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1 The on-premises data warehouse is already a highly automated environment, at least
with respect to the scheduling of preinstantiated jobs or tasks; the prioritization (or
deprioritization) of workloads on the basis of the privileges of the user or the character‐
istics of the workload itself; the creation of indexes, metadata, and (in some data ware‐
house systems) documentation; and so on. But the PaaS data warehouse improves upon
this significantly. See Chapter 3 or footnote 2 for more information.

Introduction

For the enterprise, cloud is two things: first, it’s a force for potential
business and IT transformation; second, it’s a mechanism for reduc‐
ing or controlling costs. Even though enterprises have tended to
emphasize the latter at the expense of the former, the most compel‐
ling reason to migrate an on-premises data warehouse to the cloud
has little to do with reducing costs or taking advantage of cloud’s
tax-friendly OpEx. In fact, a focus on cost misses what is new and
transformative about cloud.

A better, more compelling rationale for cloud migration is to mod‐
ernize and improve the data warehouse by substantively automating
it.1 For one thing, automation of this type—and at this scale—has
the potential to eliminate time-consuming, tedious, and rote tasks.
For another, it frees up bright, imaginative, creative human techni‐
cians—DBAs, ETL developers, business intelligence (BI) developers,
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2 This is a problem that data warehouse automation (DWA) software has focused on for
two decades now. Like DWA tools, PaaS data warehouse services expose a combination
of guided, self-service capabilities and ML-powered, rule-driven facilities that automate
the exploration, discovery, and profiling of data, as well as simplify (and, if practicable,
automate) the creation of data models, business rules, metadata, documentation, etc.
But the PaaS data warehouse exposes these features in the context of a fully managed
service that, under its covers, automates the allocation and/or deallocation of compute,
storage, and network resources, the expansion/contraction of data warehouse capacity,
the scheduling and balancing of workloads, the remediation of performance problems,
etc. This is the stuff of radical difference: DWA tools were originally conceived and
designed for on-premises data warehouse systems that, with few exceptions, lacked the
tight integration between hardware and software—to say nothing of the ability to use
software to define and abstract hardware resources—that is definitive of cloud infra‐
structure. The PaaS data warehouse is a completely different animal.

architects, etc.—to focus on more challenging problems.2 Another
benefit of automation at this scale is that it permits IT and the lines
of business to respond more rapidly to changing conditions: it
becomes possible and cost-effective to accommodate one-off, sea‐
sonal, or unprecedented workloads and use cases.

This gets at the best rationale for migrating—one that is grounded in
the logic of data warehouse modernization itself: to transform the
business. A focus solely on cost savings sets an organization up to
make poor choices in the future. A focus on transforming the busi‐
ness by modernizing the data warehouse, on the other hand, has a
conative aspect: it asks, “What should we do differently, better?”
This allows companies to better understand their data and improve
data driven decision making—boosting innovation, productivity,
and efficiency—all while reducing complexity in the organization.

Migration, Modernization, and
Transformation
None of these is mutually exclusive. To modernize the data ware‐
house by migrating to a cloud platform is, ipso facto, to partake of
the economic advantages of the cloud. To modernize the data ware‐
house by migrating to a cloud platform is, ipso facto, to automate at
least a share of the tedious, time-consuming, or rote tasks that (with
respect to conventional, nonvirtualized data warehouse systems) are
usually performed by human technicians. Last, and most important,
to modernize the data warehouse by migrating to a cloud platform
is, eo ipso, an opportunity to transform the business.
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3 Some examples include the on-premises private cloud, the public cloud, the virtual pri‐
vate cloud, the high-performance computing (HPC) public cloud, the regional public
cloud, and the on-premises public-private cloud.

Think about it: today, data warehouse architects, BI developers, and
other skilled technicians inevitably squander some fixed proportion
of their valuable time servicing the technical debt that encumbers all
conventional data warehouse systems. DBAs and ETL developers
inevitably squander some fixed proportion of their valuable time
maintaining the database, data integration, and associated middle‐
ware services that constitute the data warehouse system proper. At
the same time, an assortment of analytically inclined technicians—
among them data scientists, machine learning (ML) engineers, and
data engineers—are reliably stymied by the constraints imposed by
conventional data warehouse architecture. They cannot get the data
they need the way they need it when they need it.

The upshot is these and other technicians expend valuable time and
energy navigating cruft and manipulating software in order to man‐
age or access data instead of doing stuff with data.

This Text Is a Guidebook for the Perplexed
The data warehouse in the cloud, and the platform-as-a-service
(PaaS) data warehouse especially, has the potential to change this.
This book explores the nature and scope of this change, as well as its
implications for decision support and SQL-based analytics, to say
nothing of its potential impact on adjacent or complementary prac‐
tices, such as ML engineering and software development.

Along the way, the book explores what is new and different about
the data warehouse in the cloud, assessing both the benefits and the
challenges—that is, shortcomings, limitations, potential pratfalls,
and known edge cases—of transplanting data warehouse architec‐
ture into the cloud environment.

Above all, this book delves into the problem of managing coexis‐
tence between different types of on- and off-premises data ware‐
house resources: for example, how to accommodate especially
demanding workloads by hosting them in different cloud contexts;3

how to manage, govern, and knit together data that is distributed
across different contexts, including the conventional on-premises
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data center; how, when, and why to exploit the multimodel and mul‐
tiengine capabilities that many cloud PaaS data warehouse systems
now expose; etc. One of this book’s most important themes is not
actually broken out into a discrete chapter or section but rather
occurs and recurs throughout its pages: namely, that the elasticity
that is a defining feature of cloud infrastructure makes it possible for
businesses to prioritize the one-off, seasonal, or niche use cases that
would otherwise be cost-prohibitive or (a function of both cost and
human-resource constraints) impracticable in the on-premises
enterprise.
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CHAPTER 1

Finding Signals in the
Midst of Noise

The data generated by connected devices and other new sources of
data has transformed logistics and commerce. It has transformed
maintenance of all kinds, in virtually all verticals. It is fueling an
ongoing revolution in sales and marketing. It is one of several inter‐
secting factors that have completely transformed data management.
To understand the import and ramifications of this transformation,
it is helpful to have a sense for what analytics are and how they
work. After all, even if we treat data management as an end unto
itself, the creation, preservation, and maintenance of data is always
adjunct to other purposes. Analysis is just one of these purposes—
albeit one of outsized importance.

The Lives of Analytics
Data is exponentially more useful when it is joined together with
other useful units of data to form new combinations. Analytics
draws its power from this Lego-like network effect. We create ana‐
lytics by fusing different units of data into larger combinations
called models: the star or snowflake schemas that link facts to
dimensions in data warehouse architecture are models. Fundamen‐
tally, an analytic model is a representation of some slice of the busi‐
ness and its world: for example, sales of Product N in Region X
during Period Y to customers with Z1, Z2, and Z3 attributes. In fact,
queries like this one are the raison d’ être of data warehouse
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architecture. The answer to this query already “lives” in the data that
populates the warehouse’s fact and dimension tables; the data ware‐
house performs operations that join facts to dimensions in real time,
creating an analytic model that “answers” the query.

This example also gets at something else: in data warehouse archi‐
tecture, the role or function of analytics is to answer questions. But
today’s cutting-edge analytic practices invert this arrangement: they
seek to ask questions. What if Z1, Z2, and Z3 attributes are unknown?
What if, in fact, their corresponding dimensions don’t even exist in
the data warehouse? No conceivable star or snowflake schema can
link facts to dimensions that do not yet exist. So the business analyst
or data scientist must go to source data—assuming it is available—to
answer these and similar questions.

Analytics as a Site of Rapid and Ongoing
Transformation
Innovation in analytics is not just a function of fusing Lego-like
blocks of data together to create larger ensembles of models. Recent
analytic innovation is characterized by the intersection of three dis‐
tinct trends: first, the capacity to cost-effectively collect, store, and
process more and different types of data; second, the mainstream
uptake of ML and especially of advanced ML techniques; and third,
the application of this data (of different types and sizes) and of these
advanced ML techniques to new problems that involve asking new
kinds of questions.

Two decades ago, the data warehouse constituted the analytic center
of gravity of the average enterprise: all business-critical data was
vectored into it.

It was good to be the king. The warehouse and its constraints dicta‐
ted the use of a dominant technology to store and manage data: the
relational database, or relational database management system
(RDBMS). And this dependence on the RDBMS dictated the use of a
domain-specific language—SQL—for accessing and manipulating
data. These same constraints helped to formalize the use of a set of
techniques—starting with extract, transform, and load (ETL)—for
engineering the data used to populate the warehouse.

But the data that businesses generate and expect to mine for insights
is no longer of a single dominant type (i.e., relational data) and no
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longer conforms to a single set of general characteristics. Business
data no longer “lives” in the same places (local databases and data
warehouses, spreadsheets, network storage, etc.) but is distributed,
dispersed across on-premises systems, off-premises cloud applica‐
tions and storage services, mobile devices, the web, and so on.

What is more, business analysts, BI developers, and DBAs are no
longer the only people who work with data, nor is BI itself the only
—or even the primary—practice area for data work. BI and data
warehouse people compete with data scientists, data engineers, ML
engineers, and other specialists for access to more data, to fresher
data, and to data of different types.

This gets at another major change—one that has to do with the role
human intelligence now assumes in both the analysis of data and the
production of analytics. The upshot is that human intelligence now
allocates a large (and growing) proportion of analysis to machine
intelligence, which makes it possible to automate not only the task
of analysis itself but that of decision making with data preparation,
data enrichment, and virtualization of results.

Human intelligence is likewise training machine intelligence to repli‐
cate itself—that is, to produce its own analytic models. (This is the
focus of ML in general and especially of deep learning, reinforce‐
ment learning, and other advanced ML techniques.) The growth of
ML is a reprise of a familiar story arc. Until relatively recently, and
with a few notable exceptions, human “computers,” not machines,
performed most mathematical calculations. As the complexity of the
calculations involved and (especially) the scale at which they needed
to be calculated increased, machine computers at first complemen‐
ted and then ultimately replaced human computers. The same is
happening with analytics, whereby organizations are replacing
human analysts with automated analytic technologies and human-
directed analysis with machine-directed analytics. In the present, the
bulk of analysis is already performed by machines; in the future,
almost all analytics will be produced by machines, too.

Analytic practices are also changing. The BI practice area is now
complemented by new practice areas such as data science and ML/
artificial intelligence (AI) development. The people and machines
who work with data no longer expect to use a single means of access
—an ODBC interface—and a single common language (SQL) to
access, manipulate, and query data. And analytics as such is no
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longer the remit of a single practice area or a single domain: the data
warehouse and BI; data science and its products; ML engineering
and its products, etc. Rather, almost all applications and services will
incorporate analytic capabilities, with the result that the consump‐
tion of analytics will, in a sense, become commoditized.

Lastly, the batch ingest model that was ideal for the data warehouse
is unsuitable for emerging data warehouse use cases, to say nothing
of data science, ML/AI engineering, and other analytic practices.
Real-time data warehousing is not in any sense new, of course; what
is new, however, is the expectation that data should be as fresh, as
close to real time as possible. The upshot is that data must now be
ingested as it arrives: as it pulses, as it streams; as it trickles, dribbles,
or deluges.

Diagnosing the Present, Predicting the Future
Most BI work consists of combining customer, product, sales, and
similar data into multidimensional views. The warehouse is still the
killer app for asking questions of this kind. But access to data of
diverse shapes and sizes permits businesses to ask new, different,
more ambitious questions—questions that involve discovering as-
yet-unknown relationships between bits and pieces of data.

Consider the twenty-first-century cargo ship. Like other modes of
commercial transport—railcars, tractor trailers, and aircraft—the
cargo ship now bristles with sensors of different types: temperature
sensors; sensors that record the frequency and impact of bumps or
jostles; sensors that measure motion; sensors that detect chemicals
and gases, such as those correlated with cargo spoilage. These sen‐
sors generate enormous volumes of data, a small subset of which
gets transmitted back to the shipping company, sometimes in real
time. This data is a potential treasure trove for business.

Raw sensor data is of limited use in data warehouse-driven analytic
development, where modelers and business analysts construct ana‐
lytic views grounded in known relationships in available data. But
the data generated by sensors lets an organization ask questions that
have a definitive inductive quality: they’re attempts to reason back‐
ward from effects to causes, attempts to discover unknown relation‐
ships that permit businesses to diagnose problems in the present,
attempts to make predictions about the future and to take action.
For example, in a ship carrying, say, bananas and mangos from
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Puerto Quetzal, Guatemala, to Seattle, Washington, is there a
possible relationship between prolonged jostling or bumping during
loading, transport, and unloading and higher rates of spoilage? In
other words, is it possible to correlate the frequency and severity of
impact with the rate of fruit spoilage? What about air quality—or,
more precisely, what about the mix of gases in the air in the shipping
containers that house the cargo of produce and mangos? Can a com‐
bination of these and other factors be correlated with spoilage? Also,
is it possible to detect early warnings of spoilage—for example, in
the presence of certain noxious chemicals or gases? If so, what could
a shipping company do to prevent this?

Taking Action, Maximizing Outcomes
Answering these questions depends on the availability and main‐
stream uptake of advanced statistical tools and techniques. These
are questions that involve modeling a finite set of interactions
among known variables in a slice of the world—namely, a shipping
container stowed in a cargo ship traversing a weeks’ long voyage
from a tropical to a subtropical climate—in which not all variables
can be anticipated, let alone modeled. Data scientists and other
skilled people use statistical techniques to determine, first, if a ques‐
tion has a statistically significant “answer” and, second, how to inter‐
pret—how to use—this “answer.” The strongest “answers” are usually
products of combinations of different factors. So bumps and
impacts alone aren’t strongly correlated with higher-than-average
rates of spoilage. However, in combination with other factors (e.g.,
modest fluctuations in temperature, anomalously high proportions
of certain gases in the atmosphere), the case for a correlation seems
much stronger. Once the data science team decides that these rela‐
tionships are statistically significant, it refocuses its efforts on
another problem: what can the business do with this knowledge?

This is one potential use for AI engineering. Not “AI” in the mode of
artificial general intelligence, which is analogous to human cogni‐
tion in its self-reflective dimension. AI engineering is the applica‐
tion of ML to identify and diagnose problems; the use of automated
rules engines to trigger interventions on the bases of a diagnosis;
and, finally, constant monitoring by an AI feedback loop to measure
the effectiveness of interventions and to self-correct if necessary.
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Businesses want to use AI to increase productivity, to accelerate pro‐
cesses, to optimize outcomes, to forestall reversals, and, moreover,
to deliver wholly new products and services. The cost-economics
and the colocality of ML, AI, data science, and other services in the
cloud are ideal for the AI engineering use case: cloud’s primary stor‐
age layer is inexpensive and (from a subscriber’s point of view) prac‐
tically unlimited; cloud’s elastic character permits an organization to
grow or reduce the storage, compute, and network resources it con‐
sumes; the availability of tightly integrated cloud development
services—which in most cases also accommodate the tools, libraries,
and techniques that data scientists, ML engineers, data engineers,
and other technicians prefer to use—is still another selling point, as
is the emergence of full-featured, cloud-centered data integration
services.

And because so much data originates in the cloud, the cloud is a log‐
ical locus of data ingestion and integration. The cloud comprises a
highly integrated—and, in the case of homogeneous (vendor-
specific) deployments, vertically integrated—site for data science
and AI engineering.

Putting It All Together
This is a world in which the data warehouse has an increasingly vital
role to play: not as a kind of subaltern to otherwise dominant data
science and AI engineering practices, but rather as the privileged
destination for the analytic products—the insights—of data scien‐
tific and ML development.

Think about the twenty-first-century cargo ship, bristling with sen‐
sors amidst its Tetris-like assortment of shipping containers.
Assume that its onboard sensors record a higher-than-usual number
of severe impacts during loading. Assume, too, that sensors record
variations in temperature and the presence of a specific gas (say, eth‐
ylene) in several onboard containers. Given the correlation between
each of these factors and a definite rate of fruit spoilage, what does
this mean for the projected value of the ship’s cargo? This is, of
course, a question that the data scientist could answer; it is also,
however, just the kind of question that a business decision maker
might want to ask on a recurring basis. And so the data science team,
working in tandem with a business analyst, adds a new dimension to
the warehouse to incorporate this analytic “fact.” The upshot is that
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businesspeople can now pose questions and make projections about
spoilage based on events that (just five years ago) could be modeled
only imprecisely. For example, what if the ship were to dock at the
Port of Los Angeles? Would getting the mangos and bananas to
market earlier significantly arrest the rate of spoilage?

This is the vital role of the data warehouse in the context of modern
data management and a cluster of complementary analytic practices.
Owing to a combination of factors, the focus of these practices—and
of data management itself—has shifted to the cloud. This is the big‐
gest change by far. Now as ever, the data warehouse in the cloud is
positioned as the go-to engine for day-to-day and strategic business
decision making. It is no longer the center of its own planetary sys‐
tem, however.
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CHAPTER 2

Modern Data Management

Data management is not an end unto itself. That is, the management
of data is always adjunct to some other purpose, some other goal,
some other use. One of the most important uses of data is in support
of business decision making, but decision making is neither a mon‐
olithic domain—that is, a problem area in which the stakes, priori‐
ties, requirements, and expectations are uniform or reproducible
across all relevant instances and applications—nor is it the sole
domain in which data gets used. For example, data is generated and
consumed by operational applications that span business processes
and that support day-to-day business activities. This type of usage
has less to do with decision making than with ensuring the uninter‐
rupted and (with respect to core business processes and workflows)
unmediated operation of the business itself. In many if not most
cases, this use case does not have an analytic component: data is
generated by an application or service, written to a database or seri‐
alized in a data structure, requested by and exchanged with other
applications and services, and so on.

Another important use for data has to do with monitoring—or, in
emerging software architectures, observing—the state and perfor‐
mance of the business itself, along with its constitutive processes, IT
systems, and other assets. This use case is usually married to a
related task—that of analyzing and interpreting problems or anoma‐
lies. Sometimes decision making attends the analysis and interpreta‐
tion of a problem, sometimes not. But the material fact is that
decision support, while an especially critical data use case, is never‐
theless just one use case among many.
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1 Ludwik A. Teclaff, “What You Have Always Wanted to Know About Riparian Rights,
but Were Afraid to Ask,” Natural Resources Journal 30, no. 1 (Winter 1972): 41.

With this in mind, it is worth looking at what data management does
in order to get a sense for what needs to change—not only with
respect to the data warehouse in the cloud, but with respect to data
management in a hybrid environment that spans both the on-
premises enterprise and the cloud.

Data Management Explained
To grasp the “why?” of data management, it is helpful to know a lit‐
tle bit about a concept in law called “riparian rights.” In Anglo-
American law, riparian rights has to do with the conventions,
statutes, and precedents that govern the use of land that adjoins a
river—or, notionally, any body of water that has banks or a shore‐
line. The basic idea is that a person who owns property that lies
adjacent to, say, a large oxbow lake enjoys certain rights with respect
to the reasonable use of the water that circulates in that lake. Tradi‐
tionally, the extent of a landowner’s use might be determined by the
proportion of her property that directly abuts the river, by the size
and/or duration of her holdings, etc.

So far, so good. But the word “reasonable” does a good deal of heavy
lifting in this context. In the United States, riparian law distin‐
guishes between “natural” (i.e., domestic uses) and other types of
uses—for example, entrepreneurial or industrial uses.1 People need
clean, fresh water to drink, to cook with—that is, to survive. People
(and municipalities) need clean, fresh water for the purposes of san‐
itation. To this end, riparian law privileges natural use as “reason‐
able” over and against other types of use; in other words, if
industrial usage is in some way inimical to natural usage, it is, ipso
facto, unreasonable.

The analogy to data and data management is fairly obvious, even if
the analogy itself ultimately breaks down. Think of data manage‐
ment as a kind of riparian rights regime for data. Its raison d’ être is
not just to define and enforce rules with respect to how data gets
used, but to prioritize certain kinds of uses, which are analogous to
“natural” uses in the logic of riparian rights, over and against others,
analogous to industrial or entrepreneurial uses. For a long time, data
management’s primary reason for being was to ensure that a class of
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privileged downstream uses—operational reporting, ad hoc query,
and certain kinds of advanced analytics—was fed a reliable stream
of cleansed, consistent, high-quality data.

In a nutshell, data management’s role is to define and enforce con‐
straints with respect to the production and use of data. To this end, it
defines policies, processes, and controls that govern the production
of cleansed and consistent data, and it ensures that the data so pro‐
duced comports with predetermined quality thresholds. Data man‐
agement’s traditional focus was the data warehouse, which itself
defines a conceptual architecture for storing, managing, and pro‐
cessing data that is useful for decision making. In traditional data
management—which is to say, traditional data warehouse architec‐
ture—data management policies, processes, and controls produce
high-quality data that gets stored in, managed, and processed by the
data warehouse, chiefly to support day-to-day business decision
making, as well as business forecasting and strategic business plan‐
ning. In this sense, what is meant by data management has long
been inseparable from what is meant by decision support.

The problem is that the scope of decision support has changed radi‐
cally since data warehouse architecture was first codified in the late
1980s. Chapter 1 discussed one of the biggest of these changes,
exploring how data scientists, ML engineers, and other skilled prac‐
titioners expect to work with data that is derived from a diversity of
sources—much of it nonrelational data. Another major change
(explored in detail in Chapter 1) has to do with the practices, tools,
and techniques that people (and machines) use to engineer data and
to produce the analytics that support, inform, and (increasingly)
automate decision making. And a third significant change has to do
with the movement of data and analytic development from the data
warehouse to new platforms.

The upshot is threefold: in the first place, the data warehouse and
especially data warehouse-driven analytics are no longer the sole
focus of enterprise data management; in the second place, data man‐
agement has had to adapt to support different types of analytic prac‐
tices, along with different types of analytic creators; and, in the third
place, data management must reckon with two problems—data dis‐
tributedness and data heterogeneity—that are at once characteristic
of the way data is created and used (by humans and machines alike)
and that have been exacerbated by the same social, economic, and
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technological transformations that contributed to the emergence of
the cloud.

Modern Data Management Explained
In classic data warehouse architecture, the ETL layer was the locus
of data ingestion and integration. ETL processes conditioned data
for a single privileged analytic target: the data warehouse. One con‐
sequence of this was that different types of analytic practices tended
to cluster around the warehouse; another was that the warehouse
and its data integration processes constituted the primary focus
areas of enterprise data quality assurance, data governance, and
information security assurance.

The data warehouse has always been a multipurpose platform. It is
optimized for storing, managing, and retrieving relational data. It is
also a data-processing engine, optimized for performing operations
on relational data. The RDBMS engine at the heart of the warehouse
is likewise adept at ingesting, performing operations on, and retriev‐
ing tabular data. This encompasses the telemetry data that is gener‐
ated by sensors; the logs generated by embedded devices; data
extracted from hierarchical databases, network databases, and key-
value stores; data serialized in CSV or similar file formats, etc. It is
usually fairly simple to engineer this data for use with the data ware‐
house and its core RDBMS engine. The catch is that an RDBMS
expects to apply a schema to all of the data that it ingests: data gets
mapped directly to rows and columns in accordance with a prede‐
fined data model. Extraneous data—data that does not map to the
warehouse’s data model—gets discarded. This schema-on-write
model is ideal when the structure of the data and the applications
for which it is to be used are known in advance. But schema-on-
write is not always sufficient, much less ideal, when the opposite is
true. This is why data scientists, ML engineers, software developers,
and other advanced users prefer to work with source data as it is—
with raw source data, not just with extracted values, pairs, etc. These
practitioners cannot anticipate just what data (or what values enco‐
ded in the data) will be useful.

Beginning about 15 years ago, a new type of data store, the NoSQL
data store, emerged to address this problem. NoSQL employs a
schema-on-read approach in which the data store behaves much like
a file system, ingesting objects—CSV, XML, and TXT files; audio,
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image, and video files; and so on—and storing them in their native
formats. Users can either retrieve these files as they are or (using the
data store’s built-in data processing engine) apply a schema to them
when they access them. Since then, a refinement of this vision—the
data lake—has emerged to complement (and, to a degree, assimilate)
the NoSQL use case. The data lake consists of a data management
layer superimposed over a cheap cloud object storage layer—basi‐
cally, a practically inexhaustible distributed file system.

The emergence of NoSQL created a kind of cleavage in data man‐
agement, putting the SQL and NoSQL camps at loggerheads with
one another. Over time, however, these capabilities converged into a
single logical context: what market-watcher Gartner calls the logical
data warehouse. Before we explore what this is, let’s take a look at the
data lake to see how it compares with the data warehouse.

The Data Lake: A Complement to the Data
Warehouse
What is useful about the data lake is that it can store data of any size
or type. Not just relational data, but CSV files, log files, XML files,
and JavaScript Object Notation (JSON) files, along with “multistruc‐
tured” objects (e.g., music, video, or image files) that do not expose
predefined data models.

The data lake is in fact an ideal repository for file data, content for
which the RDBMS is not always ideal. In the cloud, most data lakes
are layered over object storage, which (for all intents and purposes)
describes a virtual, distributed file system, albeit one that stores
metadata about different types of objects. The data lake exposes a
(more or less) rich metadata layer and, optionally, a data catalog
facility of some kind. Under its covers, the lake incorporates features
that aim to simplify—and, where practicable, to automate—data
access, data preparation, and data movement for different types of
users and requestors. With this in mind, it is useful to note a few
things about the data lake:

1. It is conceived as a practically unlimited repository for data of
all types and sizes. In the cloud, especially, each and every data
lake is potentially the largest and deepest in the world (i.e., by
volume of data). This is why the site of the data lake quickly
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shifted from the on-premises enterprise to the cloud. Storage in
the cloud is much cheaper and practically limitless.

2. It supports a wide variety of analytic practices and a breadth of
different analytic use cases. The lake is an ingest point for data
from operational systems. If necessary, it can exchange data
with the cloud data warehouse and with the on-premises ware‐
house, too. As a cost-effective, practically unlimited storage
repository for data of all types and sizes, the data lake is a popu‐
lar ingest point for the telemetry data that streams from sensors
and mobile devices; for the log files that are generated by
embedded devices, control systems, and similar signalers; and
for the messages—encapsulated as JSON objects, etc.—
exchanged by applications and services. The lake exchanges
data with a medley of other cloud services, too.

3. Each analytic practice and each use case expects to do different
things with data. Business analysts are mostly interested in rela‐
tional data sourced from operational systems—many of which
now live in the cloud. They prefer to have this data as raw
extracts, and they expect to be able to model it and transform it
according to their own requirements. Data scientists and ML
engineers work with relational, semistructured, and polystruc‐
tured data. They need to be able to prepare and transform this
data for different kinds of use cases. The lake gives them a con‐
text in which to load the data they need and to perform opera‐
tions on it.

The data lake’s most distinctive characteristic is a not-so-flattering
one: namely, almost everything about it entails compromise. The
cloud data lake’s practically unlimited storage is useful, to be sure,
but it comes at the expense of critical performance criteria—namely,
high latency and inconsistent data transfers relative to on-premises
storage—that are death to many analytic workloads. And the data
lake’s versatility with respect to storing data of different types and
sizes? The reverse of this is that—unlike a relational, graph, or docu‐
ment database—the lake is not tuned for storing or retrieving any
one specific type of data. As for the lake’s versatile data processing
features, in most cases, for most workloads, these are no match for
an RDBMS, a graph database, or other best-in-class engines.
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Modern Data Warehouse
Modern data management distinguishes between two primary con‐
texts for storing, processing, and working with the data that is grist
for analytic development: the data warehouse and the data lake.

Data management does not treat these as two separate but equal
contexts but rather as a logical, if federated, whole—as a brain with
two lobes, so to speak. One lobe, the data warehouse, remains the
primary focus of decision support: it is the system of record, the
engine that powers operational and production reporting, ad hoc
query, and many types of advanced SQL analytics. Now as ever, the
data warehouse is the primary support for day-to-day business deci‐
sion making and for forecasting and strategic planning. It is the
foundation of business performance monitoring. The other lobe, the
data lake, is home to all of the multistructured data that is of poten‐
tial use to the business. Because it combines inexpensive storage
with several different types of built-in data processing engines, the
data lake hosts a diversity of analytic practices, too—including prac‐
tices that work with relational data.

This invites obvious questions, however: How does data manage‐
ment expect to unify these otherwise disconnected contexts? How is
it possible to manage data—to enforce reasonable constraints—in
two different contexts, each of which has its own requirements and
expectations?

Enter the logical data warehouse, a virtual abstraction layer that aims
to knit together potentially useful data sources and processing
engines—regardless of where they are located, the kinds of inter‐
faces they expose, the specifics of the underlying systems on which
they are hosted, etc. The logical data warehouse does not alter or
disrupt the data warehouse, the data lake, or—just as important—
any of the data sources it knits together. Rather, it describes a model
in which an organization constructs virtual views of data that is
distributed between and among disparate sources. Potential data
sources include cloud and web services, RESTful or otherwise, leg‐
acy sources (such as mainframes), along with other RDBMSs and
operational applications. So, for example, a data modeler or business
analyst could construct a virtual view that exposes VSAM data
stored on a mainframe in the same context as data that lives in the
SaaS (software-as-a-service) or PaaS cloud. That is the vision, in any
case.
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However, this vision elides a staggering degree of behind-the-scenes
complexity. Its key enabling technologies include data virtualization
and data catalog services, along with complementary technologies,
such as graph databases. (See Chapter 4 for more on these technolo‐
gies.) Under the covers, the logical data warehouse uses data virtual‐
ization to expose unified views of distributed data, contextualizing
data that lives in the warehouse or data lake with (for example) data
that is hosted in far-flung cloud services. It exposes data catalog
services that permit knowledgeable users (e.g., IT people, develop‐
ers, business analysts, data scientists, ML/AI engineers, etc.) to
search for and discover useful data that has not yet been exposed via
data virtualization. And it makes use of other, better-known tech‐
nologies (e.g., caching, data synchronization, and data replication)
to accelerate common queries or facilitate access to frequently used
data.

The logical data warehouse is a pragmatic application of a kind of
sociotechnical federalism. It is a means of consolidating and govern‐
ing information with a light hand: a logical overlay in which virtual
data structures are used to represent source data (and in which
transformation logic is applied to these virtual data structures)
without physically altering source data. More important, the logical
data warehouse model, or something like it, also permits the people
who manage and use the data warehouse or the data lake—or any
other repository or data source, for that matter—to enforce their
own standards and policies with respect to the quality of data, or to
the priority given to certain users, use cases, or workloads as against
others, and so on. In this way, the logical data warehouse affords vis‐
ibility into and facilitates access to data that is not only physically
dispersed but disconnected—walled off—by virtue of policies, pro‐
cedures, and other impedimenta.

Modern Data Management and the Cloud
Once the data warehouse joins the data lake in the cloud, the focus
of data management shifts to that context as well. The good news is
that managing data in the cloud is not radically different from man‐
aging data in the on-premises enterprise. This claim presupposes an
important qualification, however: namely, that the enterprise data
management practice has reconciled itself to the necessity of manag‐
ing data in accordance with its destined uses. The classic data ware‐
house is still associated with a rigid, inflexible data management
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regime that gave priority to core BI reporting and analytics at the
expense of other practices—most of which prefer to work with data
that is less cleansed, less consistent, and less conditioned (i.e., of a
lower “quality”) than the data populating the warehouse.

The practice of data management must be flexible enough to man‐
age and govern data according to its destined uses. In the same way,
the problem of governing data in the cloud does not necessarily
demand new processes, policies, tools, roles, and so forth. This is
also true of basically all data quality standards, processes, and tools.
It is less a question of extending these artifacts to the cloud—remem‐
ber, most of them were developed with the constraints of the
on-premises environment in mind—than of updating them to
accommodate what is different about the cloud.

For example, in the cloud, as in the on-premises environment,
organizations have a responsibility to safeguard the integrity and
consistency of their applications and data. In both the cloud and the
on-premises environment, organizations need to be careful about
how they store sensitive data. They must also comply with applica‐
ble (country-, political union-, state- or region-specific) data pri‐
vacy, data retention, and data deletion regulations. The good news is
that the cloud data warehouse—and the PaaS data warehouse, espe‐
cially—has the potential to simplify these tasks. For one thing, a
standard cloud practice is to isolate sensitive data from nonsensitive
data; for another, most cloud PaaS data warehouse platforms
encrypt in-flight data by default. (Both practices are inconsistently
applied in the on-premises enterprise.) Similarly, some cloud data
warehouse and data integration services incorporate built-in mecha‐
nisms designed to make it easier for organizations to define and
enforce data governance policies in connection with data access,
movement, or deletion. Some cloud providers enforce these policies
by default, for example, by preventing requestors from outside of a
political union from accessing sensitive data that is governed by the
statutes or regulations of that political union.

Modern Data Management and the Cloud | 17





CHAPTER 3

Machine Learning, AI, and
Intelligent Data Management

At one time or another, most of us who have used cloud services
have marveled at the way they elide the underlying complexity of
different problems and tasks. For the most part, this is a function
not just of automation but, more specifically, of rule-driven automa‐
tion. This kind of “smart,” rule-driven AI is not distinctive to cloud
as such, and it is not necessarily new; what is different is the unpre‐
cedented scale of the cloud—not with respect to the number and
capacity of its virtual hardware resources, but rather with respect to
the number and variety of machines that live in it and people who
use it.

The coinciding of people and machines in a single context lends
itself to the purpose of studying them: that is, collecting information
about and analyzing their behaviors at an unprecedented scale. This
advantage is distinctive to cloud. It gives cloud providers a poten‐
tially massive dataset for training ML models and designing “AI”
functions: that is, software “robots” that automate actions when they
detect problems or events. These software “robots” are used to auto‐
mate a range of tasks, both common and esoteric. Over time, then,
cloud providers have automated a growing share of tasks and
remediations.

This is radically different. There is nothing like it in the on-premises
data center. Yes, much of this cloud-centered automation ultimately
makes its way to the on-premises enterprise. But the automation
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gets implemented in the cloud first. This is why the cloud is already
the locus of innovation in software development. This is as true of
the cloud data warehouse as it is of any other cloud service.

Automation and the Cloud Data Warehouse
The on-premises data warehouse is already a highly automated
environment.

The ETL or ELT processes that feed data to it are scheduled, con‐
trolled, and audited. They generate logs that not only record essen‐
tial data lineage information but automatically trigger alerts if
something goes wrong. The warehouse’s backup processes are auto‐
mated, as are its recovery processes. Just as important, the ware‐
house’s internals are highly automated, too.

In this regard, the database at the core of the warehouse is a marvel
of automation. The best on-premises warehouses manage workloads
at more or less granular levels, such that each workload gets alloca‐
ted compute resources in accordance with its importance or, alter‐
nately, with the role of its initiating user. Certain workloads run in
the background, using resources as they become available, while
other workloads expect to run as quickly as possible with as many
resources as possible. In MPP data warehouse systems, the core
database automatically manages parallelism and concurrency:
breaking up a single workload and distributing it across multiple
nodes for parallel processing, scheduling multiple workloads to run
concurrently across multiple nodes, managing job dependencies
between workloads, etc. (Some cloud services are better at this than
others, however; workload management is inevitably a function of
the maturity of the underlying database.)

Optionally, most warehouses automatically manage multitempera‐
ture storage, such that different kinds of data get treated differently
—and, optionally, stored in different contexts. Frequently accessed
data lives in “hot” or fast storage—or is permanently pinned in in-
memory cache—while less frequently accessed data lives in the
“warm” tier: sometimes local, direct-attached storage; sometimes in
a SAN; sometimes in local object storage. Data that is rarely accessed
(“cold”) might live in a network-attached storage or in a (local or
cloud) object storage layer. These are just a few examples of automa‐
tion in the context of the on-premises data warehouse. Essentially all
of this is replicated in the IaaS (infrastructure-as-a-service) data
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warehouse—with the bonus that the IaaS environment in which the
data warehouse lives is itself highly automated. The IaaS provider
exposes features that simplify and automate the processes of
expanding (or reducing) the capacity of a system, recreating or mir‐
roring a system, and so on.

The PaaS Data Warehouse
The PaaS data warehouse in the cloud ups the ante with respect to
automation, however. It retains these advantages but also benefits
from a kind of cloud-specific vertical integration.

For example, the PaaS data warehouse exposes GUI-based wizards
and guided self-service features, the aim of which is to automate—or
substantively to accelerate—many of the tasks that tend to consume
a disproportionate amount of time or which entail nontrivial labor
in the on-premises environment. These apply not only to the initial
creation, setup, and configuration of the cloud data warehouse, but
to a subset of the tasks usually associated with the ongoing manage‐
ment and maintenance of the warehouse itself, such as adding extra
storage, compute, or network resources; adding new tables and opti‐
mizing table spaces; creating indexes to simplify access or to
improve performance; and redistributing data to avoid skew, which
is primarily a problem in connection with MPP data warehouses
and with certain kinds of sharded configurations. In the same way,
most PaaS services expose guided, self-service data exploration, data
discovery, and data preparation features. On the one hand, these
features aim to reduce the time it takes to provision data for the
warehouse. For example, stakeholders are able to work with busi‐
ness analysts to identify useful data sources and determine how this
data is to be transformed. On the other hand, they also simplify the
process of scheduling data extracts as recurring or repeatable data
flows. The cloud-based data integration environment automatically
tracks and generates lineage information along with metadata, too.

Recent innovations in the on-premises data warehouse attempt to
replicate these features. This suggests that enterprise customers now
expect cloud-like usability—even in the on-premises data center.
However, the data warehouse-as-a-service boasts automation advan‐
tages that cannot easily be matched, let alone surpassed, by the con‐
ventional, on-premises warehouse.
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Using ML-Driven AI to Automate, Improve,
and Secure the Cloud Data Warehouse
The PaaS data warehouse uses automation of another kind: namely,
ML-powered, rule-driven automation—automation that monitors
performance, automation that detects issues and anomalies, and
automation that triggers remediations. “AI” in this context refers to
a kind of function-specific machine intelligence: that is, AI software
robots that are designed for specific purposes, AI robots that do spe‐
cific things. The PaaS data warehouse is not Skynet: it is not self-
aware.

Instead, the PaaS provider trains its software robots to recognize
common or recurring conditions, along with (as they are identified)
edge cases. For example, a provider might develop software robots
that (a) detect the combination of conditions associated with hard‐
ware failure (e.g., degraded performance and/or complete unavaila‐
bility) and (b) trigger one or more predetermined steps based on a
set of predefined rules. This focus on hardware as a source of prob‐
lems elides an important fact: with few exceptions, the PaaS data
warehouse provider does not own and operate its own cloud infra‐
structure. Instead, it contracts with one or more public cloud
computing infrastructure services to host its platform. From the
provider’s perspective, the problem is at least one level of abstraction
higher: rather than an issue of identifying and diagnosing, say,
impending hardware failure—hardware is the upstream service pro‐
vider’s problem—it is one of determining and, if possible, offsetting
the impact of hardware failure on the delivery of their service. Thanks
to the colossal scale of the cloud, most such problems can be solved
by provisioning extra capacity and by rearchitecting to route around
underlying problems. Ideally, this happens automatically, without
the subscriber experiencing downtime or service inconsistency.
Their software robots watch, detect anomalies, and trigger
responses.

AI software robots cannot address all possible issues, of course.
Again, however, the PaaS provider has a built-in advantage: it hosts
dozens, hundreds, perhaps thousands of subscribers. It collects data
that it uses to train the ML models that power its function-specific
AI robots. This makes it possible for PaaS providers to diagnose
common and recurring issues and to identify a large number of edge
cases, too. With enough data, ML engineers can train models that

22 | Chapter 3: Machine Learning, AI, and Intelligent Data Management



detect problems or anomalies—and, moreover, design software
robots that trigger predefined actions. From the outside, this looks
like so much AI magic; in the background, it involves the practical
application of ML to solve problems.

The effects of AI-driven automation in the PaaS data warehouse are
not confined exclusively to detecting problems. Most PaaS providers
monitor and collect information about how their subscribers use
their platforms: the tasks that DBAs perform, the indexes they create
(e.g., What kind of index is it? Why did they create it? That is,
adjunct to what purpose? Is this use case generalizable?), as well as
the kinds of queries that users run, how these queries perform, and
so on. The priority is to identify generalizable actions that providers
can train AI robots to perform. All software vendors use feedback
from their customers to improve their products, but the PaaS cloud
has the potential not only to increase the capacity for improvement
but to accelerate the rate at which improvements are delivered.

As defined in this chapter, “AI” also has implications for securing the
data warehouse in the cloud. Again, PaaS (and, in this case, IaaS)
providers have the capacity to collect a massive amount of data
about how people and machines tend to behave in the context of
their services: who or what accesses the service, what do they do
with it, and, crucially, what do they attempt to do with it. On this
basis, ML engineers can train ML that identifies different kinds of
possible attack scenarios: for example, a user is attempting to access
data they (or it) do not typically use; a user (or machine) tries, and
fails, to access data; a user (or machine) initiates several bulk
extracts. Once their models are trained, ML and AI engineers can
create different kinds of software robots designed to perform prede‐
fined actions.

The usefulness of ML-powered AI in the cloud gets at something
else. Again, AI is just another name for a kind of ML-powered, rule-
driven automation. The data warehouse itself is already a good
example of smart, rule-driven automation. However, for the reasons
already stated, transplanting the data warehouse into the cloud
makes it the beneficiary of ML-powered AI on a scale that is unima‐
ginable in the on-premises data center. This is no less true of the
data lake. With respect to the data lake, too, ML-powered AI is used
to automate common (sometimes esoteric) tasks, detect problems
and anomalies, secure data against potential attack, etc. Automation
is more versatile in this context.
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ML and AI Take to (and Take Off in) the Cloud
The analytic practices of today are a lot more specialized. The term
“practices” is significant in this context. Twenty years ago, analytics
was a comparatively monolithic practice area: data science did not
really exist, ML was a niche area, and even though almost all large
organizations employed statisticians and owned licenses for com‐
mercial statistical analysis software, the most common analytical
practices (a) still worked with relational data and (b) focused on (or
were focused by) the data warehouse. You just could not point to the
diversity of roles (e.g., data scientist, ML engineer, data engineer, AI
engineer, etc.) that is common today. Cutting-edge use cases in the
mid-1990s and early-2000s involved the integration of data from
geographical information systems (GIS) with customer, product,
and spatial data in the warehouse. (The retail vertical was out in
front of this.) Data mining was commonly used, and organizations
in some verticals (finance, retail) experimented with statistical
methods to predict fraud and customer churn. Similarly, rudimen‐
tary work on AI—e.g., engines that were used to power rule-driven
automation—was likewise becoming common. Organizations were
beginning to combine the insights of predictive analytics (i.e., the
application of ML functions to data problems) with rule-driven
automation to monitor the behaviors of their customers and to trig‐
ger actions on the basis of fraud, likely customer churn, or the
unavailability of certain products. (The retail sector, again, was out
in front with this class of “next-best-offer” analytics.) By the early
2000s, predictive-analytic use cases had become common enough
that GIS and certain kinds of ML functions started appearing in the
database engines at the core of the data warehouse itself.

Until very recently, then, the data warehouse and its tools effectively
circumscribed the domain of analytics in the enterprise. Analytics
consumed relational data that lived in the warehouse—or which was
discarded by the ETL processes that prepared data for use with the
warehouse. Analytic practices focused on and, in most cases, were
hosted by the data warehouse, too. As a general rule, analytic roles
were also less diverse, sorting into two buckets: business analysts
and statisticians. There was a role for self-service, but it mostly
focused on spreadsheets; it was unlike today’s BI discovery practice.

This is no longer the case. Analytics has diversified. Concomitant
with this, the domain of enterprise analytics has escaped or outstrip‐
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ped the data warehouse—not in the sense that analytic practices
have abandoned the warehouse or left it behind, but rather that the
data warehouse has a somewhat different role in (and relation to)
data science, ML and AI engineering, and data engineering. For
example, a data scientist works with the warehouse and its data; they
work on—that is, in the context of—the warehouse and its data; but
they tend to do most of their work in other contexts, with other types
of data (in the data lake, for example, which is home to all of the
data they require for their work). They can identify useful data and
invoke the data lake’s built-in data processing features to prepare it
and extract it to the workspace of their choice: an analytic sandbox
in the data lake itself, a cloud data warehouse service, a cloud analyt‐
ics service, etc. In the on-premises environment, the data scientist
was constrained by practical—and sometimes show-stopping—
physical constraints, starting with the available capacity of the data
warehouse itself. In the cloud, they have considerably more
freedom.

The Multimodel Data Warehouse in the Cloud
In addition to a core RDBMS engine, some data warehouse systems
incorporate other engines that permit them to perform different
types of operations on data stored in the warehouse context. With
respect to the cloud, for example, several PaaS data warehouse
services expose graph, spatial, and time-series data processing capa‐
bilities. Most expose Python, R, and/or Java interfaces, which permit
them to perform ML processing, too; however, several support pro‐
cessing relational data against ML models in the context of the data‐
base kernel. Some ingest and store this data as relational data,
translating between data models as needed. Some create dedicated
data types—and/or in-database facilities—to store nonrelational
data. (Time-series data, for example, is relatively simple to ingest
and manage.) The upshot is that the modern data warehouse consti‐
tutes a single, versatile platform for storing, managing, retrieving,
and processing data of different types. Versatility of this kind is val‐
uable for several reasons, not least because it permits users and
machines to query graph, spatial, and time-series data using SQL (as
well as Python, R, and Java) where it lives—that is, in the warehouse
context—without moving it to an external engine for data process‐
ing. This is hugely convenient. In practice, a multimodel data
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warehouse can accelerate data processing for many common work‐
loads (see Figure 3-1).

Figure 3-1. Built-in versus open and assembled data warehouse

For example, a large retailer might opt to run sales, demographic,
and other kinds of data against thousands of ML models in the
RDBMS itself. The ML models themselves might be relatively simple,
but the compute power required to process data against thousands
of models at once is significant. An alternative would be for the
retailer to instantiate batch processes that extract this data from the
warehouse, load it into an intermediate repository, transform and
tailor it to the needs of the ML models, and process the data against
the requisite ML models in a special-purpose engine or a multiuse
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engine such as Spark. The data warehouse is an ideal platform for
performing a workload of this kind, even if the RDBMS engine itself
is not as efficient as an external, best-in-class ML-processing engine.
After all, the data is already there. The requirements with respect to
the engineering that needs to be applied in order to “push” this data
“through” the ML models are well understood. The upshot is that it
would be counterproductive to perform this workload in a separate
engine—provided the data warehouse has enough capacity to
accommodate it. In the cloud context, this is rarely a problem.

The caveat is that in-database processing of nonrelational workloads
is in no sense a panacea. Take the ML-processing use case described
above, for example. It is quite clear-cut, and its requirements—espe‐
cially with respect to the shape of the data that it requires—are well
understood. It is the finished product of extensive experimentation
and training. But what if the reverse were the case? That is, what if
the use case itself had not been clarified and the ML models had not
been trained? In this event, the ML-processing engine would need to
be able to (a) automate the selection and training of ML models and
(b) parallelize this training workload across multiple compute
nodes. The RDBMS engine at the core of the data warehouse is not
designed for this. It would not “know” how to proceed.

This gets at something else, too: the multimodel capabilities of the
data warehouse are valuable if the applicable use cases (and their
requirements) are well understood. This is almost never the case in
data science and ML/AI engineering, however; these disciplines are
characteristically investigative, open-ended: they are efforts to iden‐
tify use cases, to codify, engineer, and instantiate ML-driven, rule-
based solutions that automate the actions (tasks, triggers, etc.) that
are associated with these use cases. The multimodel data warehouse
is less a useful tool for data scientific and ML/AI engineering than
an ideal destination for the products of this engineering—that is, the
thousands of ML models, for example, against which the large
retailer (described above) processes its sales and demographic data.

The simple takeaway? The multimodel data warehouse gives organi‐
zations flexibility with respect to how and where they process cer‐
tain types of workloads. It provides a convenient means to ingest,
store, and query against graph, spatial, and time-series data. Com‐
mercial multimodel RDBMSs have long offered support for the spa‐
tial and time-series use cases; the availability of in-database graph
capabilities is a relatively recent innovation, however. Commercial
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vendors are keen to compare the capabilities of their multimodel
RDBMSs against those of proprietary (graph-, spatial- and time-
series-specific) systems. There is a reason, however, that markets
exist for databases that are designed specifically for graph, spatial,
and time-series functions: at a very low level, the engines that power
these databases are optimized for operations involving a different
kind of math (graph theory and/or linear algebra, as against the rela‐
tional algebra that undergirds relational logic). If the RDBMS is a
best-in-class platform for performing operations on relational data,
a dedicated graph, spatial, or time-series engine will usually offer
better performance than an engine that exposes similar capabilities.
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CHAPTER 4

Migrating Your Data
Warehouse to the Cloud

Migrating on-premises workloads to the data warehouse in the
cloud is not just an opportunity to modernize data warehouse archi‐
tecture, but an opportunity to transform the business. The migra‐
tion process gives business and IT stakeholders, SMEs, and others a
chance to talk about and clarify business objectives and priorities,
and to brainstorm about the new applications—the new use cases
and practices, yes, but also the new products and services—that are
possible in the cloud.

The process of migrating an on-premises data warehouse to the
cloud demands close collaboration between business and IT. The
business must identify its most important stakeholders along with, if
applicable, potential people or process problems. IT must do the
same. The people-and-process dimension is a critical aspect of
migration planning. Resistance on the part of internal constituencies
is normal. In most cases, it is a function of fear, uncertainty, or
doubt. It can often be resolved by involving resistant stakeholders in
discussion and (to the extent possible) by working to address their
concerns.

The actual migration of the data warehouse does not have to wait on
any of this, however. This chapter discusses a few of the different
strategies an organization can use to migrate its data warehouse sys‐
tem to a cloud context. The core points are (1) the process of
migrating the data warehouse to a cloud environment not only
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aligns with the goal of improving the data warehouse, but (2) is, ipso
facto, an opportunity to reposition the warehouse for a new role and
new use cases.

The Many Modalities of Cloud
SaaS, PaaS, IaaS: thanks to withering competition among cloud ser‐
vice providers, the terminology can get confusing. The good news is
that this is the cloud we’re talking about—in an age of commodity
virtualization, no less! In practice, almost all providers offer some
kind of a trial version that a would-be subscriber can either down‐
load and take for a test drive (usually as a VM) or sign up for free of
charge. Now as ever, it behooves the would-be buyer to be skeptical
—and to do their homework.

All this being said, it is not difficult to distinguish between the many
modalities of cloud:

SaaS, or software-as-a-service
The cloud provider manages everything: not just the virtual
hardware layer, and not just the virtual software (database, mid‐
dleware, operating system, etc.) that runs on top of it, but the
applications that subscribers use and the data they generate.

PaaS, or platform-as-a-service
The cloud provider manages the virtual hardware layer and
most of the virtual software layer, with the exception of the
applications subscribers build and the data they generate. PaaS
exposes ease-of-use features that aim to mask the complexity of
creating, configuring, populating, managing, and maintaining
the warehouse. PaaS aims to be more or less turnkey—with the
caveat that analytic development is never turnkey.

IaaS, or infrastructure-as-a-service
IaaS is a scheme in which subscribers manage their own appli‐
cations, data, databases and middleware, and operating systems.
IaaS essentially replicates the features of on-premises data ware‐
house architecture in the cloud—albeit without subscribers
assuming ownership of physical hardware. An enterprise that
opts to migrate its on-premises data warehouse to IaaS should
expect to maintain (e.g., apply security patches to) its virtual
operating systems, databases, and middleware technologies.
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Most cloud data warehouse vendors market some version of a PaaS
data warehouse offering, and most on-premises vendors offer
customers a choice between PaaS and IaaS versions of their data
warehouse software. That said, the PaaS warehouse boasts a number
of advantages relative to its IaaS kith—ease-of-use, ease-of-
management, and simplified security foremost among them.

Cloud Data Warehouse Use Cases
If you are reading this book, you do not need to be convinced that
you need a data warehouse. But you might be confused as to the role
of the data warehouse in relation to the data lake—or the difference
between the data warehouse and data marts, or the relation of so-
called analytic sandboxes to the data warehouse (see Figure 4-1).

Figure 4-1. Modern data warehouse use case scenarios
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This section explores each of these concepts with the idea of eluci‐
dating their strengths, limitations, and most appropriate use cases.

The Enterprise Data Warehouse
Why do we have a data warehouse? The short answer: we got sick of
boardroom and conference room discussions devolving into argu‐
ments whenever two or more people disagreed about how, or where,
they got the data to support their arguments. So we designed data
warehouse architecture.

The data warehouse provides several services. These services are
more or less the same in both the on-premises environment and the
cloud, although it is worth emphasizing that the cloud context
enlarges the role of the data warehouse. In both contexts, the data
warehouse provides the following:

Operational reporting
The role of the data warehouse does not change in the cloud.
Here, too, it presents a single authoritative, panoptic view of
useful business data. In the cloud, as in the on-premises envi‐
ronment, it permits decision makers to answer questions about
the whole of the business, across all of its functional areas. It
does this by ingesting data from different operational systems
(finance, HR, sales and marketing, inventory management, etc.)
and joining it together to create synthetic representations of the
business subject areas that correspond to these operations. The
operational reporting powered by the warehouse provides a
kind of monitoring feedback loop into the organization and its
operations.

The data warehouse also provides an incisive analytic view into
the performance of critical business operations. Organizations
can define key performance indicators (KPI) for each business
functional area and for the business as a whole that can be used
to measure and to adjust its performance in real time. For
example, financial KPIs might measure growth in revenue, net
profit margin, cash flow, inventory turnover, and other indica‐
tors; sales KPIs, the net number of new sales contracts, the net
number of qualified leads in the sales funnel, average time for
conversion from lead to sale, and so on.
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Ad hoc query
Not only do organizations need to monitor their business oper‐
ations, but they expect to be able to identify and diagnose busi‐
ness disruptions. One function of the data warehouse’s role as a
feedback/monitoring loop is to alert decision makers to emer‐
gent problems. Another function is to permit decision makers
to ask ad hoc questions about these problems: “What is going
on here?” Quite aside from diagnosing problems, it is useful to
be able to ask ad hoc questions about the business and its world.
This is the function of the ad hoc query use case, which, on its
surface, sounds like a simple enough problem: businesspeople
need to ask questions that involve linking facts to dimensions in
combinations that data modelers cannot possibly anticipate. In
the background, answering these questions is technically and
computationally demanding: the RDBMS engine that powers
the data warehouse must join facts together with dozens or
potentially hundreds of different dimensions in or close to real
time. (Under the covers, the relational model itself enforces rig‐
orous join logic, such that the joins the RDBMS performs are
strictly valid based on the logic of relational set theory.) But ad
hoc queries pose technical challenges for other reasons, not least
because they can consume a disproportionate share of database
resources, especially when multiple users query the data ware‐
house at the same time. This is why a viable data warehouse
must support robust mixed workload and workload manage‐
ment capabilities.

History and planning
The data warehouse has a definitive historical dimension: the
data in the organization’s operational systems is always up to
date, with fresh transactions overwriting stale data. But the data
warehouse maintains a history of this data over time; this his‐
tory permits decision makers to situate what is happening now,
or what is projected to happen in the future, in a rich historical
context. For example, is a seemingly anomalous event really
anomalous? Is a business disruption anomalous? If not, what
was its impact in the past? And what, if anything, could the
organization have done differently to mitigate this impact? This
combination of timely operational data and years of historical
data supports not only day-to-day business decision making but
long-term business forecasting and strategic planning.
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Experimental data lab
Every business disruption or (seemingly) anomalous event is
also an opportunity to test and to try something new. For exam‐
ple, are there indicators in the data coming from operational
systems that the organization can use to predict a disruption or
a (seemingly) anomalous event? Could data from another
source be useful, especially in combination with operational
data? If so, is it worth instantiating this insight into a (real-time)
analytic view of some kind? This last example underscores an
important point: the warehouse has always played a vital role as
a kind of data lab for analytic experimentation.

This role changes in the cloud. In the on-premises data center,
data warehouse capacity is comparatively scarce; for this reason,
the data warehouse itself does not usually function as a lab or
experimental sandbox. In the cloud, by contrast, warehouse
capacity is not only practically limitless but easily created—and,
moreover, just as easily destroyed. In the cloud, both humans
and machines can rapidly instantiate a virtual data warehouse
system to function as a sandbox for data processing and analysis
or as a lab for interactive experimentation with data. We will say
more about this in the section on ML and predictive analytics
below. For the present, it is useful to note that virtual data ware‐
houses can also be triggered in response to events (such as API
calls) by both human and machine requestors.

ML, Predictive Analytics, and Other Emergent Use Cases
Some things about the data warehouse do change in the cloud—and,
in most ways, for the better. In the on-premises data center, the data
warehouse was sometimes starved for resources: organizations ten‐
ded to run it at (or near) capacity, so it was difficult to accommodate
all potential users, all potential use cases, and all potential practices
at all times.

This changes in the cloud. Organizations can easily allocate new
warehouse capacity—or create new, temporary virtual data ware‐
houses—to accommodate the needs of BI discovery users, data
scientists, ML engineers, and others. In the on-premises enterprise,
too, data scientists and ML engineers tended to avoid the data ware‐
house. Again, it was difficult to obtain the resources they needed to
do the work they wanted to do. The data warehouse was a stumbling
block, not a potentially rich resource. This, too, changes in the
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cloud. Some data warehouse systems already process ML functions
in the database kernel itself; some likewise accept functional
(Python) and imperative (R, Java, C) code as input, which makes
them well-suited for data-scientific and ML workloads. In highly
scalable data warehouse systems—which usually (but not always)
are powered by a massively parallel processing (MPP) relational
database—this can significantly accelerate ML processing. In the
first place, it brings ML processing to the data itself, obviating the
need to move data from the warehouse into a third-party engine
for processing. Second, in-database ML functions also benefit from
the inherent strengths of the MPP database engine: its native paral‐
lelism, its optimized arrangement of data structures in memory, its
low-latencies, and its capacity for high-throughput read
performance.

The virtual cloud data warehouse gives business analysts, data scien‐
tists, ML/AI engineers, and other skilled users a best-in-class con‐
text in which to prepare relational data to comport with the
requirements of their work. After all, virtual data warehouses can
easily be created and destroyed as part of event-driven workflows or
data pipelines. In practice, a data scientist or a machine requestor
can call an API that creates a new virtual data warehouse, which ter‐
minates when it is finished. When the data warehouse moves to the
cloud, it stands to reason that a portion of data science and ML
engineering workloads will gravitate back to it.

The Data Mart or Departmental Data Warehouse
The role of the data mart changes in the cloud, too. The data mart as
such is a logical component of the data warehouse: that is, in data
warehouse architecture, a data mart corresponds to a distinct busi‐
ness subject area. Historically, the standalone data mart (i.e., a data
mart system instantiated outside of and separate from the data ware‐
house) has been the bête noire of data warehousing purists.

This has something to do with the history of the standalone data
mart itself. Data warehouse architecture imposes strict constraints
on the quality, conditioning, and use of the data that it manages. The
on-premises environment imposes constraints of its own: the high
cost of a data warehouse system; its limited storage capacity; and,
last, its finite computational resources. The combination of these
constraints functioned to limit access to warehouse resources for
business analysts, BI discovery users, data scientists, and other
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constituencies. So a business unit that was unable to get what it
wanted from the data warehouse might create its own data mart,
with its own data feeds. A business analyst who felt stymied in the
same way might create her own data mart, and so on.

In the cloud, however, the standalone data mart does not necessarily
need to exist. The role it occupied and the functions it fulfilled are
better performed by the data warehouse itself. And some of the
roles-of-convenience for which it was tapped—for example, as a
subject-specific analytic sandbox—are better performed by the vir‐
tual data warehouse (i.e., a temporary—possibly respawning—ana‐
lytic sandbox or R&D lab). In the on-premises enterprise, power
users embraced data marts to perform work they could not do on
the data warehouse. With respect to the cloud data warehouse, this
changes. Some of these uses and use cases can now be accommoda‐
ted in the context of the data warehouse itself—that is, with access to
the data that lives in the warehouse. Others can be accommodated
with a virtual warehouse sandbox.

The Data Lake
The data lake is home to useful data of all types and sizes, but it is
not a replacement for the enterprise data warehouse. It cannot be
held to the same strict standards with respect to the consistency and
quality of the data that it stores. It cannot be expected to enforce
consistent metadata definitions across its diverse subject areas—or
“zones”—like the data warehouse.

It is conceivable that the data lake could be embedded in business
processes, but it should not be interpenetrated with business decision
making, as is the data warehouse. On a performance basis, its SQL
interpreter is no match for the RDBMS engine at the core of data
warehouse architecture. The combination of all of these factors
makes it a poor choice for the SQL query and analytics use cases.

The primary role of the lake is as a practically unlimited storage
layer—with an emphasis on storing data as distinct from managing
it. A secondary role is as a platform for processing data and prepar‐
ing it for use in other contexts, including the data warehouse. In
these roles, the data lake supports a wide variety of users (human
and machine alike) and use cases, from data scientists to data engi‐
neers, AI/ML engineers, software developers, and other skilled prac‐
titioners. These users tend to have radically different requirements,
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especially with respect to the condition and quality of the data they
expect to work with. The data lake usually exposes programmatic
access to one or more data processing engines. The idea is that con‐
solidating data in a single, central location makes it easier for differ‐
ent kinds of people—ETL developers, data scientists, data engineers,
ML engineers, etc.—to access and manipulate data. Its built-in pro‐
cessing engines give them a means of testing and experimenting
with this data in situ. They also simplify the task of preparing data
for use in different contexts—including the data warehouse. The
modern data lake usually incorporates ease-of-use and user-assist
features to simplify certain kinds of repetitive or predictable use
cases: for example, when the lake ingests a CSV file, a PDF docu‐
ment, and so forth, it indexes its contents and, if applicable, shreds
numerical data into an appropriate storage format (e.g., attribute-
value pairs, columnar data structures, etc.).

Data engineers, data scientists, and similar skilled technicians can
optionally predefine their own data transformations and data
extracts that get triggered under specific conditions. Think of the
data lake as a community pool for different kinds of users, practices,
and use cases.

The Cloud Data Management Stack
As discussed earlier (see “Modern Data Warehouse” on page 15) the
cloud data warehouse is complemented by a data lake, which is also
situated in the cloud. The two contexts comprise a kind of logical, if
federated, whole: the logical data warehouse. Some organizations
will deploy a cloud data warehouse that is colocal with—that is, hos‐
ted in the same cloud infrastructure service as—their data lake. This
simplifies the process of moving useful data between the two envi‐
ronments and making it available for use.

In practice, both the warehouse and the data lake are used for some
of the same tasks: for example, storing data, accessing and retrieving
it, processing and transforming it, and performing analytic opera‐
tions on it.
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It is worth exploring how these tasks are managed differently in
each environment:

Data access and retrieval
The modern data lake ingests data of all types and sizes. It expo‐
ses SQL, REST, and one or more language specific libraries—for
Python, R, Java, and so on—that human users (data scientists,
ML engineers, and data engineers) and machines can exploit to
access and manipulate data. It generates metadata and—con‐
comitant with the ingest, access/manipulation, and movement
of data—keeps track of data lineage, too.

What is more, the data lake is a superior alternative to the data
warehouse for storing multistructured data in its original for‐
mat, as well as for performing operations on multistructured
data and on certain kinds of semistructured data, such as
nonplain-text documents.

But the data lake is an inferior option for the SQL query and
SQL analytics use cases. On average, the SQL interface exposed
by the data lake supports only a subset of the ANSI SQL stan‐
dard; few (if any) relational databases support all ANSI SQL
revisions, but most implement complete support for older ANSI
SQL revisions (e.g., through ANSI SQL 1999) and less consis‐
tent support for more recent revisions. Some RDBMSs also
incorporate proprietary SQL extensions that simplify or acceler‐
ate certain kinds of queries or analytical operations.

The upshot is that the RDBMS is and will remain a best-in-class
engine for SQL query and for virtually all types of analytical
operations on relational data.

Data engineering and transformation
Because data gets vectored into the data lake from all points in
the enterprise’s world, it has emerged as the locus of data inges‐
tion and engineering. For most organizations, the site of the
lake has shifted from the on-premises data center to the public
cloud. This fact has especial salience when the data warehouse is
also hosted in the public cloud. In this scheme, the lake can in
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1 For all practical purposes, the focus of ETL itself has already shifted to cloud—or, more
precisely, to the cloud data lake. Most commercial ETL vendors also market cloud
offerings that support more than one public cloud provider and specific cloud SaaS and
PaaS offerings. Commercial ETL vendors specifically target the cloud data lake use
case, too, typically via provider-specific offerings. And most public cloud providers
offer an array of data integration services suitable for different kinds of use cases or for
users in a breadth of roles or practices—from software developers to ETL developers
and architects to self-service users of different types.

effect become the ETL layer,1 ingesting data from operational
systems (many of which have also moved to cloud) and used by
ETL developers to cleanse and transform the data destined to
populate the warehouse. The advantage of doing this is that
organizations can retain rich detail data that would otherwise be
discarded during the ETL process. This data is useful grist for
data scientists, ML/AI engineers, and other users.

The on-premises data warehouse will continue to depend on its
ETL layer for data access. It will draw data directly from on-
premises systems—so long as these systems remain in the data
center. But it, too, now derives a large (and growing) share of its
data from the lake. In these and other ways, the lake has become
a critical feeder tributary for the warehouse.

The data lake feeds not only the data warehouse but a wide range of
different analytic practices and use cases. It complements the data
warehouse in other types of practices and use cases: hosting analytic
sandboxes and data labs. But the emphases in these data-lake-
focused analytic environments is typically on engineering data and
preparing it for use in another context: data scientists, ML
engineers, and similar users typically create data pipelines (see
Figure 4-2) in interactive analytic notebooks to schedule operations
on data and to move data between repositories and data processing
engines. These notebooks can exploit the data lake’s built-in process‐
ing capabilities, along with those of the data warehouse—to say
nothing of a medley of cloud data processing engines or services,
too.

Figure 4-2. Data orchestration/data pipeline
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Contextualizing Data in the Cloud
Data lives in the data warehouse, where everything is known about
it. It lives in the data lake, where less is known about it. But it like‐
wise lives in sandboxes and other repositories dispersed throughout
the on-premises enterprise and the cloud. It lives in cloud storage
services.

The remit of the data warehouse is to provide a unified—panoptic,
as this book puts it—view of useful business data. But the funda‐
mentally federated logistics of the cloud complicate this. Some cloud
data warehouse systems use technologies such as data virtualization
and data catalog services to simplify the tasks of discovering, label‐
ing, and exposing useful data. Others incorporate useful capabilities
—such as graph-processing—in their RDBMS engines. Collectively,
these technologies aim to make it easier for subscribers to knit
together data scattered across both on-premises environments and
the cloud.

Data Virtualization
Formerly known as “data federation,” data virtualization is used to
facilitate a single view of data across all cloud and on-premises con‐
texts. Data virtualization exposes a logical, unified view of data that,
in the physical world, is cobbled together from disparate, geographi‐
cally distributed data sources. A decade ago, data virtualization was
commonly used to create canonical “business” and “application”
views, which could be thought of as analogous to virtual data marts.
In the era of the data lake—or of multiple data lakes—data virtuali‐
zation is used to present canonical views of semistructured and
polystructured data, too. It is a proven, useful technology for knit‐
ting together disparate data sources.

With respect to the data warehousing use case, data virtualization is
much less useful for ad hoc query than for building models (views)
that support common or recurring queries. Because data virtualiza‐
tion distributes queries across multiple (often geographically dis‐
tributed) contexts, it gives priority to minimizing data movement:
when possible, its engine pushes data processing up to source sys‐
tems. (Over time, data is also cached in the data virtualization tier.)
Data virtualization exposes a single interface for SQL query; under
the covers, however, it uses smart technology to accelerate query
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performance. Several cloud data warehouse providers offer a virtual‐
ization layer of one kind or another.

Data Catalogs
Data catalogs permit users to discover, profile, and classify data,
regardless of context. Even though data catalog technologies are typ‐
ically deployed and managed by IT, they are used by self-service
power users: for example, BI discovery users, business analysts, data
scientists, ML engineers. Data catalog technologies help users
discover, label, and procure useful data for analysis. More advanced
data catalog services permit users to manipulate data, even automat‐
ing the profiling and transformation of data for analysis. These
services also incorporate rich metadata management features, along
with (often less rich) capabilities for tracking and capturing data
lineage.

Data catalogs are frequently used in conjunction with data virtuali‐
zation: an analyst, BI discoverer, or other skilled person discovers
useful data in one or more contexts—a cloud data warehouse ser‐
vice; a zone in a data lake; a cloud storage service—and works with
IT, business subject-matter experts, and data modelers to expose it
via data virtualization. Several PaaS vendors offer more or less useful
versions of these technologies. (In the IaaS cloud, data virtualization
and data cataloging are either included with the core data warehouse
or licensed separately.) This usefulness is not specific to just the data
warehouse: they knit together data that is scattered among disparate
contexts.

Graph Databases
The slice of the business world that is captured by traditional BI
analytics is relatively narrow.

It ignores the data that lives in time-series databases, hierarchical
data stores, network databases, document databases (and similar
content management systems), to say nothing of the data lake. It
ignores the wild profusion of cloud data sources. But deriving con‐
text (i.e., linking text-analytic data with time-series data with
attribute value-pair data with relational data) is a hard problem. It
involves using a technique known as graph traversal, which is the
remit of so-called graph databases.
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This is why some data warehouse platforms incorporate graph pro‐
cessing capabilities. The beauty of embedding a graph engine in (or
along with) an RDBMS engine is simple: you can actually store
graph data in the RDBMS, then use SQL to access and query the
graph data: the database’s built-in graph-processing engine auto‐
mates the task of translating SQL queries into establishing context.
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CHAPTER 5

The Data Warehouse in the Cloud

For the purposes of on-premises-to-cloud data warehouse migra‐
tion, most organizations tend to deploy in accordance with one of
two topologies. The first is a so-called hybrid cloud—that is, one
that knits together an on-premises data warehouse with a data ware‐
house in the cloud. The second is a so-called multicloud topology,
which distributes the cloud data warehouse across two or more
providers. A few variations on these themes (such as hybrid-
multicloud) are common, too.

Cloud Data Warehouse Topologies
Let’s briefly review these topologies.

Hybrid Cloud
A hybrid deployment is a data warehouse that spans two distinct
contexts—typically, the on-premises enterprise and the cloud. For
our purposes, there are two kinds of hybrid configurations:

On-premises nonvirtualized data warehouse <> cloud data warehouse
This is a relatively common scenario. One example of this is
when an organization migrates its BC/DR, test-dev, and analytic
discovery workloads to the cloud data warehouse and keeps its
production workloads in a nonvirtualized on-premises system.

On-premises virtualized data warehouse <> cloud data warehouse
This is less common but becoming more so—especially now
that most PaaS providers also support on-premises private
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cloud deployments. Hybrid deployments of this type might
focus on hosting certain kinds of workloads (e.g., those that
involve sensitive data, those that are especially demanding) in
the on-premises virtual data warehouse.

Same-vendor to same-vendor hybrid cloud deployments can be
advantageous for several reasons, not least because of portability
between cloud contexts: SQL, indexes, procedural code, UDFs,
database-specific schemas, and similar assets will often (but not
always) transfer without issue from one context to another. Most
database-specific skills should transfer, too. For these reasons, pro‐
viders like to tout an ability to shift workloads between contexts in a
homogeneous hybrid cloud.

Multicloud
Multicloud means just what it sounds like: rather than sourcing its
cloud services from a single provider, the organization distributes its
data warehouse across two or more cloud providers. It is necessary
to distinguish between a multicloud strategy and tactical use of
multicloud.

Multicloud in its strategic dimension can mix elements of risk man‐
agement—namely, an emphasis on hedging against the risk of
service provider lock-in—with an à la carte shopping experience
(different cloud services have different strengths) and with BC/DR
planning, too.

In practice, a mix of cloud and on-premises data warehouse systems
is not uncommon. This is less an example of a hybrid-multicloud
deployment—in which an on-premises data warehouse and two or
more cloud systems coexist inter pares—than a hybrid deployment
in which the organization makes tactical use of at least one other
cloud service. So, for example, an enterprise might host test-dev and
BC/DR in one cloud service (usually identical to that of its on-
premises provider) and one or more analytic sandboxes (used to
support its business analysts) in another. Some enterprises might
host their data lake and their data warehouse in one cloud but sup‐
port several different business use cases in sandboxes in another
cloud. Some cloud providers charge for capacity, some for use, some
for both.
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The Local Cloud, the On-Premises Public-Private Cloud
The PaaS data warehouse is not strictly confined to the distant pub‐
lic cloud. In just the last two years, several vendors have introduced
services that bring the PaaS data warehouse closer to—and, with
respect to the on-premises public-private cloud, directly to—the
enterprise. One strategy is to bring public cloud infrastructure to the
enterprise edge: several hyperscale providers operate local “zones” in
metropolitan areas that are not otherwise adjacent to one of their
large regional hosting centers. These local zones bring cloud infra‐
structure—compute, storage, and network resources, as well as SaaS
and PaaS services that run atop them—closer to the enterprise.
Another strategy, the on-premises public-private cloud, consists of a
PaaS data warehouse that is installed in the customer data center by
the cloud provider. The provider owns and maintains the hardware
and the supporting infrastructure software (including the functions
of the PaaS data warehouse that are abstracted from the customer)
and the customer usually pays for power, cooling, and other data
center essentials.

These services, and the public-private PaaS cloud in particular,
address several problems. In some cases, data and workloads just
cannot leave the on-premises environment. Some customers (partic‐
ularly in government) are constrained by statutory or regulatory
requirements that prevent them from moving data to the public
cloud. Some are just uncomfortable moving sensitive data to an off-
premises context, be it the public cloud or a regional hosting facility.
Some have contracts with customers, partners, suppliers, etc., that
prevent them from moving certain kinds of data off-site.

Finally, and no less important, some organizations may be unable to
move demanding workloads (and the data associated with them)
because of the performance limitations of public cloud
infrastructure.

This last is usually a function of the suboptimal latency of public
cloud infrastructure. In the topology of the public cloud, virtual
(that is, software-defined) resources are typically nonlocal with one
another; in most cases, this means that virtual resources communi‐
cate with one another over network transport, not via high-speed
local computer buses. In the public cloud, the messages and data
that operating systems, databases, and middleware exchange with
one another—which, in an on-premises, nonvirtualized SMP data
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warehouse, would transit a high-speed local bus—use this network
transport, too. (In the on-premises data center, MPP systems tend to
use some form of high-speed, low-latency interconnect technology,
such as InfiniBand, to exchange data and messages between nodes.
Today, several cloud-providers offer low-latency cloud data ware‐
house services that run atop InfiniBand.)

The upshot is that—in most cloud PaaS data warehouse topologies
—the virtual “disks” that the data warehouse reads data from and
writes data to are actually implemented in object storage, a kind of
distributed file system that spans hundreds or thousands of disk
drives. Although object storage has its benefits—it supports high-
data-throughput sequential reads and writes—it tends to have very
high latency. As a general rule, the speed with which an analytic
workload can be processed is inversely related to latency: the lower
the latency, the faster the speed at which the workload can be
processed.

Bringing public cloud infrastructure to a local or metropolitan zone
helps reduce latency. For example, in a large regional hosting center,
virtual storage resources do not live in the same rooms—sometimes
not even in the same buildings—as the virtual servers that connect to
them. In the local zone, by contrast, resources are closer together
(ideally, in the same data center facility), which reduces latency and
helps make performance much more predictable. The on-premises
public-private cloud goes this one better, however, by consolidating
compute and storage into a single, integrated system. Data and mes‐
saging traffic still transit over software-defined links, but because
the underlying compute and storage hardware lives in the same cab‐
inet (or in one or more adjacent cabinets), performance is compara‐
ble to that of a conventional data warehouse system. For especially
demanding workloads, or for data warehouse systems that host hun‐
dreds of concurrent users (and workloads) of different types, the on-
premises public-private cloud offers the lowest latency and best
possible performance.

Selecting a Provider
An organization that has a large on-premises data warehouse system
will tread carefully as it migrates this system to a cloud service.
“Large” in this context means the data warehouse hosts a mix of dif‐
ferent workloads, supports a large number of concurrent users,
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and/or is the focus of diverse practices—that is, in addition to its
core role of supporting BI reporting and analytics.

The key recommendations for pursuing strategy are:

• Protect IT investments that have already been made over the
years

• Migrate to the cloud without disrupting the business
• Extend the existing environment by adding new innovations

and technologies

An organization with less demanding requirements has more flexi‐
bility in selecting a cloud provider.

In all cases, the organization’s choices are determined by its priori‐
ties. For example:

1. Is the organization happy with its existing (on-premises) data
warehouse vendor?

2. Relatedly, does the organization’s on-premises vendor market its
own PaaS data warehouse?

3. Relatedly, does the organization expect to maintain a hybrid
(on-premises + cloud) topology?

4. Where do the organization’s operational applications live? Are
most of them still in the on-premises environment, or have
some/all also shifted to the cloud?

5. Relatedly, is intracloud integration with the organization’s cloud
infrastructure a requirement?

6. Are there needs—SLAs, high concurrency, support for mixed
workloads, compliance with security or other standards—that
only a few providers can realistically meet?

7. Are there esoteric analytic needs (e.g., in-database graph, ML,
time-series, etc., processing)?

8. Is integration with other cloud services—not only cloud SaaS
applications but also cloud ML, data integration, AI, software
development, etc., services—a priority? Should it be?

These are just a few of the questions that factor into the calculus of
choosing a cloud provider.
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An organization with specialized needs should be able to quickly
narrow down its list of providers.

There are a few points worth emphasizing, however:

1. PaaS data warehouse services are not interchangeable. To adapt
from Leo Tolstoy, each PaaS data warehouse is unalike in its
own way. Some PaaS data warehouses have superior mixed-
workload capabilities, which means they can host a large
number of workloads simultaneously. Some incorporate useful
features (e.g., in-database ML, graph-, or time-series-processing
capabilities) that set them apart. Others have superior cloud-
specific feature sets. They spin up and shut down faster, or they
pause and resume more quickly. They have friendly, more intu‐
itive management and design tools.

2. The tactical use of more than one cloud data warehouse service
is not strictly inimical to the goal of having a unified view of
useful business data. You have a data warehouse: it is the
authoritative repository for all useful business data. It supports
business planning and decision making. It provides a panoptic
view of all useful data. But you have analytic sandboxes and
R&D data labs, too. If necessary, you use data virtualization,
data catalog services, and other technologies to knit these
resources together. This is the remit of the logical data ware‐
house, discussed in Chapter 2.

3. The tidal pull of operational applications is strong. This force is
especially strong once on-premises applications move to the
cloud. Several factors—including the asymmetrical cost of mov‐
ing data out of the cloud; security; simplified development—
amplify this tidal force. The pressure to host the data warehouse
in an intracloud context with operational applications can prove
to be decisive.

Configuring and Managing the
Data Warehouse in the Cloud
In the on-premises data center, the sizing and optimization of the
data warehouse is a focus of considerable attention. DBAs and other
skilled technicians expend considerable time and effort designing,
configuring, managing, maintaining, and (of course) troubleshooting
the on-premises data warehouse. How does this change in the
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1 Some cloud services achieve something like an MPP topology by employing a shared
storage substrate and independent compute nodes. That is, all compute nodes share
access to all of the tables in the database, but each processes workloads independently
of the others. This scheme achieves MPP-like compute performance.

cloud? Mostly for the better. Consider a few of the choices and
responsibilities that are bound up with the implementation and use
of an on-premises warehouse:

Choosing a conventional or MPP data warehouse system
Many cloud providers offer MPP or MPP-like1 data warehouse
services. An MPP database is the best overall option for
demanding analytical requirements. The brawn of the MPP data
warehouse offsets many of the performance constraints of the
cloud model. Not only is it cost-effectively priced, but cloud
software—in the PaaS model, at least—helps automate the cre‐
ation, configuration, deployment, and maintenance of an MPP
database.

Configuring and sizing the data warehouse system
This, too, is more challenging with respect to conventional, as
distinct from MPP, database systems. A conventional data ware‐
house is instantiated on a single physical server, which means
DBAs and other technicians must anticipate maximum (and
future) needs as they design the size and capacity of the data
warehouse system. An MPP system is somewhat easier to size,
inasmuch as enlarging the capacity of the MPP cluster is a
function of adding new server nodes. But the on-premises MPP
warehouse is constrained by the hard limits of cost—large
MPP databases are expensive!—and physical capacity; the cloud
MPP warehouse is not.

Scaling and maintaining the data warehouse system
In the on-premises data center, scaling a conventional data
warehouse system is more challenging than scaling an MPP
data warehouse system. There are hard limits as to how many
processors and how much memory can be stuffed into a single
server. (Scaling an on-premises MPP system is in no way sim‐
ple, however.) In the PaaS cloud, software functions automate
the creation and much of the management of the virtual data
warehouse system. Software also automates the expansion of the
virtual data warehouse system, along with its balancing and
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optimization. In an even more basic sense, software automates
the sizing up or sizing down of the virtual data warehouse.
These are nontrivial tasks in the on-premises enterprise.

Troubleshooting the data warehouse system
DBAs and developers expend a nontrivial amount of time
troubleshooting performance issues with the on-premises data
warehouse. This is true even in the case of MPP data warehouse
systems. The data warehouse in the cloud upends this status
quo: for one thing, the service provider is responsible for
troubleshooting hardware bottlenecks. “Fixing” these issues is
easier in the cloud, too: service providers can architect around
problems by allocating additional resources. In the on-premises
data center, DBAs do not have this flexibility.

At some point, subscribers will encounter problems that can be fixed
by neither the abundant resources of the cloud nor the automation
and intelligence built into even the most sophisticated of cloud
infrastructure platforms. In the cloud data warehouse, as in its on-
premises predecessor, query performance is as much a function of
software smarts (the core database’s query optimizer) as of hardware
brawn. Some database query optimizers are better than others.
Some databases offer better features—more insight and granularity
with respect to the query optimizer’s query plan and its impact on
system resources—than others. DBAs, developers, and other techni‐
cians must still use their smarts to troubleshoot these and similar
issues. They should have more time in which to do so, however.

Securing the Data Warehouse in the Cloud
All things being equal, the cloud data warehouse is at least as secure
(and probably more secure) than the on-premises data warehouse.
Cloud service providers tout compliance with industry-standard
guidelines (as defined by the Cloud Security Alliance, NIST,
FedRAMP, PCI DSS, and other relevant specifications) and employ
commonsense best practices, such as enforcing password length/
aging requirements; encrypting data by default; separating sensitive
from nonsensitive data; and supporting multifactor authentication.
Cloud service providers perform security tests (audits, penetration
testing, scanning for vulnerabilities, etc.) on a more frequent and
consistent basis than IT teams in the on-premises enterprise.
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2 In most IaaS data warehouse services, as in the on-premises enterprise, the subscriber
owns the responsibility of maintaining virtual operating system, database, and middle‐
ware software.

Security is a net positive for the cloud as against the on-premises
environment.

Security in the PaaS cloud, especially, constitutes a reprieve for
DBAs, system administrators, and others. In the on-premises
environment, enterprises are solely responsible for ensuring the
integrity and consistency of their data. They need to be careful about
how and under what circumstances they store sensitive data, both to
safeguard against possible data breaches and to comply with perti‐
nent data privacy laws. Relatedly, they have a responsibility to com‐
ply with applicable data movement, data retention, and data deletion
requirements, some of which are region-specific. Lastly, they need to
be able to protect their physical assets—not just server, storage, and
network resources, but business campuses (with their buildings,
doors, windows, etc.), too. In other words, an enterprise that shifts
its applications or workloads to the PaaS cloud shifts a significant
proportion of security-related risk, too.2

Another problem has to do with sensitive data. In the cloud, a com‐
mon best practice is to separate sensitive from nonsensitive data, so
most cloud service providers expose wizards (or quasi-automated
features) that aim to make it easier to create rules for managing sen‐
sitive data. Some also use ML models to profile data during ingest,
which helps automate the identification of sensitive data. Managing
sensitive data poses an additional difficulty with respect to data
warehousing, however: analytics are constructed by combining sen‐
sitive with nonsensitive data. So some providers use automated
technologies (such as data hashing, anonymization, or differential
privacy) to strip data of sensitive details. The masked data is still
useful for analysis but will not leak or disclose information.

A final, related consideration is that almost all PaaS data warehouse
services turn data encryption on by default. This is not strictly true
in the on-premises enterprise, however; and in the IaaS data ware‐
house, too, data encryption is usually the subscriber’s responsibility.
By itself, this presumption of data encryption is an advantage for the
PaaS data warehouse. But the PaaS model helps simplify the logistics
of data encryption, too. For example, one of the most unnerving
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aspects of encrypting data has to do with the problem of managing
encryption keys. In the PaaS data warehouse, the hosting provider
assumes responsibility for managing encryption keys, ensuring that
key management services are online and available, that new keys get
distributed to all relevant databases, and so on.
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Conclusion

The data warehouse in the cloud does not constitute a radical break
with its on-premises predecessor. In the cloud, the role of the data
warehouse is the same as it ever was: it remains the authoritative sys‐
tem of record, the ground and guarantor of the veracity of all of the
data that is potential grist for business decision making. Even prior
to the emergence of data lakes and data science, one critical role of
the data warehouse was that of a research lab in which the business
performed experiments on itself.

The data-warehouse-in-the-cloud, by contrast, is practically unlimited
in terms of its size and prolificacy. It is multiparous—that is, capable
of being recreated or replicated as often as needed—in much the
same way that the on-premises data warehouse is not. Subscribers
can draw upon the reserve capacity of the hyperscale cloud to create
very large single-instance data warehouse configurations of dozens
or, even, hundreds of terabytes. They can create, pause, resume,
and/or destroy virtual data warehouse instances as needed; better
still, instances can be created (or destroyed) in response to program‐
matic events, such as API calls, or triggered by rules engines. The
data warehouse in the cloud is not perfect. As a general rule, on-
premises data warehouse systems will require more compute, more
memory, and more storage resources if they are to be successfully
transplanted into the cloud context. How much more is a function of
trial and error.

The cloud data warehouse of today is more performant than that of,
say, half a decade ago. A more recent innovation is that of the on-
premises public cloud: a PaaS service that is either deployed in a
local hosting “zone” (i.e., a local data center) or in the customer’s
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own data center. In this scenario, the cloud provider, rather than the
customer, owns and manages the service. Cloud-at-customer gives
subscribers another (albeit premium) option to address stubborn
performance issues. This has everything to do with the inexorable
economics of cloud. It is not just a force for driving down costs but
for doing so while also improving performance.

In the cloud context, a data scientist can easily design data pipelines
that (1) extract useful data from the production data warehouse, be
it on- or off-premises; (2) call RESTful APIs to spin up one or more
virtual data warehouse instances; (3) load the extracted data into a
virtual data warehouse instance; (4) perform one or more specific
operations on this data; (5) integrate it with data prepared in
another context; (6) move the resulting dataset to a destination
repository; and, lastly, (7) destroy the virtual data warehouse
instance. This scenario is possible in the on-premises enterprise, to
be sure; however, owing to physical, economic, and logistical con‐
straints, it is difficult to implement in practice.

Extending the data warehouse to the cloud helps simplify disaster
recovery/business continuity (DR/BC) planning. Shifting DR/BC from
the on-premises data center (or from a leased DR space) to the
cloud is one of the most popular migration scenarios: low-hanging
fruit, as it were. But the data warehouse in the cloud also transforms
an organization’s security posture. Cloud service providers—and
PaaS providers, especially—tend to be better about enforcing com‐
monsense security safeguards, such as on-by-default data encryp‐
tion, or password-complexity and aging requirements. All things
being equal, the data warehouse in the cloud is a more secure plat‐
form than its on-premises kith.

Because the data warehouse in the cloud is still a site of rapid transfor‐
mation, organizations should not expect to move all of their on-
premises workloads to the cloud. Right now, it may be neither cost-
effective nor possible to do so. In the overwhelming majority of
cases, subscribers will need to allocate additional resources to
achieve performance that is at parity with their on-premises data
warehouse systems.

The economics of cloud make data warehousing relatively cost-
effective, but not all cloud data warehouses are alike. Some are more
adept at scaling and managing challenging workloads, as in the case
of a data warehouse system that hosts a mix of workloads of
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1 Magic Quadrant for Cloud AI Services (Gartner, February 24, 2020).

different kinds, or a large number of concurrent users. Some cloud
data warehouses are “cloudier”—more elastic; more flexible; quicker
to start, pause, and resume—than others. These factors also impact
performance and availability.

An organization should thoroughly test-drive a cloud data warehouse
service prior to inking a contract with a provider. Organizations that
have large data warehouse systems should aim to test against a com‐
plete copy of their data, if possible; they should also evaluate other
factors, such as data loading performance, the reliability and perfor‐
mance of their ETL jobs, even the speed of database inserts. If appli‐
cable, they should attempt to account for the cost of workloads that
involve data egress to other cloud services—or to on-premises
resources. But due diligence of this kind will save adopters time,
money, and frustration in the long run.

Final Thoughts
The data warehouse in the cloud is transformative in another
important way. Depending on the provider, the cloud data ware‐
house is logically adjacent to (or “lives” in the same context as)
cloud-based ML, AI, data integration, and developer-oriented
services. These services are already quite popular—not only with
ML and AI engineers but with software developers, too. In its most
recent Magic Quadrant for Cloud AI Services report,1 for example,
market-watcher Gartner projected that—by 2023—40% of develop‐
ment teams will use AI services to incorporate AI capabilities into
their apps. Five years from now, half of all data science activities will
be automated by AI, according to Gartner.

Today, this is a vision, especially when the data warehouse remains
tethered to its on-premises launch pad. But transplanting the data
warehouse from the on-premises data center into the cloud is an
important, a conative, first step. The cloud data warehouse is a new
home for old workloads, yes; more important, it is a site for and a
focus of new kinds of workloads and new types of analytic develop‐
ment, allowing you to maximize the value from data, understand it
better, and drive efficiencies and innovation.
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