
THE 2018 DZONE GUIDE TO

FEATURES, IMPROVEMENTS, & UPDATES

VOLUME IV

RESEARCH PARTNER SPOTLIGHT

THE DZONE GUIDE TO JAVA: FEATURES, IMPROVEMENTS, & UPDATES

D
Z

O
N

E
.C

O
M

/G
U

ID
E

S

PAGE 2 OF 49THE DZONE GUIDE TO JAVA: FEATURES, IMPROVEMENTS, & UPDATES

D
Z

O
N

E
.C

O
M

/G
U

ID
E

S

507 software professionals completed DZone’s 2018 Java survey.

Respondent demographics are as follows:

•	 41% of respondents identify as developers or engineers;

20% identify as developer team leads; and 17% identify as

architects.

•	 The average respondent has 13.7 years of experience as

an IT professional. 58% of respondents have 10 years of

experience or more; 21% have 20 years or more.

•	 41% of respondents work at companies headquartered in

Europe; 31% work at companies with HQs in North America.

•	 21% of respondents work at organizations with more than

10,000 employees; 18% at organizations between 1,000

and 10,000 employees; and 23% at organizations between

100 and 999 employees.

•	 87% develop web applications or services; 53% develop

enterprise business apps; and 22% develop native

mobile applications.

JAVA -VERSION
Since DZone’s 2017 Guide to Java Development and Evolution

was released, Java has continued to… evolve. Between the

publication of that guide and the guide you’re reading now, Java

9 and Java 10 have been released, and public updates for Java 9

have ended. By the time DZone’s next Java Guide is released, it

is likely that Java SE 11 will have officially been released (about

3 months from this writing); public updates to Java 10 will

have ended (also about 3 months from this writing); and public

updates of commercial-use Java 8 will have ended (about 6

months from this writing).

The change in Java’s release cadence likely has a direct impact

on the responses we saw in this year’s survey regarding Java

release adoption. Survey responses were collected roughly

one month after Java 10 was released, and about 7 months

after Java 9’s release. 30% of respondents this year said they

are using Java 9 or above, and these respondents are almost

exclusively using Java 9+ in new (rather than existing) apps–only

Key Research Findings
BY G. RYAN SPAIN

PRODUCTION COORDINATOR, DZONE

GRAPH 01. Which of the following 'enterprise' Java platforms do
you or your organization use?

GRAPH 02. JVM language usage

���������

���������

���������

���������

����������

�������
��

����������

����������

�
	��

������
������������
�����������������
�����

� �� �� ��
� ��

��

��

��

��

��

�
����

�� �� �� �� �� ��
����

������ ����� ��
���

http://dzone.com/guides
http://dzone.com/guides

THE DZONE GUIDE TO JAVA: FEATURES, IMPROVEMENTS, & UPDATES
D

Z
O

N
E

.C
O

M
/G

U
ID

E
S

PAGE 3 OF 49THE DZONE GUIDE TO JAVA: FEATURES, IMPROVEMENTS, & UPDATES

6% of respondents say they are using Java 9 or above in existing

applications. Java 8, meanwhile, remains the predominant

version of Java, with 92% of respondents saying they use Java 8

in some way. While respondents who said they use Java 8 in new

apps fell from last year’s results (89% in 2017 to 77% in 2018) as

adoption of new Java versions takes off, there was an increase in

respondents who said they use Java 8 for existing apps, from 49%

to 61%. This is on par with the number of respondents who said

they were using Java 8 for new apps in DZone’s first Java survey,

which was released about a year and a half after Java 8’s release

in 2014. Only 11% of respondents said they are using Java 7 or

below for new apps, down from 19% last year.

KOTLIN, KOTLIN, KOTLIN!!!
Overall, JVM language adoption has not seen a lot of growth

over the last few years. The two (non-Java) JVM giants–Groovy

and Scala–saw fluctuations in survey responses from 45% (2016)

to 43% (2017) to 45% (2018) for Groovy, and 41% (2016) to 38%

(2017 & 2018) for Scala, these shifts being well within the survey’s

margin of error, showing no significant change in adoption

of these technologies. Kotlin, on the other hand, has seen

extraordinary adoption since 2016. 2016’s Java survey saw 7% of

respondents using the JVM-based language; this grew to 16% in

2017 and now to 34% in 2018. This means Kotlin adoption among

our respondents has more than doubled each year for the past

two years. Of course, it’s impossible to directly correlate adoption

rates of these technologies, considering Groovy and Scala were

first released in 2004, giving plenty of time for extra hype to fade,

while Kotlin was first released in 2011 and open-sourced in 2012.

But Kotlin has certainly surpassed other JVM-based languages

like Ceylon and Clojure to be among the top JVM languages out

there; and with Kotlin’s appeal for Android development, it’s likely

that its popularity will continue to grow.

THE ART OF JAVA IS LARGELY THE ART OF
PERSISTENCE
Hibernate JPA remains the most popular persistence tool, with

50% of respondents using Hibernate’s implementation of the

Java Persistence API (up a negligible 1% from last year’s survey).

Standard JPA, on the other hand, fell from the second-place

position it held last year, with respondents who said they use the

tool dropping from 43% in 2017 to 35% in 2018, causing standard

JDBC (42% in 2017 and 45% in 2018) to take it’s spot as runner-up.

A steep increase in adoption of Spring’s JdbcTemplate from 26%

in 2017 to 37% in 2018 pushed it to third place. This year’s survey

also saw an increase in respondents who said they use Spring

Data, from 24% to 32%. While still not as popular as the other

four persistence tools mentioned, this increase in Spring Data

adoption hints at a rise in Java applications including more non-

relational storage models.

FRONT-END FREE-FOR-ALL

This year’s Java survey saw several shifts in responses

regarding tools used for creating application front-ends.

Respondents who said they use JavaFX fell to 11% from last

year’s 17%, putting JavaFX slightly below Swing at 14%.

Respondents using the JavaServer Faces framework decreased

dramatically, from 31% in 2017 to 21% in 2018, and the Struts

MVC framework saw a slight decline, from 14% to 10%; however,

Spring’s MVC framework adoption increased from 33% to 39%

this year. The use of JavaScript frameworks to handle Java app

front-ends continued to rise this year, with React seeing a huge

boost, jumping from 19% last year to 31% this year. Angular

usage also increased from 52% to 57%. As development of web

applications over desktop apps grows more and more common,

this trend is likely to continue.

GRAPH 03. Where do you primarily write Java code? GRAPH 04. Java data persistence tool usage

�������

��������

�����������������������

����������������������

����������

����

���� ����

��

��

��

��

��

��

�
�� �� �� �� �� �� �� �� �� ��

����������
�� ����
��
�

�	 �������

�	���������

����
��
�
�� �������
���������

http://dzone.com/guides

With Oracle recently agreeing to release a new version of Java every six months, things in the Java world are about to be more intense than ever.

Despite all the hype around Java 10, 64% of DZone users are still not using Java 9 or later, meaning that Java 8 remains very relevant. And as Oracle

continues with new releases, it will be increasingly interesting to look back and see what has changed from version to version. Let's start doing

that now by taking a hike to Camp Coffee to analyze the features of Java 8, 9, and 10 in tents.

JAVA 10
The first release in a new
six-month cycle, Java 10 has
been a relatively minor
release leading up to Java 11.

Brought local variable type
inference to Java with the
var keyword.

Enabled Java’s JIT compiler,
Graal, to be used as an
experimental compiler on the
Linux/x64 platform.

ATTITUDES
Three quarters of the
survey respondents feel
optimistic about the
future of Java, with 43%
feeling fairly optimistic
and 33% very optimistic.

Jakarta EE
Formerly known as Java EE,
focuses on distributed
computing and web services.

Features of all Java Versions

Spring
Frameworks
is an open-source tool that
provides infrastructure
support for Java applications.

Garbage
collection
A cleanup program and
method of managing
memory that runs on the
JVM and removes objects
that are not being used.

JAVA 8
Saw the introduction of many
features related to functional
programming into the Java
language, such as lambda
expressions, functional interfac-
es, and the Stream API.

Introduced the Nashorn engine to
enable running dynamic JavaS-
cript code natively on the JVM.

Included an overhaul for JavaFX,
such as a new theme (Modena)
and making it available for ARM
platforms.

JAVA 9
Modularized the Java Virtual
Machine with Project Jigsaw
(officially known as the Java
Platform Module System).

Brought a REPL to Java
in the form of JShell —
an interactive command-
line interface.

Improved and extended the
JAR file format to allow for
multiple Java release-specif-
ic versions of class files to

copyright 2018 dzone.com

•

•

•

•

•

•

•

•

•

THE DZONE GUIDE TO JAVA: FEATURES, IMPROVEMENTS, & UPDATES
D

Z
O

N
E

.C
O

M
/G

U
ID

E
S

D
Z

O
N

E
.C

O
M

/G
U

ID
E

S

PAGE 5 OF 49THE DZONE GUIDE TO JAVA: FEATURES, IMPROVEMENTS, & UPDATES

JDK 10
SUMMARY JAVADOC TAG
JDK 10 introduces a new Javadoc tag {@summary} via
issue JDK-8173425 ("Javadoc needs a new tac to spec-
ify the summary."). This new tag allows developers to
explicitly specify what portion of the Javadoc com-
ment appears in the "Summary" rather than relying on
Javadoc's default treatment looking for a period and a
space to demarcate the end of the summary portion of
the comment. {@summary} allows for explicit control
of what appears in the method's summaries.

The following code demonstrates {@summary} in
Javadoc method comments.

package dustin.examples.javadoc;
/**
* Demonstrate JDK 10 added summary support.
* Demonstrates this by comparing similar methods'
* Javadoc comments with and without use of new
* "@summary" tag.
*/
public class Summary
{
 /**
 * This method's first sentence is normally
 in the summary.
 * Here are some of its characteristics:
 *
 * This method does great things.
 * This method does not really do
 anything.
 *
 */

 public void implicitSummary1()
 {
 }
 /**
 * This method's first sentence is normally in
 the summary.Here are some of its
 characteristics:
 *
 * This method does great things.
 * This method does not really do
 anything.
 *
 */
 public void implicitSummary2()
 {
 }
 /**
 * {@summary This method's first sentence is
 normally in the summary. Here are some of
 its characteristics:
 *
 * This method does great things.
 * This method does not really do
 anything.
 * }
 */
 public void explicitSummary1()
 {
 }
 /**
 * {@summary This method's first sentence is
 normally in the summary.Here are some of its
 characteristics:
 *
 * This method does great things.
 * This method does not really do
 anything.
 * }
 */
 public void explicitSummary2()
 {
 }
}

ACCESSING A JAVA APP'S PROCESS ID
FROM JAVA

JDK 10 introduces an easy approach to obtaining a
JVM process's PID via a new method on the
RuntimeMXBean. JDK-8189091 ("MBean access to
the PID") introduces the RuntimeMXBean method
getPid() as a default interface method with JDK 10.
The following code demonstrates the use of the new
getPid() method on RuntimeMXBean.

final RuntimeMXBean runtime =
ManagementFactory.getRuntimeMXBean();
final long pid = runtime.getPid();
final Console console = System.console();
out.println("Process ID is '" + pid +
"'Press <ENTER> to continue.");
console.readLine();

FUTURETASK GETS A TOSTRING()

The JDK class FutureTask, introduced with J2SE 5,
finally gets its own toString() implementation in
JDK 10. The addition of a specific implementation of
toString() to the FutureTask class in JDK 10 is a
small one. However, to developers "staring at output
of toString for 'task' objects (Runnables, Callables,
Futures) when diagnosing app failures," as described
in JDK-8186326's "Problem" statement, this "small"
addition is likely to be very welcome.

JDK 11
FIVE NEW JEPS TARGETED FOR JDK 11

Five new JEPs will bring the number of JEPs
currently associated with JDK 11 to a total of eight.
They are JEP 324: Key Agreement With Curve
25519 and Curve448, JEP 327: Unicode 10, JEP 328:
Flight Recorder, JEP 329: ChaCha20 and Poly1305
Cryptographic Algorithms, and JEP 330: Launch
Single-File Source-Code Programs.

1. JEP 324

The primary goal of JEP 324 is to provide an API and
an implementation for the RFC 7748 standard. This
particular elliptic curve is well-suited as an addition
to the JDK that offers 128 bits of security and is one
of the fastest ECC curves.

2. JEP 327

JEP 327 aims to "upgrade existing platform APIs
to support version 10.0 of the Unicode Standard."
However, it will not include four related Unicode
specifications: UTS #10 ("Unicode Collation Algo-
rithm"), UTS 39 ("Unicode Security Mechanisms"),

UTS #46 ("Unicode IDNA Compatibility Processing"),
and UTS 51 ("Unicode Emoji").

3. JEP 328

JEP 328 provides "a low-overhead data collection
framework for troubleshooting Java applications and
the Hotspot JVM." It allows for analyzing issues in the
period leading up to a problem by recording events
and storing them "in a single file that can be attached
to bug reports and examined by support engineers."

4. JEP 329

JEP 329 aims to replace "the older, insecure RC4
stream cipher" with the "relatively new stream
cipher" known as ChaCha20 that is currently consid-
ered secure.

5. JEP 330

JEP 330 will allow "the Java launcher to run a pro-
gram supplied as a single file of Java source code."
This makes it easier to write Java-based scripts and
is intended to help developers new to Java start
applying the language syntax more quickly.

NEW METHODS ON JAVA STRINGS

The new methods on String currently proposed for
JDK 11 provide a more consistent approach to han-
dling white space in strings that can better handle
internationalization, provide methods for trimming
white space only at the beginning of the string or
at the end of it, and provide a method especially
intended for coming raw string literals. Evidence of
the progress that has been made related to these
methods can be found in messages requesting
"compatibility and specification reviews" (CSR) on
the core-libs-dev mailing list.

NEW METHODS ON JAVA FILES

New methods are currently planned for the
java.nio.file.Files class that will allow for
reading a file's content into a String, writing a String
into a file, and determining whether two files have the
same content.

NEW PREDICATE NEGATION

A static function Predicate.not() is planned for
JDK 11 that will make it easier to negate predicate
lambda expressions.

CODE CONTINUED ON NEXT COLUMN

LOOKING AT JDK 10 AND JDK 11
WRITTEN BY DUSTIN MARX

http://dzone.com/guides
http://dzone.com/guides

THE DZONE GUIDE TO JAVA: FEATURES, IMPROVEMENTS, & UPDATES
D

Z
O

N
E

.C
O

M
/G

U
ID

E
S

D
Z

O
N

E
.C

O
M

/G
U

ID
E

S

PAGE 6 OF 49THE DZONE GUIDE TO JAVA: FEATURES, IMPROVEMENTS, & UPDATES

SPONSORED OPINION

Over the past 22 years, Java has grown into a vibrant community of

more than 12 million developers. Moving forward, Oracle and the Java

community are working to ensure Java continues to be well-posi-

tioned for modern application development and growth in the cloud.

In 2017, Oracle and the Java community announced its intentions to

shift to a new six-month cadence for Java meant to reduce the latency

between feature releases. At the same time, Oracle announced its

plans to build and ship OpenJDK binaries. This release model takes

inspiration from the release models used by other platforms and

by various operating-system distributions addressing the modern

application development landscape. Modern application development

expects simple open licensing and a predictable time-based cadence,

and the new release model delivers on both.

The first step on this journey was the release of Java SE 9 in September

2017. With over 100 enhancements, the defining feature of Java SE 9

was the Java Platform Module System, which makes it easier for devel-

opers to reliably assemble and maintain sophisticated applications.

The module system also makes the JDK itself more flexible, allowing

developers to bundle just those parts of the JDK that are needed to

run an application when deploying to the cloud.

Six months later in March 2018, Oracle released the general availability

of Java SE 10, the first feature-based release as part of the new release

cycle. The release is more than a simple stability and performance fix

over Java SE 9; rather, it introduced twelve new enhancements defined

through the JDK Enhancement Propos-

als that developers can immediate pick

up and start using.

We’re now preparing for Java SE 11,

which is scheduled for general avail-

ability in September 2018 and currently

targets eight enhancements, including

JEP 309 (Dynamic Class-File Constants),

JEP 323 (Local-Variable Syntax for

Lambda Parameters), and JEP 328

(Flight Recorder).

Beyond Java SE 11, we’re also investing

in the next set of opportunities that

Java can address such as containers, scalability, data optimization,

hardware acceleration, and continued language enhancements:

•	 Portola: Java’s characteristics make it ideal for container

deployment, such as Docker, and the project goal to provide a

port of the JDK to the Alpine Linux distribution.

•	 ZGC: The project goal is to provide a scalable, low latency gar-

bage collector that does not require tuning.

•	 Valhalla: Java is very good at optimizing code and the project

goal is to also optimize data.

•	 Panama: With opportunities in big data and machine learning,

the project goal is to allow access to low-level hardware func-

tionality through normal Java code.

•	 Amber: Coding productivity is key, and the project goal is to

make Java a much less verbose and approachable language

for developers.

The Java ecosystem continues to be a diverse collection of developers

and we encourage them to join the OpenJDK Project to help shape the

future of Java faster.

Shaping the Future of Java...Faster

BY SHARAT CHANDER, DIRECTOR, JAVA PLATFORM PRODUCT MANAGEMENT AND DEVELOPER RELATIONS

Oracle and the Java community are

working to ensure Java continues

to be well-positioned for modern

application development and growth

in the cloud.

PRODUCT
Java SE

BLOG
blogs.oracle.com/

java-platform-group

TWITTER
@OpenJDK

WEBSITE
openjdk.java.net

http://dzone.com/guides
http://dzone.com/guides
https://blogs.oracle.com/java-platform-group
https://blogs.oracle.com/java-platform-group
https://twitter.com/OpenJDK
http://openjdk.java.net/

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

ORACLE DEVELOPER COMMUNITY developer.oracle.com
Membership Is Free | Follow Us on Social:

@OracleDevs facebook.com/OracleDevs

Join the World’s
Largest Developer

Community
 Download the latest software, tools,
and developer templates

Get exclusive access to hands-on
trainings and workshops

Grow your network with the Developer
Champion and Oracle ACE Programs

Publish your technical articles—and
get paid to share your expertise

Fonts: Univers LT Std. 75 Black, 65 Bold, 55 Roman, 45 Light,
67 Bold Condensed, 57 Condensed

PRODUCTION NOTES

PUB NOTE: Please use center marks to align page.

Please examine these publication materials carefully.
Any questions regarding the materials, please
contact Darci Terlizzi (650) 506-9775

READER

01
LASER% RELEASED

5/22
2018

Resize

8.5” x 11”
Job #:
Ref #:

Headline:
Live:
Trim:

Bleed:

R_418M_CRP00211_JoinLrgstDevCmnty_8.5x11
M_418M_CRP00206_JoinLrgstDevCmnty_8x10.5
Modern ERP Cloud
N/A
8.5” x 11”
9” x 11.5”

https://twitter.com/OracleDevs
https://www.facebook.com/OracleDevs/
http://developer.oracle.com/home?source=:ad:ba:::RC_WWMK180423P00010:DzoneJava&pcode=WWMK180423P00010&SC=ADV
https://developer.oracle.com/JavaSE

