

Deploying Oracle Database Operator

Cluster Add-on for Oracle Kubernetes

Engine (OKE) on Compute

Cloud@Customer or Private Cloud

Appliance
Version 1.0

Copyright © 2026, Oracle and/or its affiliates

Public

2 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

Purpose statement

The purpose of this document is to describe how the Oracle Database Operator cluster add-on for Oracle Kubernetes Engine

(OKE) on Compute Cloud@Customer and Private Cloud Appliance enables automated, Kubernetes-native management of

Oracle Database workloads.

This paper provides guidance for deploying and configuring the operator to help development, database, DevOps, and GitOps

teams simplify operations, reduce deployment complexity, and accelerate the lifecycle management of Oracle databases on

Kubernetes.

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of

Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle software

license and service agreement, which has been executed and with which you agree to comply. This document and information

contained herein may not be disclosed, copied, reproduced or distributed to anyone outside Oracle without prior written

consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual

agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation and

upgrade of the product features described. It is not a commitment to deliver any material, code, or functionality, and should

not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or

functionality described in this document remains at the sole discretion of Oracle. Due to the nature of the product

architecture, it may not be possible to safely include all features described in this document without risking significant

destabilization of the code.

This document may include some forward-looking content for illustrative purposes only. Some products and features discussed

are indicative of the products and features of a prospective future launch in the United States only or elsewhere. Not all

products and features discussed are currently offered for sale in the United States or elsewhere. Products and features of the

actual offering may differ from those discussed in this document and may vary from country to country. Any timelines

contained in this document are indicative only. Timelines and product features may depend on regulatory approvals or

certification for individual products or features in the applicable country or region.

3 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

Table of contents

Purpose statement 2

Introduction 4

Prerequisites 5

Deployment 5

OKE Cluster Access and Security Configuration 8

Prerequisites 8

Certificate Management and Oracle Database Operator Status on

OKE (Compute Cloud@Customer / PCA) 9

Enabling Role Bindings 10

Deploying SIDB (Single-Instance Database) with the Oracle

Database Operator 12

Labeling Worker Nodes for Oracle Database Deployments 13

Single Instance Database Deployment Manifest 13

Single Instance Database Pod Creation and Initialization 15

Post-Deployment Validation and Database Connectivity Checks 20

4 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

Introduction

On Compute Cloud@Customer and Private Cloud Appliance, cluster add-ons are optional components that can be deployed on

Kubernetes clusters to extend core Kubernetes capabilities and enhance cluster manageability and performance.

The Oracle Database Operator cluster add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer and Private

Cloud Appliance extends the Kubernetes API by introducing custom resources and controllers that automate the Oracle

Database lifecycle. This enables developers, database administrators, DevOps, and GitOps teams to significantly reduce the

time, effort, and operational complexity associated with deploying, operating, and managing Oracle databases on Kubernetes.

This solution paper provides detailed guidance on how to deploy and configure the Oracle Database Operator cluster add-on

for OKE on Compute Cloud@Customer and Private Cloud Appliance.

Note: This content is provided for informational purposes and self-supported guidance only. Consultancy or other assistance

related to the content is not covered under the Oracle Support contract or associated service requests. If you have questions or

additional needs, then please reach out to your Oracle Sales contact directly.

5 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

Prerequisites

Before deploying the Oracle Database Operator cluster add-on for Oracle Kubernetes Engine (OKE) on Compute

Cloud@Customer or Private Cloud Appliance, ensure that the following prerequisites are met.

• At least an Oracle Kubernetes Engine (OKE) deployed on Compute Cloud@Customer or Private Cloud Appliance.

• The Certificate Manager add-on must be in ACTIVE state before you can use the Database Operator add-on.

NOTE: Oracle Database Operator add-on can only be enabled on an existing OKE cluster.

Deployment

Follow the steps listed below to deploy the Oracle Database Operator cluster add-on for Oracle Kubernetes Engine (OKE) on

Compute Cloud@Customer or Private Cloud Appliance:

1. On Compute Cloud@Customer or Private Cloud Appliance management UI, navigate to Dashboard, then select

Containers. Under the Containers section, click Kubernetes Clusters (OKE) and select your OKE cluster. This opens

the cluster configuration page. Scroll to the bottom of the page and, under Resources, click Add-ons to display the list

of available cluster add-ons.

NOTE: Since this is the first time configuring cluster add-ons on this Compute Cloud@Customer

or Private Cloud Appliance, all add-ons will be listed as disabled by default.

Figure 1. List of OKE Add-ons available on Compute Cloud@Customer or Private Cloud Appliance.

2. Activate the Certificate Manager add-on before activating the Database Operator add-on. Click on the three dots

under the Actions column.

3. Select the Enable checkbox for the add-on you want to deploy and enable for this cluster.

6 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

Figure 2. Activating Add-ons for OKE on Compute Cloud@Customer or Private Cloud Appliance.

4. Add-on Version Update Options: When enabling a cluster add-on on Compute Cloud@Customer, you must define

how the add-on version is managed as new releases become available and as additional Kubernetes versions are

supported by Oracle Kubernetes Engine (OKE). Two update strategies are supported: Automatic Updates or Manual

Version Selection.

• Automatic Updates (Default): The add-on is automatically deployed using the latest version compatible with the

Kubernetes version running on the cluster. When newer add-on versions are released, the add-on is

automatically updated, provided the new version is compatible with both the cluster’s Kubernetes version and

the versions supported by OKE. We recommend keeping Kubernetes clusters upgraded to supported versions to

ensure continued compatibility and timely add-on updates.

• Manual Version Selection: This option allows you to pin the add-on to a specific version, which remains in place

until manually changed. The selected add-on version must be compatible with the Kubernetes version running

on the cluster. When using the OCI Console, only compatible versions are displayed.

5. Configuration: When you enable the Certificate Manager cluster add-on, you can pass the following configuration in

key/value pairs as arguments. On this example, I am using 2 replicas only.

a. Select Add configuration to select a configuration option and specify a value.

b. Select Add configuration to set another configuration parameter.

Listed below are the screenshots with the Configuration part and the list of configurable parameters which can be set on

Certificate Manager Add-on and Oracle DB Operator.

Figure 3. Configuration for Certificate Manager and Oracle Database Operator Add-ons for OKE on Compute Cloud@Customer or Private Cloud

Appliance.

7 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

Figure 4. Configuration Options for Certificate Manager Add-ons for OKE on Compute Cloud@Customer or Private Cloud Appliance.

Figure 5. Configuration Options for Oracle Database Operator Add-ons for OKE on Compute Cloud@Customer or Private Cloud Appliance.

8 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

(Default) Automatic Updates: If possible, this option automatically updates the add-on when new versions become available.

This is the default behavior. The newest version of the add-on that supports the Kubernetes version that is specified for the

cluster is deployed when you install the add-on. When a newer version of the add-on is released, the add-on is automatically

updated if the new add-on version is compatible with the versions of Kubernetes that are supported by OKE at that time and

the version of Kubernetes that the cluster is running. Best practice is to keep your clusters upgraded so that they are always

running versions of Kubernetes that are listed as currently supported by OKE. See Supported Versions of

Kubernetes in Kubernetes Engine (OKE) on Compute Cloud@Customer and Updating an OKE Cluster.

Choose a Version: This option keeps the add-on on the specific version that you select until you change it.

If you specify that you want to choose the version of the add-on to deploy, the version you choose is enabled. Ensure that the

add-on version is compatible with the Kubernetes version that you have selected for the cluster or that is already running on

the cluster. When you use the Console, you select the version from a list. All versions on the list are compatible with the

Kubernetes version that you have selected for the cluster or that is already running on the cluster.

If you select Choose a Version, then you must select a version from the list.

Figure 6. Certificate Manager and Oracle Database Operator Add-ons Status

OKE Cluster Access and Security Configuration

Prerequisites

Before accessing the Oracle Kubernetes Engine (OKE) cluster running on Compute Cloud@Customer (C3) or Oracle Private

Cloud Appliance (PCA), ensure the following prerequisites are met on the client system (Oracle Linux, macOS, or Windows):

• OCI Command Line Interface (OCI CLI) is downloaded, installed, and configured with valid OCI IAM credentials

(tenancy OCID, user OCID, API signing key, and region).

• Network connectivity from the client system to the C3 or PCA control plane endpoint.

• TLS trust configuration that allows the client to validate the Kubernetes API server certificate.

• kubectl installed and available in the system PATH.

Refer to the OCI CLI installation guides by operating system:

• Oracle Linux / Linux: https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm#InstallingCLI__linux

• macOS: https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm#InstallingCLI__macos_homebrew

• Windows: https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm#InstallingCLI__windows

https://docs.oracle.com/en-us/iaas/compute-cloud-at-customer/cmn/oke/container-engine-for-kubernetes.htm#container-engine-for-kubernetes
https://docs.oracle.com/en-us/iaas/compute-cloud-at-customer/cmn/oke/updating-a-kubernetes-cluster.htm#updating-a-kubernetes-cluster
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm#InstallingCLI__linux
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm#InstallingCLI__macos_homebrew
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm#InstallingCLI__windows

9 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

During the initial configuration of Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer (C3) or Oracle Private

Cloud Appliance (PCA), the following commands perform two essential setup tasks required for deploying Oracle Database

using the Oracle Database Operator.

The curl command is used to validate connectivity to the C3 or PCA control plane and to retrieve the certificate authority

(CA) chain. This step ensures that the Kubernetes API endpoint is trusted by the client system and that TLS communication

can be established securely. Run the following curl command line below and copy the content to a new file (~/.oci/ca.crt).

curl -vk https://iaas.<fqdn_of_your_c3_or_pca/cachain

The oci ce cluster create-kubeconfig trigger then generates and configures the local Kubernetes kubeconfig file, enabling

authenticated access to the OKE cluster using OCI IAM–based authentication tokens. This configuration allows standard

Kubernetes tooling, such as kubectl, to securely interact with the cluster. Run the following command line below to create a

new kubeconfig file.

oci ce cluster create-kubeconfig --cluster-id ocid1.ccccluster.oc1.us-sanjose-
1.ivcyvpvq5wa.amaaaaaakdrwrhiam44wu43tmz2gk6tgmjzgenjzg5wdeylegryde3jrna2q --file $HOME/.kube/config --token-
version 2.0.0 --kube-endpoint PUBLIC_ENDPOINT --cert-bundle ~/.oci/ca.crt

New config written to the Kubeconfig file $HOME/.kube/config

Together, these steps establish secure, authenticated communication with the OKE cluster and prepare the environment for

managing Oracle Database deployments through the Oracle Database Operator on C3 or PCA.

Certificate Management and Oracle Database Operator Status on OKE

(Compute Cloud@Customer / PCA)

The kubectl get all -n cert-manager command provides a consolidated view of all Kubernetes resources deployed by cert-

manager within the cert-manager namespace on an OKE cluster running on Oracle Compute Cloud@Customer or Private

Cloud Appliance (PCA). The output confirms that all core cert-manager components are healthy and operational: the cert-

manager controller (which reconciles Certificate and Issuer resources), the CA injector (which automatically injects trusted

CA bundles into Kubernetes objects), and the webhook (which validates and mutates certificate-related resources). Each

component is deployed as a Kubernetes Deployment with one ready Pod and exposed internally via ClusterIP Services,

indicating a stable TLS automation framework for Kubernetes workloads.

Additionally, the kubectl get pods -n oracle-database-operator-system command confirms that the Oracle Database Operator

controller is running successfully. This operator manages the full lifecycle of Oracle Databases on Kubernetes, including

provisioning, configuration, and ongoing operations.

Together, these results demonstrate a healthy Kubernetes environment that supports secure TLS certificate automation and

enterprise-grade database services on OKE running in customer-managed private cloud environments.

10 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

kubectl get all -n cert-manager
NAME READY STATUS RESTARTS AGE
pod/cert-manager-57547f5ddd-xz77p 1/1 Running 0 3d16h
pod/cert-manager-cainjector-7f5bcd98bf-lg99g 1/1 Running 0 3d16h
pod/cert-manager-webhook-6684bdd794-dznn8 1/1 Running 0 3d16h

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/cert-manager ClusterIP 10.136.86.242 <none> 9402/TCP 3d16h
service/cert-manager-cainjector ClusterIP 10.138.67.127 <none> 9402/TCP 3d16h
service/cert-manager-webhook ClusterIP 10.139.239.138 <none> 443/TCP,9402/TCP 3d16h

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/cert-manager 1/1 1 1 3d16h
deployment.apps/cert-manager-cainjector 1/1 1 1 3d16h
deployment.apps/cert-manager-webhook 1/1 1 1 3d16h

NAME DESIRED CURRENT READY AGE
replicaset.apps/cert-manager-57547f5ddd 1 1 1 3d16h
replicaset.apps/cert-manager-cainjector-7f5bcd98bf 1 1 1 3d16h
replicaset.apps/cert-manager-webhook-6684bdd794 1 1 1 3d16h
ansouza@ansouza-mac .oci %

kubectl get pods -n oracle-database-operator-system
NAME READY STATUS RESTARTS AGE
oracle-database-operator-controller-manager-5bfbbc869-m487g 1/1 Running 0 3d16h

Enabling Role Bindings

To enable proper operation of the Oracle Database Kubernetes Operator, cluster-level RBAC permissions are required. The

operator is responsible for orchestrating database lifecycles that depend on cluster-scoped resources such as PersistentVolumes,

Nodes, and DaemonSets, which are not confined to a single namespace. For this reason, a dedicated ClusterRole is defined to

grant read and write access to these resources, and a corresponding ClusterRoleBinding associates these permissions with the

ServiceAccount under which the operator runs. This RBAC configuration allows the operator to provision and manage

database storage, understand node topology for high availability and RAC placement, and deploy node-level components

required for database initialization and management. Without these cluster-level permissions, the operator would be unable to

reconcile database state or provision storage correctly, resulting in failed or incomplete database deployments.

Listed below is a sample of a role bindings.yaml to enable proper operation of the Oracle Database Kubernetes Operator and

how to apply the role_bindings.yaml file. Apply the role bindings.yaml file using the kubectl apply -f role_bindings.yaml

command line listed below.

11 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

cat role_bindings.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: pv-cluster-scope-role
rules:
- apiGroups:
 - ""
 resources:
 - persistentvolumes
 - daemonsets
 - nodes
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - update

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: pv-cluster-scope-rolebinding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: pv-cluster-scope-role
subjects:
- kind: ServiceAccount
 name: default
 namespace: oracle-database-operator-system

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: oracle-database-operator-oracle-database-operator-manager-rolebinding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: oracle-database-operator-manager-role
subjects:
- kind: ServiceAccount
 name: default
 namespace: oracle-database-operator-system

kubectl apply -f role_bindings.yaml

clusterrole.rbac.authorization.k8s.io/pv-cluster-scope-role created
clusterrolebinding.rbac.authorization.k8s.io/pv-cluster-scope-rolebinding created
clusterrolebinding.rbac.authorization.k8s.io/oracle-database-operator-oracle-database-operator-manager-rolebinding
created

Since the Oracle Database Operator is managed by a deployment, you should restart the deployment, this way, new pod starts

with the updated RBAC. Run the following command line listed below:

kubectl rollout restart deployment oracle-database-operator-controller-manager \
 -n oracle-database-operator-system

deployment.apps/oracle-database-operator-controller-manager restarted

Verify if the deployment has been restarted correctly:

12 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

kubectl get pods -n oracle-database-operator-system

NAME READY STATUS RESTARTS AGE
oracle-database-operator-controller-manager-78bfbc698f-9knc5 1/1 Running 0 3m11s

Check operator logs for RBAC errors (should be clean)

kubectl logs -n oracle-database-operator-system \

 deployment/oracle-database-operator-controller-manager | grep -i rbac

(no output = good)

Verify permissions explicitly
kubectl auth can-i get persistentvolumes --as=system:serviceaccount:oracle-database-operator-system:default

Expected output: yes

The output above means:

• Controller initialized successfully

• Informers/watches were created

• RBAC permissions are now valid

• Operator is fully ready to reconcile databases

Deploying SIDB (Single-Instance Database) with the Oracle Database

Operator

With OKE cluster access and security configurations properly configured as described in the previous section, the

environment is now prepared for deploying the Single Instance Database (SIDB) on OKE worker nodes. This section provides

the detailed steps for executing this deployment.

During SIDB deployment, two Kubernetes secrets are created to support secure database provisioning. The first secret stores

the Oracle database administrator password and is consumed by the Oracle Database Operator during database initialization.

The second secret contains authentication credentials for Oracle Container Registry, enabling Kubernetes to securely pull the

Oracle Database container images required to run the database. Together, these secrets allow the operator to provision and

start the Single-Instance Database without embedding credentials directly in manifests or pod specifications.

1. Set the database admin password: The kubectl command line listed below creates a Kubernetes secret that stores the

Oracle database administrator password. Internally the oracle_pwd is base64-encoded password format. For example:

kubectl create secret generic db-admin-secret --from-literal=oracle_pwd=Oracle_26ai

secret/db-admin-secret created

2. Oracle Container Registry credentials: Creates a Docker registry authentication secret that allows Kubernetes to pull

Oracle Database container images from external registry. For example:

kubectl create secret docker-registry oracle-container-registry-secret \
 --docker-server=container-registry.oracle.com \
 --docker-username=user@your-email.com\
 --docker-password=<OCR_AUTH_TOKEN> \
 --docker-email=user@your-email.com

13 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

secret/oracle-container-registry-secret created

NOTE: The <OCR_AUTH_TOKEN> is the token you need to generate in Oracle Container

Registry. Refer to https://container-registry.oracle.com/

3. Check if the secret has been added:

kubectl get secret
NAME TYPE DATA AGE
db-admin-secret Opaque 1 17m
oracle-container-registry-secret kubernetes.io/dockerconfigjson 1 2m4s

Labeling Worker Nodes for Oracle Database Deployments

If your OKE cluster contains more than one node pool, it is recommended to label the worker nodes that will host Oracle

Database workloads managed by the Oracle Database Kubernetes Operator. Node labeling ensures that database pods are

scheduled only on the intended nodes, providing proper workload isolation, predictable performance, and operational

consistency.

Before applying labels, you must first identify the correct node names in the cluster. This can be done using the following

command:

kubectl get nodes

Once the appropriate nodes have been identified, apply a dedicated label (for example, node-role=database) to each node that

will be used for Oracle Database deployments:

kubectl label node \
 oke-amaaaaaakdrwrhiamjydkm3gnrzgyzti-8cfct \
 oke-amaaaaaakdrwrhiamjydkm3gnrzgyzti-ncngb \
 oke-amaaaaaakdrwrhiamjydkm3gnrzgyzti-7mhsp \
 node-role=database

After labeling the nodes, verify that the labels have been applied correctly by filtering the nodes using the label selector:

kubectl get nodes -l node-role=database

A successful configuration will return only the nodes designated for Oracle Database workloads, confirming that they are

ready to be used by the Oracle Database Operator for scheduling Single Instance Database pods.

Single Instance Database Deployment Manifest

With the required secrets properly configured, the next step is to define the Kubernetes manifest (.yaml file) used to deploy a

Single Instance Oracle Database using the Oracle Database Kubernetes Operator.

The sidb-create-v1.yaml file listed below, defines a Single Instance Oracle Database deployment on Kubernetes using the

Oracle Database Operator. This manifest leverages Kubernetes Custom Resource Definitions (CRDs) to declaratively provision,

configure, and manage the lifecycle of an Oracle Database instance running as a containerized workload on OKE clusters

deployed on Oracle Compute Cloud@Customer or Private Cloud Appliance (PCA).

https://container-registry.oracle.com/

14 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

At a high level, this YAML file instructs the Oracle Database Operator to create a fully functional Oracle Database Enterprise

Edition instance, including persistent storage, security credentials, database configuration parameters, and container image

details. Listed below are the explanation of each section of the file.

API Version and Resource Type: The apiVersion: database.oracle.com/v4 and kind: SingleInstanceDatabase specify that this

resource is managed by the Oracle Database Operator. The operator continuously reconciles this resource to ensure the

database instance is created, configured, and maintained in the desired state.

Metadata: The metadata section defines the Kubernetes object name (sidb-sample) and namespace (default). This name

uniquely identifies the database instance within the cluster and is used by the operator to track and manage the database

lifecycle.

Database Identity and Configuration

• sid: ORCL1 defines the Oracle System Identifier (SID) for the database instance. The SID uniquely identifies the

database within the container.

• edition: enterprise specifies that Oracle Database Enterprise Edition is deployed, enabling advanced enterprise

features.

• charset: AL32UTF8 configures the database character set, which is the recommended Unicode character set for

modern enterprise applications.

• pdbName: orclpdb1 creates a Pluggable Database (PDB) inside the Container Database (CDB), enabling multitenant

architecture and application isolation.

Security and Credentials: The adminPassword section references a Kubernetes Secret (db-admin-secret) that securely stores

the database administrative password. This approach ensures sensitive credentials are never embedded directly in the YAML

file, aligning with Kubernetes and enterprise security best practices.

Archivelog Configuration: The archiveLog: true parameter enables Oracle ArchiveLog mode. This is a critical setting for

enterprise workloads, as it supports point-in-time recovery, backup strategies, and integration with disaster recovery and data

protection solutions.

Container Image Configuration: The image block specifies the Oracle Database container image and version (23.5.0.0) pulled

from the Oracle Container Registry. The pullSecrets field references a Kubernetes secret used to authenticate to the registry,

which is especially important in restricted or private network environments such as Compute Cloud@Customer and PCA.

Persistent Storage Configuration: The persistence section defines how database data is stored:

• size: 100Gi allocates persistent storage capacity for database files.

• storageClass: oci-bv specifies the storage backend, mapping the database to OCI Block Volumes in environments

where OCI storage is available (including C3 and PCA).

• accessMode: ReadWriteOnce ensures the volume is mounted by a single node, which is appropriate for a single-

instance database deployment.

This configuration guarantees that database data remains persistent across pod restarts, upgrades, or rescheduling events.

Replica Count: The replicas: 1 setting explicitly deploys a single database pod, aligning with the Single Instance Database

architecture. High availability at the infrastructure layer is typically handled through Kubernetes node resiliency and

underlying storage durability rather than database-level clustering.

15 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

This YAML-driven approach enables fully automated, repeatable, and auditable Oracle Database deployments on Kubernetes

running in customer-controlled environments. It aligns with modern GitOps and Infrastructure-as-Code practices while

preserving enterprise-grade Oracle Database capabilities. The result is a consistent deployment model across OCI public

regions, Compute Cloud@Customer, and Private Cloud Appliance—ideal for regulated, air-gapped, or sovereignty-sensitive

workloads.

cat sidb-create-v1.yaml

apiVersion: database.oracle.com/v4
kind: SingleInstanceDatabase
metadata:
 name: sidb-sample
 namespace: default

spec:
 ## Use only alphanumeric characters for sid
 sid: ORCL1

 ## DB edition
 edition: enterprise

 ## Secret containing SIDB password mapped to secretKey
 adminPassword:
 secretName: db-admin-secret

 ## DB character set
 charset: AL32UTF8

 ## PDB name
 pdbName: orclpdb1

 ## Enable/Disable ArchiveLog
 archiveLog: true

 ## Database image details
 image:
 pullFrom: container-registry.oracle.com/database/enterprise:23.5.0.0
 pullSecrets: oracle-container-registry-secret

 ## Persistent storage configuration
 persistence:
 size: 100Gi
 # oci-bv applies to OCI block volumes.
 # Use "standard" for Minikube or other environments.
 storageClass: "oci-bv"
 accessMode: "ReadWriteOnce"

 ## Count of Database Pods
 replicas: 1

• Apply the sidb-create-v1.yaml file. To apply, run the following command line:

kubectl apply -f sidb-create-v1.yaml

singleinstancedatabase.database.oracle.com/sidb-sample created

Single Instance Database Pod Creation and Initialization

The output below shown above represents the successful application of the Single Instance Database (SIDB) Kubernetes

manifest and the subsequent lifecycle actions orchestrated by the Oracle Database Kubernetes Operator. The operator uses the

SingleInstanceDatabase Custom Resource Definition (CRD) to continuously reconcile the desired state defined in the SIDB

16 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

.yaml file. Once the manifest is applied, the operator schedules a new database pod (sidb-sample-xh30b) onto a worker node

labeled for database workloads and manages all database provisioning and configuration steps.

The pod initially enters the Init phase, during which the operator launches an init container (init-wallet) to prepare the

required Oracle wallet and security artifacts on the persistent volume. After initialization completes, the operator starts the

main database container and triggers the Oracle Database creation process. During this phase, the database pod remains in a

Running but not Ready state, which is expected behavior. The readiness probe is intentionally blocked while the operator

holds a database creation lock (.ORCL1.create_lck), ensuring that the database is fully provisioned before accepting client

connections.

To monitor the status and progress of the database deployment in real time, the following command can be used:

kubectl get pods -l app=sidb-sample -w

This command continuously watches the database pod as it transitions through the initialization and creation phases.

The container logs show the complete operator-driven database creation workflow, including listener startup, datafile

creation, instance initialization, pluggable database (PDB) creation, and post-configuration tasks. Once database creation is

complete, the operator releases the creation lock and replaces it with an existence lock, signaling that the database is fully

initialized and operational. At this point, the readiness probe succeeds and the database becomes available for application

connectivity, confirming a successful SIDB deployment on OKE running on Oracle Compute Cloud@Customer or Private

Cloud Appliance.

17 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

kubectl get pods -l app=sidb-sample -w

NAME READY STATUS RESTARTS AGE
sidb-sample-xh30b 0/1 Init:0/1 0 10s
^C%

kubectl describe pods sidb-sample-xh30b

Name: sidb-sample-xh30b
Namespace: default
Priority: 0
Service Account: default
Node: oke-amaaaaaakdrwrhiamjydkm3gnrzgyzti-ncngb/171.31.8.6
Start Time: Fri, 23 Jan 2026 14:00:17 -0700
Labels: app=sidb-sample
 version=
Annotations: <none>
Status: Running
IP: 10.244.8.68
IPs:
 IP: 10.244.8.68
Controlled By: SingleInstanceDatabase/sidb-sample
Init Containers:
 init-wallet:
 Container ID: cri-o://c9505aceae2983cba4c2117e489011840b8a70004c841d32f8defff6ece2558b
 Image: container-registry.oracle.com/database/enterprise:21.3.0.0
 Image ID: container-
registry.oracle.com/database/enterprise@sha256:c5ad975902cfe523a4ac9f046ec87cd0fd41c24118651ca0e7194f736ae4e3c7
 Port: <none>
 Host Port: <none>
 Command:
 /bin/sh
 Args:
 -c
 if [! -f $ORACLE_BASE/oradata/.${ORACLE_SID}${CHECKPOINT_FILE_EXTN}] || [! -f
${ORACLE_BASE}/oradata/dbconfig/$ORACLE_SID/.docker_enterprise]; then while [! -f ${WALLET_DIR}/ewallet.p12] ||
pgrep -f $WALLET_CLI > /dev/null; do sleep 0.5; done; fi
 State: Terminated
 Reason: Completed
 Exit Code: 0
 Started: Fri, 23 Jan 2026 14:00:34 -0700
 Finished: Fri, 23 Jan 2026 14:00:42 -0700
 Ready: True
 Restart Count: 0
 Environment:
 ORACLE_SID: ORCL1
 WALLET_CLI: mkstore
 WALLET_DIR: /opt/oracle/oradata/dbconfig/${ORACLE_SID}/.wallet
 Mounts:
 /opt/oracle/oradata from datafiles-vol (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-2fdxg (ro)
Containers:
 sidb-sample:
 Container ID: cri-o://17e75250ce5c26bde6c4506d20456dd59f009c72963c384bac76ce5f0a9e3508
 Image: container-registry.oracle.com/database/enterprise:21.3.0.0
 Image ID: container-
registry.oracle.com/database/enterprise@sha256:c5ad975902cfe523a4ac9f046ec87cd0fd41c24118651ca0e7194f736ae4e3c7
 Ports: 1521/TCP, 5500/TCP
 Host Ports: 0/TCP, 0/TCP
 State: Running
 Started: Fri, 23 Jan 2026 14:00:43 -0700
 Ready: False
 Restart Count: 0
 Readiness: exec [/bin/sh -c if [-f $ORACLE_BASE/checkDBLockStatus.sh]; then
$ORACLE_BASE/checkDBLockStatus.sh ; else $ORACLE_BASE/checkDBStatus.sh; fi] delay=20s timeout=20s period=60s
#success=1 #failure=3
 Environment:
 SVC_HOST: sidb-sample
 SVC_PORT: 1521

18 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

 CREATE_PDB: true
 ORACLE_SID: ORCL1
 WALLET_DIR: /opt/oracle/oradata/dbconfig/${ORACLE_SID}/.wallet
 ORACLE_PDB: orclpdb1
 ORACLE_CHARACTERSET: AL32UTF8
 ORACLE_EDITION: enterprise
 INIT_SGA_SIZE:
 INIT_PGA_SIZE:
 SKIP_DATAPATCH: true
 Mounts:
 /opt/oracle/oradata from datafiles-vol (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-2fdxg (ro)
Conditions:
 Type Status
 PodReadyToStartContainers True
 Initialized True
 Ready False
 ContainersReady False
 PodScheduled True
Volumes:
 datafiles-vol:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
 ClaimName: sidb-sample
 ReadOnly: false
 oracle-pwd-vol:
 Type: Secret (a volume populated by a Secret)
 SecretName: db-admin-secret
 Optional: true
 tls-secret-vol:
 Type: EmptyDir (a temporary directory that shares a pod's lifetime)
 Medium:
 SizeLimit: <unset>
 custom-scripts-vol:
 Type: EmptyDir (a temporary directory that shares a pod's lifetime)
 Medium:
 SizeLimit: <unset>
 kube-api-access-2fdxg:
 Type: Projected (a volume that contains injected data from multiple sources)
 TokenExpirationSeconds: 3607
 ConfigMapName: kube-root-ca.crt
 Optional: false
 DownwardAPI: true
QoS Class: BestEffort
Node-Selectors: node-role=database
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
 node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 41s default-scheduler Successfully assigned default/sidb-sample-xh30b
to oke-amaaaaaakdrwrhiamjydkm3gnrzgyzti-ncngb
 Normal SuccessfulAttachVolume 27s attachdetach-controller AttachVolume.Attach succeeded for volume "csi-
94254826-91ef-4b77-a7fd-8e032c6ba693"
 Normal Pulled 24s kubelet spec.initContainers{init-wallet}: Container image
"container-registry.oracle.com/database/enterprise:21.3.0.0" already present on machine
 Normal Created 24s kubelet spec.initContainers{init-wallet}: Created
container: init-wallet
 Normal Started 24s kubelet spec.initContainers{init-wallet}: Started
container init-wallet
 Normal Pulled 15s kubelet spec.containers{sidb-sample}: Container image
"container-registry.oracle.com/database/enterprise:21.3.0.0" already present on machine
 Normal Created 15s kubelet spec.containers{sidb-sample}: Created container:
sidb-sample
 Normal Started 15s kubelet spec.containers{sidb-sample}: Started container
sidb-sample

In another terminal, check the logs and status of the database creation:

19 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

kubectl logs -f sidb-sample-xh30b -c sidb-sample

[2026:01:23 21:00:43]: Acquiring lock .ORCL1.create_lck with heartbeat 30 secs
[2026:01:23 21:00:43]: Lock acquired
[2026:01:23 21:00:43]: Starting heartbeat
[2026:01:23 21:00:43]: Lock held .ORCL1.create_lck
ORACLE EDITION: ENTERPRISE

LSNRCTL for Linux: Version 21.0.0.0.0 - Production on 23-JAN-2026 21:00:43

Copyright (c) 1991, 2021, Oracle. All rights reserved.

Starting /opt/oracle/product/21c/dbhome_1/bin/tnslsnr: please wait...

TNSLSNR for Linux: Version 21.0.0.0.0 - Production
System parameter file is /opt/oracle/homes/OraDB21Home1/network/admin/listener.ora
Log messages written to /opt/oracle/diag/tnslsnr/sidb-sample-xh30b/listener/alert/log.xml
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1)))
Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=0.0.0.0)(PORT=1521)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Linux: Version 21.0.0.0.0 - Production
Start Date 23-JAN-2026 21:00:43
Uptime 0 days 0 hr. 0 min. 0 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File /opt/oracle/homes/OraDB21Home1/network/admin/listener.ora
Listener Log File /opt/oracle/diag/tnslsnr/sidb-sample-xh30b/listener/alert/log.xml
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=0.0.0.0)(PORT=1521)))
The listener supports no services
The command completed successfully
Prepare for db operation
8% complete
Copying database files
31% complete
Creating and starting Oracle instance
32% complete
36% complete
40% complete
43% complete
46% complete
Completing Database Creation
51% complete
54% complete
Creating Pluggable Databases
58% complete
77% complete
Executing Post Configuration Actions
100% complete
Database creation complete. For details check the logfiles at:
 /opt/oracle/cfgtoollogs/dbca/ORCL1.
Database Information:
Global Database Name:ORCL1
System Identifier(SID):ORCL1
Look at the log file "/opt/oracle/cfgtoollogs/dbca/ORCL1/ORCL1.log" for further details.

SQL*Plus: Release 21.0.0.0.0 - Production on Fri Jan 23 21:06:10 2026
Version 21.3.0.0.0

Copyright (c) 1982, 2021, Oracle. All rights reserved.

20 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

Connected to:
Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 - Production
Version 21.3.0.0.0

SQL>
System altered.

SQL>
System altered.

SQL>
Pluggable database altered.

SQL>
PL/SQL procedure successfully completed.

SQL> SQL>
Session altered.

SQL>
User created.

SQL>
Grant succeeded.

SQL>
Grant succeeded.

SQL>
Grant succeeded.

SQL>
User altered.

SQL> SQL> Disconnected from Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 - Production
Version 21.3.0.0.0
The Oracle base remains unchanged with value /opt/oracle

Executing user defined scripts
/opt/oracle/runUserScripts.sh: running /opt/oracle/scripts/extensions/setup/swapLocks.sh
[2026:01:23 21:06:11]: Releasing lock .ORCL1.create_lck
[2026:01:23 21:06:11]: Lock released .ORCL1.create_lck
[2026:01:23 21:06:11]: Acquiring lock .ORCL1.exist_lck with heartbeat 30 secs
[2026:01:23 21:06:11]: Lock acquired
[2026:01:23 21:06:11]: Starting heartbeat
[2026:01:23 21:06:11]: Lock held .ORCL1.exist_lck

DONE: Executing user defined scripts

The Oracle base remains unchanged with value /opt/oracle
#########################
DATABASE IS READY TO USE!
#########################

Post-Deployment Validation and Database Connectivity Checks

Once the database installation is complete, use the following commands to check the database status:

• Check the custom resource status:

kubectl describe singleinstancedatabase sidb-sample

• Look for status updates:

21 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

kubectl get singleinstancedatabase sidb-sample -o yaml | grep -A 10 status

When Ready, the pod status will change to running status as listed below:

kubectl get pod sidb-sample-xh30b

NAME READY STATUS RESTARTS AGE
sidb-sample-xh30b 1/1 Running 0 81m

Test Connection with the database once ready

• Get the database service

kubectl get svc sidb-sample

• Option 1: Connect from within the pod

kubectl exec -it sidb-sample-xh30b -- sqlplus / as sysdba

Defaulted container "sidb-sample" out of: sidb-sample, init-wallet (init)

SQL*Plus: Release 21.0.0.0.0 - Production on Sat Jan 24 00:37:34 2026
Version 21.3.0.0.0

Copyright (c) 1982, 2021, Oracle. All rights reserved.

Connected to:
Oracle Database 21c Enterprise Edition Release 21.0.0.0.0 - Production
Version 21.3.0.0.0

SQL>

• Option 2: Connect to the PDB

kubectl exec -it sidb-sample-xh30b -- sqlplus sys/<your-password>@localhost:1521/ORCLPDB1 as sysdba

• Option 3: From another pod in the cluster

kubectl run sqlplus-client --image=container-registry.oracle.com/database/instantclient:21 -it --rm -- \
 sqlplus sys/<your-password>@sidb-sample:1521/ORCL1 as sysdba

Verify Database Configuration

• Check database mode

SELECT name, open_mode, log_mode FROM v$database;

NAME OPEN_MODE LOG_MODE
--------- -------------------- ------------
ORCL1 READ WRITE ARCHIVELOG

• Check PDBs

22 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

SELECT name, open_mode FROM v$pdbs;
NAME
--
OPEN_MODE

PDB$SEED
READ ONLY

ORCLPDB1
READ WRITE

• Check archive log destination

SHOW PARAMETER db_recovery_file_dest;

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
db_recovery_file_dest string /opt/oracle/oradata/fast_recov
 ery_area
db_recovery_file_dest_size big integer 50G

• Check SGA/PGA

SHOW PARAMETER sga_target;
SHOW PARAMETER pga_aggregate_target;

EXIT;
EOF

With the Single Instance Oracle Database successfully deployed and validated on OKE running on Oracle Compute

Cloud@Customer or Private Cloud Appliance, the environment is now ready for application onboarding and day-2 operations.

The next steps include creating application schemas and tables within the ORCLPDB1 pluggable database, configuring backup

and recovery policies to meet enterprise data protection requirements, and setting up monitoring and alerting to ensure

operational visibility and performance management.

As application demands grow, additional pluggable databases (PDBs) can also be created to support workload isolation and

future scalability.

Together, these steps complete the transition from initial deployment to a fully operational, production-ready Oracle Database

platform on Kubernetes.

23 Deploying Oracle Database Operator Cluster Add-on for Oracle Kubernetes Engine (OKE) on Compute Cloud@Customer or Private Cloud Appliance Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2026, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-

free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We

specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in

any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Some regulatory certifications or registrations to products or services referenced on this website are held by Cerner Corporation. Cerner Corporation is a wholly-owned subsidiary of Oracle. Cerner Corporation

is an ONC-certified health IT developer and a registered medical device manufacturer in the United States and other jurisdictions worldwide.

This document may include some forward-looking content for illustrative purposes only. Some products and features discussed are indicative of the products and features of a prospective future launch in the

United States only or elsewhere. Not all products and features discussed are currently offered for sale in the United States or elsewhere. Products and features of the actual offering may differ from those

discussed in this document and may vary from country to country. Any timelines contained in this document are indicative only. Timelines and product features may depend on regulatory approvals or

certification for individual products or features in the applicable country or region.

Author: Anderson Souza

	Purpose statement
	Introduction
	Prerequisites
	Deployment
	OKE Cluster Access and Security Configuration
	Prerequisites
	Certificate Management and Oracle Database Operator Status on OKE (Compute Cloud@Customer / PCA)
	Enabling Role Bindings

	Deploying SIDB (Single-Instance Database) with the Oracle Database Operator
	Labeling Worker Nodes for Oracle Database Deployments
	Single Instance Database Deployment Manifest
	Single Instance Database Pod Creation and Initialization
	Post-Deployment Validation and Database Connectivity Checks

