Oracle Communications Session Border Controller

Oracle Communications SBCs make possible trusted, carrier grade real-time communications across IP network access borders and IP interconnect borders, including fixed line, mobile (VoLTE), and over-the-top (OTT) services. Oracle Communications SBC runs as a single software application that supports both purpose-built hardware platforms as well as virtualized deployments. The Oracle SBC offers a unique combination of performance, capacity, high availability, and manageability. With the offering, CSPs can manage critical requirements for security, interoperability, reliability and quality, regulatory compliance, and revenue/cost optimization.

OVERVIEW

The Oracle Communications Session Border Controller (SBC) helps service providers to deliver trusted, carrier grade real-time communications services across Internet Protocol (IP) network borders. Oracle's SBC provides control functions and features, protocol support, programmability and manageability in all types of IP networks. Oracle's SBC supports services and applications ranging from basic Voice over IP (VoIP) to any service enabled by IP Multimedia Subsystem (IMS) including Voice over Long-term Evolution (VoLTE), Wi-Fi calling (VoWiFi), video conferencing, presence, instant messaging, IP television (IPTV), GSM Association's IP Exchange (IPX), and femtocell or Wi-Fi enabled fixed-mobile convergence. The functions offered by Oracle's SBC satisfy critical service provider requirements in five major areas: security, interoperability, reliability and quality, regulatory compliance, and revenue/cost optimization. Furthermore, Oracle's SBC features powerful embedded management and can also be managed with Oracle Communications Session Delivery Manager (OCSDM) and monitored with Oracle Communications Operations Monitor (OCOM).

Security

Leveraging Oracle's comprehensive Net-SAFE security framework for real-time communications, the SBC secures all service provider access and interconnect & peering borders. The tight coupling of Net-SAFE and advanced hardware helps Oracle's SBC to protect itself, the service delivery infrastructure, and communications

Key Features

- Comprehensive security based on the Net-SAFE framework
- Maximum service reach enabled by normalization and interworking of signaling, media, transport, and security protocols and codec management
- Regulatory compliance supported by lawful intercept, prioritized routing of E911 calls, and session replication
- High QoS and quality of experience (QoE) ensured through high availability and session routing
- Revenue and cost optimization features, including accounting and protection against service theft/fraud
- Available on both purpose-built appliances and virtualized COTS servers
sessions from a wide range of malicious and non-malicious threats. The SBC uses Net-SAFE to ensure confidentiality, integrity, and availability of real-time interactive communications services. It preempts attacks, eliminates vulnerabilities, and applies powerful mitigation to counteract events as they happen, while ensuring continuity and high quality for subscribers and operators using the services.

Interoperability

SIP, H.323, and SIP/H.323 interworking capabilities of Oracle’s SBC are designed to maximize service reach by ensuring interoperability with and between subscriber endpoints, soft-switches, IMS Call Session Control Function (CSCF) elements, application servers, media and recording servers, media gateways, and SBCs in peering networks and SIP/H.323-trunked enterprise networks. The Oracle SBC enables sessions traverse network address translation (NAT) and firewalls, IPv4 or IPv6 networks, public and private networks using overlapping IP addresses, and virtual private networks (VPNs). Oracle’s SBC mediates between different signaling, transport, and encryption protocols; converts incompatible codecs; and translates signaling-layer telephone numbers, addresses, and response codes.

Reliability and Quality

The Oracle SBC plays a critical role in ensuring service availability and user quality of experience. It performs admission control via local policies or external policy servers to ensure that both the network and service infrastructure have the capacity to support high-quality communications. It also monitors and reports actual session quality to determine compliance with performance specifications set forth in service-level agreements (SLAs) between service providers. Intelligent session routing and high-availability configurations minimize outages caused by upstream link failure or equipment problems.

Revenue and Cost Optimization

The Oracle SBC helps service providers control costs and increase revenues with options for integrating many IMS functions—routing sessions optimally to minimize costs, providing accounting and related mechanisms to maximize billable sessions, and protecting against theft of bandwidth and quality of service (QoS). Oracle’s SBC delivers the performance, capacity and throughput needed for any type and size of service provider. Leveraging state-of-the-art hardware with symmetrical multiprocessing across a purpose-built platform family, an Oracle SBC scales to support up to three million subscribers on a single chassis and it can support massively scalable access networks operating in an SBC cluster controlled by Oracle Communications Subscriber-Aware Load Balancer (SLB).

ORACLE COMMUNICATIONS SESSION BORDER CONTROLLER RICH FEATURE SET

Architectural Flexibility

The Oracle SBC can be configured as an Access SBC (A-SBC), Interconnect SBC (I-SBC), or both roles simultaneously depending on service requirements. The flexibility of Oracle’s SBC extends to smaller service providers wishing to consolidate access and interconnect functionality in a single system. The Oracle SBC also

Key Benefits

- Runs as a single software application that supports both Acme Packet platforms as well as virtualized deployments, enabling easier, seamless adoption of virtualization.
- Comprehensive signaling, programmability, and control functions and features with Acme Packet Operating Software
- Range of platforms to provide operators a broad array of price/performance points helping them to utilize what matches their needs
- Advanced hardware for offloading of critical functions such as transcoding and security so as not to impact or compromise a user’s targeted application of the base platforms
- Symmetrical Multi-processing (SMP) technology helps operators to make an investment today that is designed to meet current and future network performance demands
- Full IMS integration combined with legacy SBC feature sets on a single system allows gradual user migration to IMS and LTE networks
- Clustering for carrier grade performance, capacity, and availability
integrates standard IMS functions used at access or interconnect borders, simplifying its integration with that next-generation service delivery architecture.

At service provider access borders (the borders facing enterprise locations, as well as public access networks such as the internet, 3G/4G/5G mobile, or fixed line networks used by residential or cable subscribers), the Oracle SBC enables new service build-out and consolidation of service infrastructure. It protects the service delivery infrastructure from malicious and equally dangerous non-malicious threats while maximizing service reach, reliability, and user quality of experience. At interconnect borders (the borders between service provider networks), the SBC accelerates initial offering or expansion of next-generation IMS or IP services, which helps drive down time-division multiplexing (TDM) costs and expand service provider partnerships. The Oracle SBC delivers key functions for service provider interconnects such as highly scalable and flexible routing as well as hardware-accelerated security and transcoding.

Figure 1. Oracle Communications Session Border Controller can be configured as an Access or Interconnect SBC depending on service requirements

Acme Packet Operating Software

The Oracle SBC is based on Acme Packet OS, which delivers comprehensive multiprotocol signaling, programmability, and control functions and features. The SBC supports all commonly used IP signaling protocols including SIP, SIP-I, SIP-T, Diameter, H.323, Message Session Relay Protocol (MSRP), and Real Time Streaming Protocol (RTSP), helping service providers to extend services to the greatest number of endpoints, as well as services offered via interconnect borders. Extensive signaling protocol Interworking Function (IWF) helps service providers to consolidate signaling traffic within their networks. This reduces the number of required network elements, simplifies management, and reduces capital and operating expenditures. Oracle SBC IWF also allows the integration of next-generation SIP with legacy networks and endpoints, maximizing service revenues.

Oracle’s implementation of SIP offers unmatched interoperability, maturity, and functionality, with thousands of production deployments throughout the world. To normalize session signaling between SIP implementations that often feature vendor-specific messages and response codes, the SBC features extensive signaling programmability. This empowers inspection or modification of elements within

Network Session Delivery And Control Infrastructure

Oracle’s network session delivery and control infrastructure helps enterprises and service providers to manage the many challenges in the delivery of IP voice, video, and data services and applications. Service provider solutions are deployed at network borders and in the IP service core to help fixed-line, mobile, wholesale, and over-the-top service providers optimize revenues and realize long-term cost savings. In the enterprise, session delivery infrastructure solutions seamlessly connect fixed and mobile operators, enabling rich multimedia interactions and automating business processes for significant increases in productivity and efficiency. The following Oracle products are part of the network session delivery and control infrastructure.

Related Products

- Oracle Communications Session Border Controller
- Oracle Communications Session Router
- Oracle Communications Subscriber-Aware Load Balancer
- Oracle Communications Core Session Manager
- Oracle Enterprise Session Border Controller
- Oracle Communications Session Delivery Manager
- Oracle Communications Operations Monitor
- Acme Packet 3900
- Acme Packet 4600
- Acme Packet 6300
- Acme Packet 6350
- Oracle Server X7-2 for Communications
- Oracle Server X8-2 for Communications
protocol headers or payload, including information found in SIP, Session Description Protocol (SDP), and Diameter headers.

The Oracle SBC implements a full back-to-back user agent (B2BUA) approach that divides each session flowing through the SBC into two discrete segments. In this way, the SBC maintains session state with each endpoint simultaneously, empowering the application of a wide range of control functions over the end-to-end session without modification to either the behavior or configuration of either endpoint.

![Oracle Communications Session Border Controller functions as a back-to-back user agent to maintain full session state with endpoints and service platforms, perform 7-layer packet inspection, and apply fine-grained controls to session traffic at wire rate.](image)

Oracle Supports Microsoft Teams Carrier Scenario: “Direct Routing”

Oracle's SBC supports a carrier model that uses Direct Routing to serve multiple tenants on a single SBC. This solution uses a single base domain owned by the carrier and multiple subdomains for each customer, interconnecting between hosted PBX systems, multiple third party PSTN and PBXs, and the Microsoft Phone System.

With this model each tenant does not need to implement their own SBC and can receive telephony services from the carrier in the Teams client. The service provider deploys and manages the SBC to interconnect multiple tenants, provide PSTN services, manage end to end call quality, fulfil the regulatory requirements (emergency call, lawful intercept) and can charge separately for the PSTN services it provides.

![Microsoft Teams Carrier Model](image)

Full IMS/Next Generation Network Integration

The Oracle SBC offers full IMS functionality at access and interconnect borders to fully control the SIP, Real-time Transport Protocol (RTP), and Message Session Relay Protocol (MSRP) traffic flows that comprise IMS sessions. At IMS access borders, the SBC implements signaling and media related IMS functions such as Proxy Call Session...
Control Function (P-CSCF), Emergency Access Transfer Function (EATF), Break-out Gateway Control Function (BGCF), Access Gateway (AGW), Access Transfer Control Function (ATCF), and Access Transfer Gateway (ATGW). IMS I-SBC functions include Interconnect Border Control Function (I-BCF), IWF, and Interconnect Border Gateway Function (I-BGF)/Translation Gateway (TrGW).

Highly Scalable Platforms and SBC Clustering

The Oracle SBC operates on a wide range of platforms that leverage the rich functionality of Acme Packet OS. Oracle’s SBC Platforms feature high availability, carrier grade manageability, and redundancy for uncompromised quality, interoperability, and security.

When deployed in conjunction with Oracle Communications Subscriber-Aware Load Balancer, the Oracle SBC can also function as a member of an SBC cluster. SBC clusters provide dynamic, adaptive load balancing of subscriber traffic across the cluster, allowing services to scale to support millions of subscribers without architectural forklifts or network disruptions. SBC clusters also deliver enhanced redundancy and manageability not achievable with traditional load balancers or SIP redirect servers.

![Figure 4: Oracle Communications Subscriber-Aware Load Balancer enables formation of SBC clusters for enhanced scalability](image)

SBC Virtualization

The Oracle SBC may be run as a Virtual Network Function (VNF). Supported hypervisors for the Oracle SBC VNF include Oracle Virtual Machine (OVM), Kernel-Based Virtual Machine (KVM), and VMware ESXi. The Oracle SBC supports HEAT templates for improved automation and Virtual Machine (VM) instantiation which can be used in Network Function Virtualization (NFV) and Cloud deployments with OpenStack.

As a VNF, the Oracle SBC may be deployed as a standalone instance or within an orchestrated virtual environment, and offers the same level of functionality, security, interoperability, and reliability as it does on purpose-built platforms. Instances of virtualized SBCs may be clustered with their counterparts on purpose-built platforms, creating what are known as “hybrid clusters”, providing a way for their gradual introduction and for even greater deployment flexibility and network agility.

“At Evolve IP, we are committed to evolving our network, positioning ourselves to support the anticipated traffic growth and value-added services our customers will require in the future. It is clear to us that moving to the cloud will be critical in meeting these goals. We see Oracle as an expert in cloud, virtualization, IT, and telecommunications and have found that its Oracle Communications SBC offers unique strengths in all of these areas.”

- Michiel van Dis
 Managing Director, Evolve IP Europe
Supporting a virtualized function in a public cloud requires meeting special requirements. Public clouds have very specific guidelines such as IP addressing usage, hypervisor selection and I/O mode to provide security and integrity for all its tenets. The Oracle SBC software supports deployment in Oracle Cloud Infrastructure (OCI) and Amazon Web Services (AWS) public clouds in highly available (HA) mode. The Oracle SBC can also be deployed in Microsoft Azure public cloud in Standalone mode.

Management and Orchestration (MANO)

Oracle Communications offers VNFs for session management, service delivery platforms including SBCs, load balancing, core network signaling management and policy management. Oracle’s strategy is based on providing carrier grade VNFs that can be orchestrated in a flexible manner by a variety of environments, including the major industry orchestration and automation third party offerings as well as solutions based on frameworks, such as ONAP, OSM, and OpenStack Tacker.

The Oracle SBC supports REST API to enable zero-touch instantiation, remote configuration and monitoring of SBC VNFs and facilitates multivendor interoperability and predictable behavior based well defined standards and specifications.

Oracle Communications Session Border Controller Key Functions and Features

<table>
<thead>
<tr>
<th>FUNCTIONAL AREA</th>
<th>SBC FUNCTIONSFEATURES</th>
</tr>
</thead>
</table>
| General | • Supported on Oracle’s purpose-built hardware and virtualized server platforms
| | • A-SBC or I-SBC functionality
| | • Software only offering for virtualized platforms
| | • HA: signaling, media, configuration checkpointing
| Signaling protocols | • Session Initiation Protocol (SIP): user interface or back-to-back user agent (B2BUA)
| | • Message Session Relay Protocol (MSRP) B2BUA
| | • H.323: gatekeeper (GK), gateway (GW), back-to-back GK or GW
| | • DNS: application layer gateway (ALG)
| IMS/NGN support | • Proxy Call Session Control Function (PCSCF)
| | • Serving Policy Decision Function (SPDF)
| | • Access/Core Border Gateway Function (A/C-BGF)
| | • Access Transfer Control Function (ATCF)
| | • Access Transfer Gateway (ATGW)
| | • Interconnect Border Control Function (I-BCF)
| | • Interworking Function (IWF)
| | • Interconnect Border Gateway Function (IBGF)
| | • Emergency Access Transfer Function (EATF)
| | • Signaling interfaces: Gm, Mw, lc, lw
| | • Diameter interfaces: Rf, Rq, e2, Gq, Rx
| | • COPS interfaces: Rq, e2
| Net-SAFE security | • SBC denial of service (DoS) self-protection
| | • Static or dynamic access controls (permit/deny)
| | • Self-protection against signaling overloads and distributed denial of service (DDoS) attacks
| | • Protection of IMS core from registration overloads and attacks
| | • Media and signaling validation to prevent service theft and fraud
| | • DTLS, IPsec, TLS, IMS AKA, and SRTP encryption for privacy and confidentiality
| Interoperability | • SIP signaling protocol interworking and mediation
| | • SIP/SIP-T/SIP-T interworking
| | • SIP/IpV6-IpV4 interworking
| | • NAT traversal and IP address mediation
| | • Signaling and dial plan normalization
| | • Dual Tone Multi-Frequency (DTMF) extraction
| | • Transcoding/transrating with flexible, dynamic codec management
| | • Microsoft Teams Direct Routing

SLA assurance

- Check-pointing of signaling, media, and configuration for nonstop availability
- Define and enforce QoS marking/mapping
- Traffic and session prioritization
- QoS monitoring, accounting, and reporting
- Admission controls to maximize service infrastructure availability
- Policy enforcement to ensure bandwidth availability
- Session reroute around upstream outages

Service enablement

- Flexible routing
- SIP load balancing
- Standards-based AAA (ENUM, DNS, Diameter, RADIUS)
- Protocol interworking to simplify core network traffic
- Dynamic bandwidth monitoring and control
- Industry-standard Session Recording Protocol (SIPREC)
- 3GPP Enhanced Firewall Traversal Function (EFTF), formerly TSCF
- Accounting with Diameter, RADIUS, and comma-separated value (CSV) file formats
- Native REST API for custom configuration and KPI monitoring

Oracle –Supported SBC Hardware Platforms – Sample Performance Comparison

<table>
<thead>
<tr>
<th></th>
<th>SBC-VNF</th>
<th>AP3900</th>
<th>AP4600</th>
<th>AP6300</th>
<th>AP6350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factor</td>
<td>Virtualized</td>
<td>1U System</td>
<td>1U System</td>
<td>3U System</td>
<td>3U System</td>
</tr>
<tr>
<td>System architecture</td>
<td>Data Center / COTS</td>
<td>Purpose-built</td>
<td>Purpose-built</td>
<td>Purpose-built</td>
<td>Purpose-built</td>
</tr>
<tr>
<td>Maximum Media Sessions</td>
<td>52,000*</td>
<td>8,000</td>
<td>32,000</td>
<td>80,000</td>
<td>160,000**</td>
</tr>
<tr>
<td>Calls per second</td>
<td>Up to 2,000*</td>
<td>Up to 100</td>
<td>Up to 580</td>
<td>Up to 1,200</td>
<td>Up to 1,800</td>
</tr>
</tbody>
</table>

* select VM configurations applies
** with the quad 10GbE NIU

MONITORING AND MANAGEMENT

Oracle SBC embedded element management delivers full administrative access to the command line interface (CLI), Simple Network Management Protocol (SNMP) management information bases (MIBs), statistics, system logs, packet trace information, and system software and configuration files via distinct management interfaces. Third-party management systems and operation support systems (OSS)/business support systems (BSS) applications can also leverage Secure File Transfer Protocol (SFTP) and SNMP to access system accounting and performance data, MIBs, and historical data records (HDRs). REST API support is also available for configuration and statistics monitoring.

Oracle Communications Session Delivery Manager (OCSDM), the fully integrated and extensible management solution from Oracle, provides highly scalable configuration and fault, performance, and security management for Oracle’s network session delivery and control infrastructure products. OCSDM also features application add-ons for reporting, SIP trunk provisioning, and SIP session routing. Through multiple dashboard and configuration views, OCSDM facilitates flow-through provisioning, capacity planning, and comprehensive performance and fault monitoring with at-a-glance status indicators to simplify real-time, network-wide management. Through standard interfaces including SNMP, SFTP, XML, REST, and SOAP, Oracle Communications Session Delivery Management Suite also integrates with Oracle and third-party OSS and BSS to deliver advanced service fulfillment, service assurance, billing, and mediation.
Oracle Communications Operations Monitor (OCOM) is browser-based real-time network intelligence software that optimizes next-generation IP communications networks, enables rapid troubleshooting of customer experience issues down to the individual session level, proactively identifies and isolates communications network faults and events, and detects fraudulent network activity. OCOM delivers end-to-end network visibility to better align network resources with end user application requirements and improves the performance of end user services.

The Oracle SBC features an internal probe that captures and forwards session traffic at wire rate, helping Oracle Communications Operations Monitor to instantly display fine-grained real-time communications performance metrics. Since it is integrated with the SBC, the internal probe overcomes limitations of standalone external probes by capturing and analyzing encrypted sessions without compromising subscriber privacy or confidentiality. The embedded probe also analyzes voice quality metrics and reports it to Oracle Communications Operations Monitor.

SUMMARY

The Oracle Communications Session Border Controller (SBC) is a valuable solution for fixed line, mobile and over-the-top service providers. Oracle’s SBC is based on a product strategy that is aligned to support the continued growth of IMS based mobile and fixed broadband services. Via state-of-the-art hardware platforms, virtualized offerings, industry-leading 3GPP, GSMA, and IETF compliance, and groundbreaking software enhancements such as WebRTC, the Oracle SBC brings value-added solutions through integration with other key Oracle technologies and helps operators remain innovative and profitable.