the database character set, which is the recommended Unicode character set for
modern enterprise applications.

e pdbName: orclpdbl creates a Pluggable Database (PDB) inside the Container Database (CDB), enabling multitenant
architecture and application isolation.

Security and Credentials: The adminPassword section references a Kubernetes Secret (db-admin-secret) that securely stores
the database administrative password. This approach ensures sensitive credentials are never embedded directly in the YAML
file, aligning with Kubernetes and enterprise security best practices.

Archivelog Configuration: The archiveLog: true parameter enables Oracle ArchiveLog mode. This is a critical setting for
enterprise workloads, as it supports point-in-time recovery, backup strategies, and integration with disaster recovery and data
protection solutions.

Container Image Configuration: The image block specifies the Oracle Database container image and version (23.5.0.0) pulled
from the Oracle Container Registry. The pullSecrets field references a Kubernetes secret used to authenticate to the registry,
which is especially important in restricted or private network environments such as Compute Cloud@Customer and PCA.

Persistent Storage Configuration: The persistence section defines how database data is stored:

e size: 100Gi allocates persistent storage capacity for database files.

e storageClass: oci-bv specifies the storage backend, mapping the database to OCI Block Volumes in environments
where OCI storage is available (including C3 and PCA).

e accessMode: ReadWriteOnce ensures the volume is mounted by a single node, which is appropriate for a single-
instance database deployment.

This configuration guarantees that database data remains persistent across pod restarts, upgrades, or rescheduling events.

Replica Count: The replicas: 1 setting explicitly deploys a single database pod, aligning with the Single Instance Database
architecture. High availability at the infrastructure layer is typically handled through Kubernetes node resiliency and
underlying storage durability rather than database-level clustering.

14 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

This YAML-driven approach enables fully automated, repeatable, and auditable Oracle Database deployments on Kubernetes
running in customer-controlled environments. It aligns with modern GitOps and Infrastructure-as-Code practices while
preserving enterprise-grade Oracle Database capabilities. The result is a consistent deployment model across OCI public
regions, Compute Cloud@Customer, and Private Cloud Appliance—ideal for regulated, air-gapped, or sovereignty-sensitive
workloads.

cat sidb-create-vl.yaml

apiVersion: database.oracle.com/v4
kind: SingleInstanceDatabase
metadata:

name: sidb-sample

namespace: default

spec:
Use only alphanumeric characters for sid
sid: ORCL1

DB edition
edition: enterprise

Secret containing SIDB password mapped to secretKey
adminPassword:
secretName: db-admin-secret

DB character set
charset: AL32UTF8

PDB name
pdbName: orclpdbl

Enable/Disable Archivelog
archivelog: true

Database image details

image:
pullFrom: container-registry.oracle.com/database/enterprise:23.5.0.0
pullSecrets: oracle-container-registry-secret

Persistent storage configuration
persistence:
size: 100Gi
oci-bv applies to OCI block volumes.
Use "standard" for Minikube or other environments.
storageClass: "oci-bv"
accessMode: "ReadWriteOnce"

Count of Database Pods
replicas: 1

e Apply the sidb-create-vl.yaml file. To apply, run the following command line:

kubectl apply -f sidb-create-vi.yaml

singleinstancedatabase.database.oracle.com/sidb-sample created

Single Instance Database Pod Creation and Initialization

The output below shown above represents the successful application of the Single Instance Database (SIDB) Kubernetes
manifest and the subsequent lifecycle actions orchestrated by the Oracle Database Kubernetes Operator. The operator uses the
SingleInstanceDatabase Custom Resource Definition (CRD) to continuously reconcile the desired state defined in the SIDB

15 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

.yaml file. Once the manifest is applied, the operator schedules a new database pod (sidb-sample-xh30b) onto a worker node
labeled for database workloads and manages all database provisioning and configuration steps.

The pod initially enters the Init phase, during which the operator launches an init container (init-wallet) to prepare the
required Oracle wallet and security artifacts on the persistent volume. After initialization completes, the operator starts the
main database container and triggers the Oracle Database creation process. During this phase, the database pod remains in a
Running but not Ready state, which is expected behavior. The readiness probe is intentionally blocked while the operator
holds a database creation lock (.ORCL1.create_Ick), ensuring that the database is fully provisioned before accepting client
connections.

To monitor the status and progress of the database deployment in real time, the following command can be used:

kubectl get pods -1 app=sidb-sample -w
This command continuously watches the database pod as it transitions through the initialization and creation phases.

The container logs show the complete operator-driven database creation workflow, including listener startup, datafile
creation, instance initialization, pluggable database (PDB) creation, and post-configuration tasks. Once database creation is
complete, the operator releases the creation lock and replaces it with an existence lock, signaling that the database is fully
initialized and operational. At this point, the readiness probe succeeds and the database becomes available for application
connectivity, confirming a successful SIDB deployment on OKE running on Oracle Compute Cloud@Customer or Private
Cloud Appliance.

16 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

kubectl get pods -1 app=sidb-sample -w

NAME READY STATUS RESTARTS AGE
sidb-sample-xh30b 0/1 Init:0/1 2] 10s
~C%

kubectl describe pods sidb-sample-xh3eb

Name: sidb-sample-xh30b
Namespace: default
Priority: 2]
Service Account: default
Node: oke -amaaaaaakdrwrhiamjydkm3gnrzgyzti-ncngb/171.31.8.6
Start Time: Fri, 23 Jan 2026 14:00:17 -0700
Labels: app=sidb-sample
version=

Annotations: <none>
Status: Running
IP: 10.244.8.68
IPs:

IP: 10.244.8.68

Controlled By: SingleInstanceDatabase/sidb-sample
Init Containers:
init-wallet:
Container ID: cri-o://c9505aceae2983cba4c2117e489011840b8a70004c841d32f8defff6ece2558b

Image: container-registry.oracle.com/database/enterprise:21.3.0.0
Image ID: container-
registry.oracle.com/database/enterprise@sha256:c5ad975902cfe523a4ac9f046ec87cdofd41c24118651caPe7194f736aede3c7
Port: <none>
Host Port: <none>
Command:
/bin/sh
Args:
-C

if [| -f $ORACLE_BASE/oradata/.${ORACLE_SID}${CHECKPOINT_FILE_EXTN}] || [! -f
${ORACLE_BASE}/oradata/dbconfig/$ORACLE_SID/.docker_enterprise]; then while [! -f ${WALLET_DIR}/ewallet.p12] ||
pgrep -f $WALLET_CLI > /dev/null; do sleep 0.5; done; fi

State: Terminated
Reason: Completed
Exit Code: (%]
Started: Fri, 23 Jan 2026 14:00:34 -0700
Finished: Fri, 23 Jan 2026 14:00:42 -0700
Ready: True
Restart Count: ©
Environment:

ORACLE_SID: ORCL1
WALLET_CLI: mkstore
WALLET_DIR: /opt/oracle/oradata/dbconfig/${ORACLE_SID}/.wallet

Mounts:
/opt/oracle/oradata from datafiles-vol (rw)
/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-2fdxg (ro)

Containers:
sidb-sample:
Container ID: cri-o://17e75250ce5c26bde6c4506d20456dd59f009c72963c384bac76ce5f0a%e3508

Image: container-registry.oracle.com/database/enterprise:21.3.0.0

Image ID: container-
registry.oracle.com/database/enterprise@sha256:c5ad975902cfe523a4ac9f046ec87cdofd41c24118651cave7194f736aede3c7

Ports: 1521/TCP, 5500/TCP

Host Ports: e/TCP, ©/TCP

State: Running

Started: Fri, 23 Jan 2026 14:00:43 -0700

Ready: False

Restart Count: ©

Readiness: exec [/bin/sh -c if [-f $ORACLE_BASE/checkDBLockStatus.sh]; then

$ORACLE_BASE/checkDBLockStatus.sh ; else $ORACLE_BASE/checkDBStatus.sh; fi] delay=20s timeout=20s period=60s
#success=1 #failure=3

Environment:
SVC_HOST: sidb-sample
SVC_PORT: 1521

17 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

CREATE_PDB: true

ORACLE_SID: ORCL1

WALLET_DIR: /opt/oracle/oradata/dbconfig/${ORACLE_SID}/.wallet
ORACLE_PDB: orclpdbl

ORACLE_CHARACTERSET: AL32UTF8

ORACLE_EDITION: enterprise

INIT_SGA SIZE:
INIT_PGA SIZE:
SKIP_DATAPATCH: true
Mounts:
/opt/oracle/oradata from datafiles-vol (rw)
/var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-2fdxg (ro)

Conditions:
Type Status
PodReadyToStartContainers True
Initialized True
Ready False
ContainersReady False
PodScheduled True
Volumes:
datafiles-vol:
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)

ClaimName: sidb-sample
ReadOnly: false
oracle-pwd-vol:

Type: Secret (a volume populated by a Secret)
SecretName: db-admin-secret
Optional: true
tls-secret-vol:
Type: EmptyDir (a temporary directory that shares a pod's lifetime)
Medium:

SizeLimit: <unset>
custom-scripts-vol:
Type: EmptyDir (a temporary directory that shares a pod's lifetime)
Medium:
SizelLimit: <unset>
kube-api-access-2fdxg:

Type: Projected (a volume that contains injected data from multiple sources)
TokenExpirationSeconds: 3607
ConfigMapName: kube-root-ca.crt
Optional: false
DownwardAPI: true
QoS Class: BestEffort
Node-Selectors: node-role=database
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
Type Reason Age From Message
Normal Scheduled 41s default-scheduler Successfully assigned default/sidb-sample-xh30b

to oke-amaaaaaakdrwrhiamjydkm3gnrzgyzti-ncngb
Normal SuccessfulAttachVolume 27s attachdetach-controller AttachVolume.Attach succeeded for volume "csi-
94254826-91ef-4b77-a7fd-8e032c6ba693"

Normal Pulled 24s kubelet spec.initContainers{init-wallet}: Container image
"container-registry.oracle.com/database/enterprise:21.3.0.0" already present on machine

Normal Created 24s kubelet spec.initContainers{init-wallet}: Created
container: init-wallet

Normal Started 24s kubelet spec.initContainers{init-wallet}: Started
container init-wallet

Normal Pulled 15s kubelet spec.containers{sidb-sample}: Container image
"container-registry.oracle.com/database/enterprise:21.3.0.0" already present on machine

Normal Created 15s kubelet spec.containers{sidb-sample}: Created container:
sidb-sample

Normal Started 15s kubelet spec.containers{sidb-sample}: Started container

sidb-sample

In another terminal, check the logs and status of the database creation:

18 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

kubectl logs -f sidb-sample-xh3@b -c sidb-sample

[2026:01:23 21:00:43]: Acquiring lock .ORCL1.create_lck with heartbeat 30 secs
[2026:01:23 21:00:43]: Lock acquired

[2026:01:23 21:00:43]: Starting heartbeat

[2026:01:23 21:00:43]: Lock held .ORCL1l.create_lck

ORACLE EDITION: ENTERPRISE

LSNRCTL for Linux: Version 21.0.0.0.0 - Production on 23-JAN-2026 21:00:43
Copyright (c) 1991, 2021, Oracle. All rights reserved.
Starting /opt/oracle/product/21c/dbhome_1/bin/tnslsnr: please wait...

TNSLSNR for Linux: Version 21.0.0.0.0 - Production

System parameter file is /opt/oracle/homes/OraDB21Homel/network/admin/listener.ora

Log messages written to /opt/oracle/diag/tnslsnr/sidb-sample-xh30b/listener/alert/log.xml
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1)))

Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=0.0.0.0)(PORT=1521)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1)))
STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for Linux: Version 21.0.0.0.0 - Production

Start Date 23-JAN-2026 21:00:43

Uptime @ days © hr. @ min. O sec

Trace Level off

Security ON: Local OS Authentication

SNMP OFF

Listener Parameter File /opt/oracle/homes/OraDB21Homel/network/admin/listener.ora
Listener Log File /opt/oracle/diag/tnslsnr/sidb-sample-xh30b/listener/alert/log.xml

Listening Endpoints Summary...
(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=08.0.0.0)(PORT=1521)))

The listener supports no services

The command completed successfully

Prepare for db operation

8% complete

Copying database files

31% complete

Creating and starting Oracle instance

32% complete

36% complete

40% complete

43% complete

46% complete

Completing Database Creation

51% complete

54% complete

Creating Pluggable Databases

58% complete

77% complete

Executing Post Configuration Actions

100% complete

Database creation complete. For details check the logfiles at:

/opt/oracle/cfgtoollogs/dbca/ORCL1.

Database Information:

Global Database Name:ORCL1

System Identifier(SID):ORCL1

Look at the log file "/opt/oracle/cfgtoollogs/dbca/ORCL1/ORCL1.1log" for further details.

SQL*Plus: Release 21.0.0.0.0 - Production on Fri Jan 23 21:06:10 2026
Version 21.3.0.0.0

Copyright (c) 1982, 2021, Oracle. All rights reserved.

19 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

Connected to:
Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 - Production
Version 21.3.0.0.0

sQL>
System altered.

SQL>
System altered.

SQL>
Pluggable database altered.

sQL>
PL/SQL procedure successfully completed.

SQL> SQL>
Session altered.

SQL>
User created.

SQL>
Grant succeeded.

sQL>
Grant succeeded.

SQL>
Grant succeeded.

SQL>
User altered.

SQL> SQL> Disconnected from Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 - Production
Version 21.3.0.0.0
The Oracle base remains unchanged with value /opt/oracle

Executing user defined scripts

/opt/oracle/runUserScripts.sh: running /opt/oracle/scripts/extensions/setup/swapLocks.sh
[2026:01:23 21:06:11]: Releasing lock .ORCL1.create_lck

[2026:01:23 21:06:11]: Lock released .ORCL1l.create_lck

[2026:01:23 21:06:11]: Acquiring lock .ORCL1l.exist_lck with heartbeat 30 secs
[2026:01:23 21:06:11]: Lock acquired

[2026:01:23 21:06:11]: Starting heartbeat

[2026:01:23 21:06:11]: Lock held .ORCL1.exist_lck

DONE: Executing user defined scripts
The Oracle base remains unchanged with value /opt/oracle
HHHH R

DATABASE IS READY TO USE!
HAHHHHH B

Post-Deployment Validation and Database Connectivity Checks

Once the database installation is complete, use the following commands to check the database status:

e Check the custom resource status:

kubectl describe singleinstancedatabase sidb-sample

e Look for status updates:

20 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

kubectl get singleinstancedatabase sidb-sample -o yaml | grep -A 10 status

When Ready, the pod status will change to running status as listed below:

kubectl get pod sidb-sample-xh30b

NAME READY STATUS RESTARTS AGE
sidb-sample-xh3eb 1/1 Running @ 81m

Test Connection with the database once ready

e Get the database service

kubectl get svc sidb-sample

e Option 1: Connect from within the pod
kubectl exec -it sidb-sample-xh3@b -- sqlplus / as sysdba

Defaulted container "sidb-sample" out of: sidb-sample, init-wallet (init)

SQL*Plus: Release 21.0.0.0.0 - Production on Sat Jan 24 00:37:34 2026
Version 21.3.0.0.0

Copyright (c) 1982, 2021, Oracle. All rights reserved.
Connected to:
Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 - Production

Version 21.3.0.0.0

SQL>

e Option 2: Connect to the PDB
kubectl exec -it sidb-sample-xh3@b -- sqlplus sys/<your-password>@localhost:1521/0RCLPDB1 as sysdba

e Option 3: From another pod in the cluster

kubectl run sqlplus-client --image=container-registry.oracle.com/database/instantclient:21 -it --rm -- \
sqlplus sys/<your-password>@sidb-sample:1521/0RCL1 as sysdba

Verify Database Configuration

e Check database mode
SELECT name, open_mode, log_mode FROM v$database;

NAME OPEN_MODE LOG_MODE

ORCL1 READ WRITE ARCHIVELOG

e Check PDBs

21 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

SELECT name, open_mode FROM v$pdbs;
NAME

PDB$SEED
READ ONLY

ORCLPDB1
READ WRITE

e Check archive log destination
SHOW PARAMETER db_recovery_file_dest;

NAME TYPE VALUE

db_recovery file dest string /opt/oracle/oradata/fast_recov
ery_area

db_recovery file dest_size big integer 560G

e Check SGA/PGA

SHOW PARAMETER sga_target;
SHOW PARAMETER pga_aggregate_target;

EXIT;
EOF

With the Single Instance Oracle Database successfully deployed and validated on OKE running on Oracle Compute
Cloud@Customer or Private Cloud Appliance, the environment is now ready for application onboarding and day-2 operations.
The next steps include creating application schemas and tables within the ORCLPDB1 pluggable database, configuring backup
and recovery policies to meet enterprise data protection requirements, and setting up monitoring and alerting to ensure
operational visibility and performance management.

As application demands grow, additional pluggable databases (PDBs) can also be created to support workload isolation and
future scalability.

Together, these steps complete the transition from initial deployment to a fully operational, production-ready Oracle Database
platform on Kubernetes.

22 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

ORACLE

Connect with us
Call +1.800.0RACLEI or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.
B blogs.oracle.com €} facebook.com/oracle 2 twitter.com/oracle

Copyright © 2026, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-
free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We
specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Some regulatory certifications or registrations to products or services referenced on this website are held by Cerner Corporation. Cerner Corporation is a wholly-owned subsidiary of Oracle. Cerner Corporation
is an ONC-certified health IT developer and a registered medical device manufacturer in the United States and other jurisdictions worldwide.

This document may include some forward-looking content for illustrative purposes only. Some products and features discussed are indicative of the products and features of a prospective future launch in the
United States only or elsewhere. Not all products and features discussed are currently offered for sale in the United States or elsewhere. Products and features of the actual offering may differ from those
discussed in this document and may vary from country to country. Any timelines contained in this document are indicative only. Timelines and product features may depend on regulatory approvals or
certification for individual products or features in the applicable country or region.

Author: Anderson Souza

23 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

	Purpose statement
	Introduction
	Prerequisites
	Deployment
	OKE Cluster Access and Security Configuration
	Prerequisites
	Certificate Management and Oracle Database Operator Status on OKE (Compute Cloud@Customer / PCA)
	Enabling Role Bindings

	Deploying SIDB (Single-Instance Database) with the Oracle Database Operator
	Labeling Worker Nodes for Oracle Database Deployments
	Single Instance Database Deployment Manifest
	Single Instance Database Pod Creation and Initialization
	Post-Deployment Validation and Database Connectivity Checks

