Comparing Oracle Database Performance in the Cloud

April 2nd, 2020
• 10,000+ hours of 24x7 on-call DBA
• First Oracle Certified Master in Europe: 2002
• Oracle ACE Director
• Master Technology Architect
• Master Data Architect
• Database Blog at: julian dontcheff.wordpress.com
COMBINING CLOUD AND MACHINE LEARNING INTO THE WORLD'S FIRST SELF-DRIVING, AUTONOMOUS DATABASE
CAN THE WORLD’S FIRST AUTONOMOUS DATABASE UNLEASH THE INTELLIGENT ENTERPRISE?

ACCENTURE TESTED THE AUTONOMOUS DATA WAREHOUSE CLOUD ON A REAL APPLICATION, RUNNING REAL-WORLD WORKLOADS

- Tests performed at multiple Accenture locations and innovation centers
- Conducted by a team of Accenture’s Oracle data specialists
- Data replicated on both the Oracle Database Cloud Service and the Autonomous Data Warehouse Cloud
EXTREMELY FAST

TESTING SHOWED SIGNIFICANT SPEED IMPROVEMENT

• Inserting 500 million rows of data took less than three minutes, on average
• 1.6x performance improvement compared to published findings
• 14x performance acceleration
<table>
<thead>
<tr>
<th>Feature Comparison</th>
<th>Database Provisioning</th>
<th>Scale Up / Down Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual Install*</td>
<td>DBCS</td>
<td>ADWC</td>
</tr>
<tr>
<td>4 Hours</td>
<td>1 Hour</td>
<td>101 Seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not possible as the hardware is not elastic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 Minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Database is down while scaling is happening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58 Seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Database remains active while scaling is happening</td>
</tr>
</tbody>
</table>

* Assume hardware is already procured.
Utilizing an existing cloud based analytics application called PRETT [Platform Resource Enablement Tracking Tool] running on OACS [Oracle Analytics Cloud Service]. Data will be replicated in DBCS and ADWC to provide a real life application usage experience.

The data will then be extrapolated and expand based on that existing application to simulate ADWC functionality.

SPRINT 1 BASELINE

- Compare like to like data volume in OACS[DBCS] to OACS[ADWC]
- 3 Month Data volume
- Run and compare performance in OACS[ADWC] and compare with baseline OACS[DBCS] information

SPRINT 2 EXTRAPOLATE

- Create 9 years of data on ADWC based on the 3 month live data to then compare performance on high volume data.
TESTING RESULTS

ADWC IS CONSISTENTLY PERFORMING FASTER

SPRINT 1 BASELINE

SPRINT 2 EXTRAPOLATE

AVERAGE RUN TIME

1.63x

AVERAGE RUN TIME

1.72x

Copyright © 2019 Accenture. All rights reserved.
ARCHITECTURE USING ADWC

US2 – CHICAGO DATA CENTER
ORACLE DATABASE CLOUD SERVICE
METADATA ONLY
ANALYTICS CLOUD SERVICE

ASHBURN DATA CENTER
ORACLE DATABASE CLOUD SERVICE
AUTONOMOUS DATA WAREHOUSE CLOUD

Copyright © 2019 Accenture. All rights reserved.
Four Areas of Self-Securing of Autonomous Databases

Self-securing starts with the security of the Oracle Cloud infrastructure and database service. Security patches are automatically applied every quarter or as needed, narrowing the window of vulnerability. **Patching** includes the full stack: firmware, operating system [OS], clusterware, and database. There are no steps required from the customer side.

Oracle encrypt customer data everywhere: in motion, at rest, and in backups. The encryption keys are managed automatically, without requiring any customer intervention. And **encryption** cannot be turned off.

Administrator activity on Oracle Autonomous Data Warehouse Cloud is logged centrally and monitored for any abnormal activities. Oracle have enabled database **auditing** using predefined policies so that customers can view logs for any abnormal access: UNIFIED_AUDIT_TRAIL

Built upon Oracle Database Vault, unique to Oracle Cloud, operations personnel have privilege to do all administrative tasks without any ability to ever **see any customer data**
Four Areas of Self-Automation of Autonomous Databases

- **Automatic provisioning**: pluggable databases
- **Automatic scaling**: PDB resource manager

- **Automatic tuning**: SQL Plan Management, Adaptive Plans, SQL Tuning Advisor – Automatic SQL Tuning, Storage Indexes, Automatic Storage Management, Automatic detection and correction of regressions due to plan changes, Automatically tune memory, process, sessions

- **Automatic Fault Tolerant Failover**: RAC and Data Guard
 - Automatically kill run-away transactions and SQL
 - Automatically kill inactive session

- **Automatic Backup and Recovery**: RMAN, Flashback
Seven Areas of Self-Repairing of Autonomous Databases

<table>
<thead>
<tr>
<th>Outage</th>
<th>Key Feature</th>
<th>Potential Downtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Outage (HA)</td>
<td>RAC</td>
<td>Near-Zero</td>
</tr>
<tr>
<td>Regional Outage, Disaster Recovery</td>
<td>ADG</td>
<td>Seconds</td>
</tr>
<tr>
<td>Data Corruption</td>
<td>ADG</td>
<td>Zero</td>
</tr>
<tr>
<td>Patches (Updates)</td>
<td>RAC</td>
<td>Near-Zero</td>
</tr>
<tr>
<td>Database Upgrade</td>
<td>ADG</td>
<td>Seconds</td>
</tr>
<tr>
<td>Table/Index Changes</td>
<td>Redef</td>
<td>Zero</td>
</tr>
<tr>
<td>User Error</td>
<td>Flashback</td>
<td>Time Since Error</td>
</tr>
</tbody>
</table>
“This is the most important thing we have done in a long, long time. The automation does everything. We can guarantee an availability time of 99.995%, less than 30 minutes a year of planned or unplanned downtime.”

Larry Ellison
Oracle Executive Chairman and CTO
19c: why automating index creation in the database?

• For a very long time, both DBAs and Developers, have been struggling (really struggling) with what indexes should be created, what type of indexes they should be created as and what indexes should be dropped from the database.

• By far, the most interesting new feature of Oracle Database 19c is Automatic Index creation (AI Creation).

• In the long run, this is to be one of the most important features in the Oracle database.
19c: Machine Learning and Artificial Intelligence in the DB

- Oracle first create invisible-invalid indexes using `dbms_stats.report_col_usage`
- Then they test-parse SQL in the SQL tuning set to see if it will use the indexes - because at this stage Oracle have candidate indexes but Oracle won't yet know if they stand a chance of actually being useful - if the SQL does use the indexes, then Oracle make them invisible-valid
- Then they test execute the queries in SPA (allowing the SQL to see the invisible-valid indexes) and they check to see if they run better with these proposed indexes - if they do, then we can make the valid indexes visible
- In theory we can get a new batch of visible indexes every 15 minutes
Four Areas of differences between ADW and ATP

In ADW: the majority of the memory is allocated to the PGA – joins, aggregations in memory
In ATP: the majority of the memory is allocated to the SGA – minimize I/O

In ADW: data is stored in a columnar format as that’s the best format for analytics processing
- ADW uses DBIM option features like in-memory columnar flash cache under the covers
In ATP: data is stored in a row format

In ADW: statistics are automatically maintained as part of bulk load and DBMS_CLOUD activities
In ATP: statistics are automatically gathered when the volume of data changes significantly enough to make a difference to the statistics

In ADW: only one service (LOW) automatically runs SQL statements serially, all is parallel
In ATP: the PARALLEL service does no longer exist (as of 12.11.2018)
ATP-D generally available since June 18th, 2019

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Availability Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreviewDBSystem</td>
<td>Available</td>
<td>qhZB:US-ASHBURN-AD-1</td>
</tr>
</tbody>
</table>
ATP-D generally available since June 18th, 2019
Four Areas of how ATP-D is different

- Private IPs are not yet supported for serverless ADB deployments but they are on the short-term roadmap
- Private IPs are supported with ATP-Dedicated

- ADB (serverless) does have auto-scaling - you can select auto scaling during provisioning or later using the Scale Up/Down button on the Oracle Cloud Infrastructure console
- ATP-D does not have auto-scaling support

- Loading data from object stores via DBMS_CLOUD is the recommended method for loading large data sets
- DBMS_CLOUD to load data is not applicable for ATP-D because DBMS_CLOUD is not available on ATP-D

- In ADB-D, the database version is 19c which is required for Auto-Indexing which is on by default
- Support for 19c and 20c / Auto-Indexing on ATP-S is on the roadmap
New Performance Tests: Oracle ADW and Major Cloud DW

Other Cloud DWs are a solid offering that performed well in the tests, especially in the smaller cloud- and data-size scenarios.

With its data-caching and parallel-execution capabilities, they showed performance above and beyond that which would be expected from a traditional database engine.

Nevertheless, Oracle ADW essentially matched or exceeded that performance in the small and medium scenarios, and it clearly exceeded it in the large scenario.

At the same time, when it comes to heavy workloads ADW delivers higher performance at much lower costs.

With its winning performance/cost ratio—and the operational advantages offered by its extensive autonomous capabilities—Oracle ADW should be considered by companies that want to run their enterprise data warehouse in the cloud.
Accenture New Performance Tests

Test Results for Medium-Large DW [sec.]
TCO Savings for Autonomous Data Warehouse

A client TCO analysis

<table>
<thead>
<tr>
<th>Description</th>
<th>Year 1</th>
<th></th>
<th>Year 2 through 5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Associated Cost on Premises (130 Cores)</td>
<td>Associated Autonomous DW Cost (92 Cores)</td>
<td>Associated Cost on Premises (130 Cores)</td>
<td>Associated Autonomous DW Cost (92 Cores)</td>
</tr>
<tr>
<td>5 x Exadata 1/4 racks (130 cores) (25% Discount)</td>
<td>$1,262,250</td>
<td>Included</td>
<td>$0</td>
<td>Included</td>
</tr>
<tr>
<td>Hardware and OS Support</td>
<td>$252,450</td>
<td>Included</td>
<td>$252,450</td>
<td>Included</td>
</tr>
<tr>
<td>Oracle EE, RAC, Partitioning, Diagnostics (@ 60% discount) (65 licenses)</td>
<td>$2,522,000</td>
<td>$394,260</td>
<td>$0</td>
<td>$394,260</td>
</tr>
<tr>
<td>Annual Support for DB and options</td>
<td>$554,840</td>
<td>Included</td>
<td>$554,840</td>
<td>Included</td>
</tr>
<tr>
<td>Exadata Storage (480TB) (60% Discount)</td>
<td>$720,000</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Exadata Storage Support</td>
<td>$158,400</td>
<td>$0</td>
<td>$158,400</td>
<td>$0</td>
</tr>
<tr>
<td>ADW Storage (8TB)</td>
<td>$0</td>
<td>$21,310</td>
<td>$0</td>
<td>$21,310</td>
</tr>
<tr>
<td>Labor – FTE @ $165,000 ea.</td>
<td>$495,000</td>
<td>$247,500</td>
<td>$495,000</td>
<td>$247,500</td>
</tr>
<tr>
<td>Datacenter</td>
<td>$54,000</td>
<td>Included</td>
<td>$54,000</td>
<td>Included</td>
</tr>
<tr>
<td>Network Costs</td>
<td>$15,600</td>
<td>$31,200</td>
<td>$15,600</td>
<td>$31,200</td>
</tr>
<tr>
<td>Oracle Fast Connect</td>
<td>$11,385</td>
<td></td>
<td>$11,385</td>
<td></td>
</tr>
<tr>
<td>Total Cost</td>
<td>$6,034,540</td>
<td>$705,655</td>
<td>$1,530,290</td>
<td>$705,655</td>
</tr>
</tbody>
</table>

88% TCO Year 1

54% TCO Years 2–5
TCO savings for Autonomous Data Warehouse – a graphical view

A client TCO analysis

Year 1 cost comparison of On Premises vs. Oracle Cloud

Years 2 through 5 cost comparison of On Premises vs. Oracle Cloud

- Labor
- Datacenter
- Network
- Storage
- Software and Support
- Hardware and support
<table>
<thead>
<tr>
<th></th>
<th>LEADING CLOUD PROVIDER</th>
<th>ORACLE CLOUD INFRASTRUCTURE</th>
<th>AUTONOMOUS DATA WAREHOUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCPU</td>
<td>16</td>
<td>16 (8 OCPU)</td>
<td>16 (8 OCPU)</td>
</tr>
<tr>
<td>Memory</td>
<td>128 GB</td>
<td>120 GB</td>
<td>Exadata</td>
</tr>
<tr>
<td>Disk Type</td>
<td>SSD</td>
<td>NVME SSD</td>
<td>Exadata</td>
</tr>
<tr>
<td>Disk Size</td>
<td>1 TB</td>
<td>6.4 TB</td>
<td>1 TB</td>
</tr>
<tr>
<td>Queries per Hour</td>
<td>65</td>
<td>1,264</td>
<td>11,975</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,453</td>
</tr>
<tr>
<td>Queries per Hour</td>
<td>LEADING CLOUD PROVIDER</td>
<td>ORACLE CLOUD INFRASTRUCTURE</td>
<td>AUTONOMOUS DATA WAREHOUSE</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>1,264</td>
<td>LARGE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11,975</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SMALLER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,453</td>
</tr>
<tr>
<td>Term Commitment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Years</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Annual IaaS Cost</td>
<td>$5,352</td>
<td>$8,928</td>
<td>$101,580</td>
</tr>
<tr>
<td>Annual Oracle DB Support</td>
<td>$110,000*</td>
<td>$55,000*</td>
<td></td>
</tr>
<tr>
<td>Annual Infrastructure + Oracle DB Cost</td>
<td>$115,352</td>
<td>$63,928</td>
<td>$46,812</td>
</tr>
</tbody>
</table>

* Database licensing only includes Oracle Database Enterprise Edition and Advanced Security
Value: More for Less

Leading Cloud Provider
- **Annual Total Cost**: $85,352
- **Queries / Hour**: 1,264
- **Cost / Hour**: $7.30
- **Cost / Query**: $0.0058
- **Patching for Security**: Days / Weeks / Months

Oracle Cloud Infrastructure
- **Annual Total Cost**: $63,928
- **Queries / Hour**: 1,264
- **Cost / Hour**: $7.30
- **Cost / Query**: $0.0058
- **Patching for Security**: Days / Weeks / Months

Autonomous Data Warehouse
- **Larger**
 - **Annual Total Cost**: $101,580
 - **Queries / Hour**: 11,875
 - **Cost / Hour**: $13.17
 - **Cost / Query**: $0.0010
 - **Patching for Security**: Real-Time
- **Smaller**
 - **Annual Total Cost**: $46,812
 - **Queries / Hour**: 2,453
 - **Cost / Hour**: $5.34
 - **Cost / Query**: $0.0022
 - **Patching for Security**: Real-Time
ORACLE RUNS BEST ON ORACLE CLOUD

READ THE STUDY AT:
accenture.com/adb

READ THE TECH VISION:
accenture.com/tvo