Oracle® Linux Virtualization Manager

Getting Started Guide
Oracle Legal Notices

Copyright © 2019, 2021 Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Table of Contents

Preface .. v
About this document .. vii
1 Requirements and Scalability Limits ... 1
 1.1 Engine Host Requirements .. 1
 1.2 KVM Host Requirements ... 2
 1.3 Firewall Requirements .. 3
 1.3.1 Engine Host Firewall Requirements .. 3
 1.3.2 Remote Component Firewall Requirements ... 4
 1.3.3 KVM Host Firewall Requirements ... 5
 1.4 Storage Requirements .. 6
 1.5 Scalability Limits ... 6
 1.6 Guest Operating System Requirements ... 7
2 Installation and Configuration .. 9
 2.1 Installing the Engine ... 9
 2.1.1 Configuring the Engine .. 11
 2.1.2 Engine Configuration Options .. 12
 2.1.3 Logging in to the Administration Portal .. 16
 2.2 Configuring a KVM Host ... 17
 2.2.1 Preparing a KVM Host ... 18
 2.2.2 Adding a KVM Host .. 20
3 Quick Start .. 23
 3.1 Before You Begin ... 23
 3.2 Adding a KVM Host to the Manager .. 24
 3.3 Adding Storage .. 25
 3.3.1 Attaching an iSCSI Data Domain .. 25
 3.3.2 Uploading Images to the Data Domain .. 26
 3.4 Creating a Logical Network ... 28
 3.4.1 Creating a Virtual Machine Network ... 28
 3.4.2 Assigning the Virtual Machine Network to a KVM Host ... 29
 3.5 Creating a New Virtual Machine ... 32
 3.5.1 Installing Remote Viewer on Client Machine .. 32
 3.5.2 Creating a New Oracle Linux Virtual Machine .. 33
 3.5.3 Creating a New Microsoft Windows Virtual Machine ... 39
 3.6 Creating a Template .. 46
 3.6.1 Sealing an Oracle Linux Virtual Machine for Use as a Template ... 46
 3.6.2 Creating an Oracle Linux Template ... 47
 3.6.3 Creating a Cloud-Init Enabled Template ... 49
 3.7 Creating a Virtual Machine from a Template ... 51
 3.7.1 Creating an Oracle Linux Virtual Machine from a Template .. 51
 3.8 Backing Up and Restoring the Manager ... 53
 3.8.1 Backing Up the Manager .. 54
 3.8.2 Restoring a Full Backup of the Manager .. 54
4 Upgrade and Update Path ... 57
 4.1 Upgrading or Updating the Engine ... 57
 4.2 Upgrading or Updating KVM Hosts ... 59
 4.3 Post-Upgrade Data Center and Cluster Compatibility Versions ... 61
 4.3.1 About Compatibility Versions ... 61
 4.3.2 Changing Cluster and Data Center Compatibility Versions ... 62
5 Self-Hosted Engine Deployment ... 65
 5.1 Self-Hosted Engine Prerequisites ... 65
 5.2 Deploying the Self-Hosted Engine ... 66
5.2.1 Using the Command Line to Deploy ... 69
5.2.2 Using the Cockpit Portal to Deploy ... 73
5.3 Enabling High-Availability ... 76
 5.3.1 Configuring a Highly Available Host ... 76
5.4 Installing Additional Self-Hosted Engine Hosts .. 79
5.5 Cleaning up the Deployment ... 79
5.6 Updating the Self-Hosted Engine ... 80
 5.6.1 Enabling Global Maintenance Mode ... 80
 5.6.2 Updating the Engine .. 80
 5.6.3 Disabling Global Maintenance Mode ... 81
5.7 Deploying GlusterFS Storage ... 81
 5.7.1 Deploying GlusterFS Storage Using Cockpit .. 82
 5.7.2 Creating a GlusterFS Storage Domain Using the Manager 83
Preface

The Oracle® Linux Virtualization Manager documentation provides information on installing and configuring a virtualization environment that you can use to manage compute, network and storage resources.

Audience

This document is intended for both new and existing users of Oracle® Linux Virtualization Manager. It is assumed that readers are familiar with virtualization and have a general understanding of Windows and UNIX platforms.

Documentation Location

The documentation for this product is available at:

https://docs.oracle.com/en/virtualization/oracle-linux-virtualization-manager/

Conventions

The following text conventions are used in this document:

- **boldface**: Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
- **italic**: Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
- **monospace**: Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse workforce that increases thought leadership and innovation. As part of our initiative to build a more inclusive culture that positively impacts our employees, customers, and partners, we are working to remove insensitive terms from our products and documentation. We are also mindful of the necessity to maintain compatibility with our customers’ existing technologies and the need to ensure continuity of service as Oracle's offerings and industry standards evolve. Because of these technical constraints, our effort to remove insensitive terms is ongoing and will take time and external cooperation.
About this document

This document is part of the documentation set for Oracle Linux Virtualization Manager, which is available at https://docs.oracle.com/en/virtualization/oracle-linux-virtualization-manager/.

This documentation set comprises:

Oracle Linux Virtualization Manager: Release Notes

This document provides a summary of the new features, changes, fixed bugs, and known issues in the Oracle Linux Virtualization Manager. It contains last-minute information, which may not be included in the main body of documentation.

Oracle Linux Virtualization Manager: Architecture and Planning Guide

This document provides an architectural overview of Oracle Linux Virtualization Manager, prerequisites, and planning information for your environment.

Oracle Linux Virtualization Manager: Getting Started Guide

This document explains how to install, configure and get started with the Oracle Linux Virtualization Manager. There is an example scenario that covers some of the basic procedures for setting up the environment, such as, adding hosts and storage, creating virtual machines, configuring networks, working with templates, and backup and restore tasks. In addition, there is information on upgrading your engine and hosts as well as deploying a self-hosted configuration.

Oracle Linux Virtualization Manager: Administration Guide

This document provides common administrative tasks for Oracle Linux Virtualization Manager. In addition, you will find information on setting up users and groups, configuring high-availability, memory and CPUs, configuring and using event notifications, configuring vCPUs and virtual memory.

In addition to the Oracle Linux Virtualization Manager documentation, you can also refer to the upstream documentation:

- [oVirt Documentation](#)
- [oVirt 4.3.10 Release Notes](#)

Document generated on: 2021-09-27 (revision: 999)
Chapter 1 Requirements and Scalability Limits

Table of Contents

1.1 Engine Host Requirements .. 1
1.2 KVM Host Requirements ... 2
1.3 Firewall Requirements ... 3
 1.3.1 Engine Host Firewall Requirements .. 3
 1.3.2 Remote Component Firewall Requirements ... 4
 1.3.3 KVM Host Firewall Requirements .. 5
1.4 Storage Requirements ... 6
1.5 Scalability Limits .. 6
1.6 Guest Operating System Requirements ... 7

The following sections provide detailed requirements for an Oracle Linux Virtualization Manager Release
4.3.10 environment as well as the scalability limitations.

Before you begin the tasks in this guide, you should be familiar with the concepts that are presented in the
Oracle Linux Virtualization Manager: Architecture and Planning Guide.

1.1 Engine Host Requirements

The following are the system requirements for the host system where you want to install Oracle Linux
Virtualization Manager.

- Oracle Linux 7.6 (or later) with **Minimal Install** selected as the base environment for the installation.

Note
Oracle Linux 8 is currently not supported for either the Engine host or the KVM host.

- Unbreakable Enterprise Kernel Release 5 Update 1 (or later) or Unbreakable Enterprise Kernel Release 6

The following table identifies the specific system hardware requirements for the host system where you
want to install Oracle Linux Virtualization Manager.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Minimum</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>64-bit dual-core CPU</td>
<td>64-bit quad core or greater CPU</td>
</tr>
<tr>
<td>Memory</td>
<td>4 GB of available system RAM</td>
<td>16 GB or greater of system RAM</td>
</tr>
</tbody>
</table>

Note
If Data Warehouse is installed and if memory is being consumed by existing...
KVM Host Requirements

<table>
<thead>
<tr>
<th>Resource</th>
<th>Minimum</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>process, consider using the recommended amount of system memory.</td>
<td></td>
</tr>
<tr>
<td>Hard disk</td>
<td>25 GB local writable hard disk</td>
<td>50 GB or greater of local writable hard disk</td>
</tr>
<tr>
<td>Network interface</td>
<td>One network interface card (NIC) with bandwidth of at least 1 Gbps</td>
<td>Two or more NICs with bandwidth of at least 1 Gbps</td>
</tr>
</tbody>
</table>

For more details about system requirements and known issues with installation, see:

- Unbreakable Enterprise Kernel Documentation.
- Oracle® Linux 7: Installation Guide.

Important
Oracle does not support Oracle Linux Virtualization Manager on systems where the ol7_preview, ol7_developer, ol7_developer_kvm_utils, or ol7_developer_EPEL repositories are enabled, or where software from these repositories is currently installed on the systems where the Manager will run. Even if you follow the instructions in this document, you may render your platform unsupported if these repositories or channels are enabled or software from these channels or repositories is installed on your system.

1.2 KVM Host Requirements

The following are the minimum system requirements for Oracle Linux KVM hosts.

- Oracle Linux 7.6 (or later) with Minimal Install selected as the base environment for the installation.

Important
Oracle Linux 8 is currently not supported for either the Engine host or the KVM host.

- Unbreakable Enterprise Kernel Release 5 Update 1 (or later) or Unbreakable Enterprise Kernel Release 6
- 64-bit dual-core CPU
 Recommended: Multiple CPUs

The CPUs must support either the Intel VT-x or the AMD AMD-V hardware virtualization extensions and the extensions must be enabled in the host's BIOS. The CPUs must also support the No eXecute flag (NX).
- 2 GB RAM
1.3 Firewall Requirements

Before you install and configure the Oracle Linux Virtualization Manager engine or any KVM hosts ensure you review the following firewall requirements.

Note
Oracle Linux Virtualization Manager requires IPv6 to remain enabled on the computer or virtual machine where you are running the Manager. Do not disable IPv6 on the Manager machine, even if your systems do not use it.

1.3.1 Engine Host Firewall Requirements

When you run the `engine-setup` command to configure Oracle Linux Virtualization Manager, you can have the Setup program automatically configure the firewall ports on the host. Use the following information if you want to manually configure firewalls.

The following ports are the default ports. The Setup program enables you to choose different ports for some of the configuration options. see Engine Configuration Options in the Oracle Linux Virtualization Manager: Getting Started Guide.
Table 1.2 Oracle Linux Virtualization Manager Host Firewall Requirements

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not applicable</td>
<td>ICMP</td>
<td>Oracle Linux KVM hosts</td>
<td>Manager host</td>
<td>(Optional) Diagnostics</td>
</tr>
<tr>
<td>22</td>
<td>TCP</td>
<td>External systems</td>
<td>Manager host</td>
<td>(Optional) SSH access to the Manager host for administration and maintenance</td>
</tr>
<tr>
<td>80</td>
<td>TCP</td>
<td>Administration Portal clients</td>
<td>Manager host</td>
<td>HTTP access to the Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VM Portal clients</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oracle Linux KVM hosts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REST API clients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>Administration Portal clients</td>
<td>Manager host</td>
<td>HTTPS access to the Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VM Portal clients</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oracle Linux KVM hosts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REST API clients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2222</td>
<td>TCP</td>
<td>Clients</td>
<td>Manager host</td>
<td>SSH access to virtual machine serial consoles</td>
</tr>
<tr>
<td>5432</td>
<td>TCP,UDP</td>
<td>Manager host</td>
<td>Manager host</td>
<td>(Optional) Connections to PostgreSQL database server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Warehouse Service</td>
<td></td>
<td>Only required if the Engine database or the Data Warehouse database run on the Manager host</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6100</td>
<td>TCP</td>
<td>Administration Portal clients</td>
<td>Manager host</td>
<td>(Optional) WebSocket proxy access to the noVNC or HTML 5 virtual machine consoles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VM Portal clients</td>
<td></td>
<td>Only required if the WebSocket proxy runs on the Manager host</td>
</tr>
<tr>
<td>7410</td>
<td>UDP</td>
<td>Oracle Linux KVM hosts</td>
<td>Manager host</td>
<td>(Optional) Kdump notifications</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Only required if Kdump is enabled</td>
</tr>
<tr>
<td>54323</td>
<td>TCP</td>
<td>Administration Portal clients</td>
<td>Manager host</td>
<td>(Optional) Image I/O Proxy access to upload images</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Only required if the Image I/O Proxy runs on the Manager host</td>
</tr>
</tbody>
</table>

1.3.2 Remote Component Firewall Requirements

Some Oracle Linux Virtualization Manager components can run on separate remote hosts. Use the following information to configure the firewall on these hosts.
Table 1.3 Remote Component Firewall Requirements

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5432</td>
<td>TCP,UDP</td>
<td>Manager host</td>
<td>PostgreSQL database server</td>
<td>Connections to PostgreSQL database server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data Warehouse Service</td>
<td></td>
<td>Required if the Engine database or the Data Warehouse database run on a remote host</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6100</td>
<td>TCP</td>
<td>Administration Portal clients</td>
<td>WebSocket proxy host</td>
<td>WebSocket proxy access to the noVNC or HTML 5 virtual machine consoles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VM Portal clients</td>
<td></td>
<td>Required if the WebSocket proxy runs on a remote host</td>
</tr>
</tbody>
</table>

1.3.3 KVM Host Firewall Requirements

When you add an Oracle Linux KVM host to Oracle Linux Virtualization Manager, the existing firewall configuration on the host is overwritten and the required firewall ports are configured automatically.

To disable automatic firewall configuration when adding a KVM host, clear the **Automatically configure host firewall** check box under **Advanced Parameters**. Then use the following information to manually configure the firewall.

Table 1.4 Oracle Linux KVM Host Firewall Requirements

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>TCP</td>
<td>Manager host</td>
<td>KVM hosts</td>
<td>(Optional) SSH access to KVM hosts</td>
</tr>
<tr>
<td>111</td>
<td>TCP</td>
<td>NFS storage server</td>
<td>KVM hosts</td>
<td>(Optional) NFS connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Only required if you use NFS storage</td>
</tr>
<tr>
<td>161</td>
<td>UDP</td>
<td>KVM hosts</td>
<td>Manager host</td>
<td>(Optional) Simple network management protocol (SNMP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Only required if you want to send SNMP traps to external SNMP managers</td>
</tr>
<tr>
<td>2223</td>
<td>TCP</td>
<td>Manager host</td>
<td>KVM hosts</td>
<td>SSH access to virtual machine serial consoles</td>
</tr>
<tr>
<td>5900 to 6923</td>
<td>TCP</td>
<td>Administration Portal clients VM Portal clients</td>
<td>KVM hosts</td>
<td>Access to virtual machine consoles using VNC or RDP protocols</td>
</tr>
<tr>
<td>5989</td>
<td>TCP,UDP</td>
<td>Common Information Model Object Manager (CIMOM)</td>
<td>KVM hosts</td>
<td>(Optional) CIMOM connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Only required if you use CIMOM to monitor virtual machines running on the host</td>
</tr>
<tr>
<td>6081</td>
<td>UDP</td>
<td>KVM hosts</td>
<td>KVM hosts</td>
<td>(Optional) Open Virtual Network (OVN) connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Only required if the OVN network provider is enabled</td>
</tr>
<tr>
<td>9090</td>
<td>TCP</td>
<td>Manager host</td>
<td>KVM hosts</td>
<td>(Optional) Cockpit connections</td>
</tr>
</tbody>
</table>
1.4 Storage Requirements

Before you can create virtual machines, you must provision and attach storage to a data center. You can use Network File System (NFS), Internet Small Computer System Interface (iSCSI), Fibre Channel Protocol (FCP), or Gluster storage. You can also configure local storage attached directly to hosts.

Storage devices in Oracle Linux Virtualization Manager are referred to as data domains, which are used to store virtual hard disks, snapshots, ISO files, and templates. Every data center must have at least one data domain. Data domains cannot be shared between data centers.

For more information, see:
- Storage in the Oracle Linux Virtualization Manager: Architecture and Planning Guide
- Storage in the Oracle Linux Virtualization Manager: Administration Guide
- Adding Storage in the Oracle Linux Virtualization Manager: Getting Started Guide

1.5 Scalability Limits

The following table shows the limits for the Oracle Linux Virtualization Manager host, Oracle Linux KVM hosts, networks, virtual machines and storage.

Table 1.5 Manager Host Limits

<table>
<thead>
<tr>
<th>Component</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servers managed by one engine</td>
<td>128</td>
</tr>
<tr>
<td>VLANs managed by one engine</td>
<td>1024</td>
</tr>
<tr>
<td>Concurrently running virtual machines</td>
<td>5000</td>
</tr>
</tbody>
</table>

Table 1.6 Oracle Linux KVM Host Limits

<table>
<thead>
<tr>
<th>Component</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical CPUs (cores)</td>
<td>384</td>
</tr>
<tr>
<td>Memory</td>
<td>6 TB</td>
</tr>
<tr>
<td>Concurrently running virtual machines on a single host</td>
<td>600, depending on the performance of the host</td>
</tr>
</tbody>
</table>
Table 1.7 Virtual Machine Limits

<table>
<thead>
<tr>
<th>Component</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual CPUs</td>
<td>256</td>
</tr>
<tr>
<td>Virtual RAM</td>
<td>2 TB</td>
</tr>
</tbody>
</table>

Table 1.8 Storage Limits

<table>
<thead>
<tr>
<th>Component</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domains</td>
<td>50</td>
</tr>
<tr>
<td>Hosts per domain</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Logical volumes per block domain</td>
<td>1500</td>
</tr>
<tr>
<td>LUNs per block domain</td>
<td>2000</td>
</tr>
<tr>
<td>Disk size</td>
<td>500 TiB (limited to 8 TiB by default)</td>
</tr>
</tbody>
</table>

1.6 Guest Operating System Requirements

There are several guest operating systems you can use to configure a KVM host for use with Oracle Linux Virtualization Manager.

For detailed information on the supported guest operating systems, see the Oracle® Linux: KVM User’s Guide.
To deploy Oracle Linux Virtualization Manager, you install and configure the engine on a host with Oracle Linux 7.6 (or later), configure KVM hosts, storage, and networks, and create virtual machines.

This section walks you through installing and configuring the engine host and the KVM host(s) that you use for virtual machines. Ensure you thoroughly review the Chapter 1, Requirements and Scalability Limits because the requirements for the engine host are different than the KVM hosts.

To review conceptual information and help to plan your installation, see the Oracle Linux Virtualization Manager: Architecture and Planning Guide.

2.1 Installing the Engine

To install Oracle Linux Virtualization Manager, you perform a fresh installation of Oracle Linux 7.6 (or later) on the host, install the `ovirt-engine` package, and then run the `engine-setup` command to configure the Manager.

Note

You can install the Manager in a virtual machine as long as it is not managing that virtual machine, or in a self-hosted engine configuration. For more information, see Chapter 5, Self-Hosted Engine Deployment.

You can download the installation ISO for the latest Oracle Linux 7 from the Oracle Software Delivery Cloud at https://edelivery.oracle.com.

1. Install Oracle Linux 7 on the host using the Minimal Install base environment.

 Follow the instructions in the Oracle® Linux 7: Installation Guide.

2. **(Optional)** If you use a proxy server for Internet access, configure Yum with the proxy server settings. For more information, see Yum Configuration in the Oracle® Linux 7: Managing Software.

3. Subscribe the system to the required ULN channels **OR** install the Release 4.3.10 package using yum and enable the required repositories.

 - **For ULN registered hosts only**: If the host is registered on ULN, subscribe the system to the required channels.

 a. Log in to https://linux.oracle.com with your ULN user name and password.
b. On the Systems tab, click the link named for the host in the list of registered machines.

c. On the System Details page, click Manage Subscriptions.

d. On the System Summary page, select each required channel from the list of available channels and click the right arrow to move the channel to the list of subscribed channels. Subscribe the system to the following channels:

- o17_x86_64_latest
- o17_x86_64_optional_latest
- o17_x86_64_kvm_utils
- o17_x86_64_ovirt43
- o17_x86_64_ovirt43_extras
- o17_x86_64_gluster6
- (For VDSM) o17_x86_64_UEKR6

e. Click Save Subscriptions.

• For Oracle Linux yum server hosts only: Install the Oracle Linux Virtualization Manager Release 4.3.10 package and enable the required repositories.

a. (Optional) Make sure the host is using the modular yum repository configuration. For more information, see Getting Started with Oracle Linux Yum Server.

b. Enable the o17_latest yum repository.

```
$ yum-config-manager --enable o17_latest
```

Important

Before you execute yum-config-manager ensure the yum-utils package is installed on your system. For more information, see Using Yum Utilities to Manage Configuration in the Oracle® Linux 7: Administrator's Guide

c. Install the Oracle Linux Virtualization Manager Release 4.3.10 package.

```
$ yum install oracle-ovirt-release-el7
```

d. Use the yum command to verify that the required repositories are enabled.

i. Clear the yum cache.

```
$ yum clean all
```

ii. List the configured repositories and verify that the required repositories are enabled.

```
$ yum repolist
```

The following repositories must be enabled:

- o17_latest
Configuring the Engine

- ol7_optional_latest
- ol7_kvm-utils
- ol7_gluster6
- ol7_UEKR6
- ovirt-4.3
- ovirt-4.3-extra

iii. If a required repository is not enabled, use the `yum-config-manager` to enable it.

```
yum-config-manager --enable repository
```

4. Unsubscribe to the 4.2 ULN channels OR disable the 4.2 repositories using `yum`.

- **For ULN registered hosts only:** If the host is registered on ULN, unsubscribe to the following channels.
 - ol7_x86_64_ovirt42
 - ol7_x86_64_ovirt42_extras

- **For Oracle Linux yum server hosts only:** Run the following commands.

```
# yum-config-manager --disable ovirt-4.2
# yum-config-manager --disable ovirt-4.2-extra
```

5. Install the Manager using the `ovirt-engine` command.

```
yum install ovirt-engine
```

Proceed to **Section 2.1.1, “Configuring the Engine”**.

2.1.1 Configuring the Engine

After you install the Oracle Linux Virtualization Manager, you run the `engine-setup` command (the Setup program) to configure the Manager. You are prompted to answer a series of questions whose values are used to configure the Manager. Some of these questions relate to features that are in technology preview; Oracle recommends that you accept the default values for these features. For more information, see *Technology Preview* in the Oracle Linux Virtualization Manager: Release Notes.

The Manager uses two PostgreSQL databases: one for the engine and one for the data warehouse. By default, Setup creates and configures the engine database locally on the engine host. Alternatively, you can configure the engine host to use a manually-configured local or remote database. If you choose to use a manually-configured local or remote database, you must set it up before running `engine-setup`. Currently, running the engine or data warehouse database on a remote host is a technology preview feature.

To configure the Manager:

1. Run the `engine-setup` command on the host where you installed the Manager.
The Setup program prompts you to configure the Manager.

2. Enter **Yes** to configure the Manager

 Configure Engine on this host (Yes, No) [Yes]:

 If you enter **No**, the configuration stops. To restart, rerun the `engine-setup` command.

3. For the remaining configuration questions, provide input or accept default values, which are in square brackets after each question. To accept the default value for a given question, press **Enter**.

 Note

 Setup asks you for the fully qualified DNS name (FQDN) of the Manager host. Although Setup tries to automatically detect the name, you must ensure the FQDN is correct.

 For detailed information on the configuration options, see Section 2.1.2, “Engine Configuration Options”.

4. Once you have answered all the questions, Setup displays a list of the values you entered. Review the list carefully and then press **Enter** to configure the Manager.

 Your answers are saved to a file that can be used to reconfigure the Manager using the same values. Setup also displays the location of the log file for the configuration process.

5. When the configuration is complete, details about how to log in to the Administration Portal are displayed. To verify that the configuration was successful, log into the Administration Portal, as described in Section 2.1.3, “Logging in to the Administration Portal”.

2.1.2 Engine Configuration Options

The following information describes the options for configuring Oracle Linux Virtualization Manager when you run the `engine-setup` command.

Note

Some of the configuration option are in technology preview; Oracle recommends that you accept the default values for these features. For more information, see Technology Preview in the *Oracle Linux Virtualization Manager: Release Notes*.

Image I/O Proxy

Configure Image I/O Proxy on this host? (Yes, No) [Yes]:

The Image I/O Proxy (ovirt-imageio-proxy) enables you to upload virtual disks into storage domains.

WebSocket Proxy

Configure WebSocket Proxy on this machine? (Yes, No) [Yes]:

The WebSocket Proxy enables you to connect to virtual machines using the noVNC or HTML 5 consoles.

For security and performance reasons, you can configure the WebSocket Proxy on a remote host.
Data Warehouse

Please note: Data Warehouse is required for the engine.
If you choose to not configure it on this host, you have to configure it on a remote host, and then configure the engine on this host so that it can access the database of the remote Data Warehouse host.

Configure Data Warehouse on this host (Yes, No) [Yes]:

The Data Warehouse feature can run on the Manager host or on a remote host. Running Data Warehouse on a remote host reduces the load on the Manager host.

Running the Data Warehouse on a remote host is a technology preview feature.

VM Console Proxy

Configure VM Console Proxy on this host (Yes, No) [Yes]:

The VM Console Proxy enables you to access virtual machine serial consoles from a command line. To use this feature, serial consoles must be enabled in the virtual machines.

OVN Provider

Configure ovirt-provider-ovn (Yes, No) [Yes]:

Install the Open Virtual Network (OVN) provider on the Manager host and add it as an external network provider. The default cluster is automatically configured to use OVN as its network provider.

OVN is an OVS (Open vSwitch) extension which enables you to configure virtual networks.

Using external providers, including the OVN provider, is a technology preview feature.

Manager DNS Name

Host fully qualified DNS name of this server [autodetected-host-name]:

The fully qualified DNS name of the Manager host. Check that the automatically detected DNS name is correct.

Automatic Firewall Configuration

Setup can automatically configure the firewall on this system.
Note: automatic configuration of the firewall may overwrite current settings.
NOTICE: iptables is deprecated and will be removed in future releases

Do you want Setup to configure the firewall? (Yes, No) [Yes]:

Configure the firewall on the host to open the ports used for external communication between Oracle Linux Virtualization Manager and the components it manages.

If Setup configures the firewall, and no firewall managers are active, you are prompted to select a firewall manager from a list.

If you enter No, you must manually configure the firewall. When the Manager configuration is complete, Setup displays a list of ports that need to be opened, see for details.

Data Warehouse Database

Where is the DWH database located? (Local, Remote) [Local]:

The Data Warehouse database (the history database) can run on the Manager host or on a remote host. Running the database on a remote host reduces the load on the Manager host.

Running the database on a remote host is a technology preview feature.
Engine Configuration Options

Caution
In this step you configure the name of the database, and the user name and password for connecting to it. Make a note of these details.

Enter **Local** to connect to a local PostgreSQL server, or **Remote** to connect to an existing PostgreSQL server running on a remote host.

If you enter **Local**, you can choose whether to set up a local PostgreSQL server automatically, or to connect to an existing local PostgreSQL server.

Setup can configure the local postgresql server automatically for the DWH to run. This may conflict with existing applications.
Would you like Setup to automatically configure postgresql and create DWH database, or prefer to perform that manually? (Automatic, Manual) [Automatic]:

Enter **Automatic** to have Setup configure a local database server, or **Manual** to connect to an existing local database server. If you enter **Manual**, you are prompted for the details for connecting to the database:

- DWH database secured connection (Yes, No) [No]:
- DWH database name [ovirt_engine_history]:
- DWH database user [ovirt_engine_history]:
- DWH database password:

If you enter **Remote** to connect to an existing PostgreSQL server running on a remote host, you are prompted for the details for connecting to the database:

- DWH database host [localhost]:
- DWH database port [5432]:
- DWH database secured connection (Yes, No) [No]:
- DWH database name [ovirt_engine_history]:
- DWH database user [ovirt_engine_history]:
- DWH database password:

Engine Database

Where is the Engine database located? (Local, Remote) [Local]:

The Oracle Linux Virtualization Manager database (the engine database) can run on the Manager host or on a remote host. Running the database on a remote host reduces the load on the Manager host.

Running the database on a remote host is a technology preview feature.

Caution
In this step you configure the name of the database, and the user name and password for connecting to it. Make a note of these details.

Enter **Local** to connect to a local PostgreSQL server, or **Remote** to connect to an existing PostgreSQL server running on a remote host.

If you enter **Local**, you can choose whether to set up a local PostgreSQL server automatically, or to connect to an existing local PostgreSQL server.

Setup can configure the local postgresql server automatically for the engine to run. This may conflict with existing applications.
Would you like Setup to automatically configure postgresql and create Engine database, or prefer to perform that manually? (Automatic, Manual) [Automatic]:

Enter **Automatic** to have Setup configure a local database server, or **Manual** to connect to an existing local database server. If you enter **Manual**, you are prompted for the details for connecting to the database:
Engine Configuration Options

Engine database secured connection (Yes, No) [No]:
Engine database name [engine]:
Engine database user [engine]:
Engine database password:

If you enter Remote to connect to an existing PostgreSQL server running on a remote host, you are prompted for the details for connecting to the database:

Engine database host [localhost]:
Engine database port [5432]:
Engine database secured connection (Yes, No) [No]:
Engine database name [engine]:
Engine database user [engine]:
Engine database password:

Admin User Password

Engine admin password:
Confirm engine admin password:

Enter a password for the default administrative user (admin@internal). Make a note of the password.

Application Mode

Application mode (Both, Virt, Gluster) [Both]:

The Manager can be configured to manage virtual machines (Virt) or manage Gluster clusters (Gluster), or Both.

OVN Provider Credentials

Use default credentials (admin@internal) for ovirt-provider-ovn (Yes, No) [Yes]:
oVirt OVN provider user [admin@internal]:
oVirt OVN provider password:

If you installed the OVN provider, configure the credentials for connecting to the OVN (Open vSwitch) databases.

Using external providers, including the OVN provider, is a technology preview feature.

SAN Wipe After Delete

Default SAN wipe after delete (Yes, No) [No]:

Enter Yes to set the default value for the wipe_after_delete flag to true, which wipes the blocks of a virtual disk when it is deleted.

Using the wipe after delete functionality is a technology preview feature.

Web Server Configuration

Organization name for certificate [autodetected-domain-based-name]:

Provide the organization name to use for the automatically generated self-signed SSL certificate used by the Manager web server.

Setup can configure the default page of the web server to present the application home page. This may conflict with existing applications.

Do you wish to set the application as the default web page of the server? (Yes, No) [Yes]:

Enter Yes to make the Oracle Linux Virtualization Manager landing page the default page presented by the web server.
Setup can configure apache to use SSL using a certificate issued from the internal CA. Do you wish Setup to configure that, or prefer to perform that manually? (Automatic, Manual) [Automatic]:

Enter **Automatic** to generate a self-signed SSL certificate for the web server. Only use self-signed certificates for testing purposes.

Enter **Manual** to provide the location of the SSL certificate and private key to use the web server.

Data Warehouse Sampling Scale

Please choose Data Warehouse sampling scale:

1. Basic
2. Full

Set the Data Warehouse sampling scale, either Basic or Full. This step is skipped the Data Warehouse is not configured to run on the Manager host.

Enter 1 for Basic, which reduces the values of `DWH_TABLES_KEEP_HOURLY` to 720 and `DWH_TABLES_KEEP_DAILY` to 0. Enter 2 for Full.

If the Manager and the Data Warehouse run on the same host, Basic is the recommended sample scale because this reduces the load on the Manager host. Full is recommended only if the Data Warehouse runs on a remote host.

The Full sampling scale is a technology preview feature.

2.1.3 Logging in to the Administration Portal

After you run the `engine-setup` command to configure Oracle Linux Virtualization Manager, you should log into the Administration Portal to verify that the configuration was successful.

Preparing to Log in

It is recommended that you use the latest version one of the following browsers to access the Administration Portal:

- Mozilla Firefox
- Google Chrome
- Apple Safari
- Microsoft Internet Explorer 11
- Microsoft Edge

If Oracle Linux Virtualization Manager was configured to use a self-signed SSL certificate, or an SSL certificate that is signed by a Certificate Authority (CA) that is not trusted by the browser (for example an Intermediate CA), you should install the CA certificate in the browser. Consult your browser’s instructions for how to import a CA certificate. You can download the CA certificate from the Manager at:

Usually you access the Administration Portal using the fully qualified domain name of the Manager host that you provided during installation. However, you can access the Administration Portal using an alternate host name(s). To do this, you need to add a configuration file to the Manager as follows:
1. Log in to the Manager host as root.

2. Create the file `/etc/ovirt-engine/engine.conf.d/99-custom-sso-setup.conf` with the following content:

   ```
   SSO_ALTERNATE_ENGINE_FQDNS="alias1.example.com alias2.example.com"
   ```

 The list of alternate host names must be separated by spaces.

3. Restart Oracle Linux Virtualization Manager.

   ```
   # systemctl restart ovirt-engine
   ```

Logging in

You log in to the Administration Portal using a web browser and the default admin@internal user.

2. (Optional) Change the preferred language from the drop-down list on the Welcome page.

 You can view the Administration Portal in multiple languages. The default language is based on the locale of your web browser.

3. Click Administration Portal. The Login page displays.

4. Enter admin for the Username and the password you specified when you configured the Manager.

5. From the Profile list, select internal and click Log In.

Next Steps

Now that you have configured and logged into the Manager, the next step is to add Oracle Linux KVM hosts, as described in Section 2.2, “Configuring a KVM Host”.

You also need to add storage and configure logical networks. See Section 3.3, “Adding Storage” and Section 3.4, “Creating a Logical Network”.

Logging Out

To log out of the Administration Portal, click the person icon in the header bar and click Sign Out. You are returned to the Login page.

2.2 Configuring a KVM Host

This section shows you how to configure and add a KVM host installed with Oracle Linux 7.6 (or later). To configure and add a KVM host with another supported operating system, see the operating system’s installation information.

Note

For detailed information on the supported guest operating systems, see the Oracle® Linux: KVM User’s Guide.

To manage an Oracle Linux KVM host using Oracle Linux Virtualization Manager, prepare the KVM host by performing a fresh installation of Oracle Linux 7.6 (or later) and enabling the required repositories, and then you add the host to a data center using the Administration Portal.
2.2.1 Preparing a KVM Host

Before you can add an Oracle Linux KVM host, prepare it by performing a fresh installation of Oracle Linux 7.6 (or later) and enabling the required repositories. You can download the installation ISO for the latest Oracle Linux 7 update from the Oracle Software Delivery Cloud at https://edelivery.oracle.com.

1. Install Oracle Linux 7 on the host.
 • Follow the instructions in the Oracle® Linux 7: Installation Guide.
 • Select Minimal Install as the base environment for the installation.
 • Do not install any additional packages until after you have added the host to the Manager, because they may cause dependency issues.

2. (Optional) If you use a proxy server for Internet access, configure Yum with the proxy server settings. For more information, see Yum Configuration in the Oracle® Linux 7: Managing Software.

3. Subscribe the system to the required channels through ULN OR install the Release 4.3.10 package using yum and enable the required repositories.
 • For ULN registered hosts only: If the host is registered on ULN, subscribe the system to the required channels.
 a. Log in to https://linux.oracle.com with your ULN user name and password.
 b. On the Systems tab, click the link named for the host in the list of registered machines.
 c. On the System Details page, click Manage Subscriptions.
 d. On the System Summary page, select each required channel from the list of available channels and click the right arrow to move the channel to the list of subscribed channels. Subscribe the system to the following channels:
 • o17_x86_64_latest
 • o17_x86_64_optional_latest
 • o17_x86_64_kvm_utils
 • o17_x86_64_ovirt43
 • o17_x86_64_ovirt43_extras
 • o17_x86_64_gluster6
 • (For VDSM) o17_x86_64_UEKR6
 e. Click Save Subscriptions.
 • For Oracle Linux yum server configured KVM hosts only: Install the Oracle Linux Virtualization Manager Release 4.3.10 package and enable the required repositories.

Note

Installing the Oracle Linux Virtualization Manager Release 4.3.10 package configures an Oracle Linux KVM host; it does not install the Manager.
Preparing a KVM Host

a. **(Optional)** Make sure the host is using the modular yum repository configuration. For more information, see *Getting Started with Oracle Linux Yum Server*.

b. Enable the `ol7_latest` yum repository.

```
# yum-config-manager --enable ol7_latest
```

Important

Before you execute `yum-config-manager` ensure the `yum-utils` package is installed on your system. For more information, see *Using Yum Utilities to Manage Configuration* in *Oracle® Linux 7: Managing Software*.

c. Install the Oracle Linux Virtualization Manager Release 4.3.10 package.

```
# yum install oracle-ovirt-release-el7
```

d. Use the `yum` command to verify that the required repositories are enabled.

i. Clear the yum cache.

```
# yum clean all
```

ii. List the configured repositories and verify that the required repositories are enabled.

```
# yum repolist
```

The following repositories must be enabled:

- `ol7_latest`
- `ol7_optional_latest`
- `ol7_kvm-utils`
- `ol7_gluster6`
- `ol7_UEKR6`
- `ovirt-4.3`
- `ovirt-4.3-extra`

iii. If a required repository is not enabled, use the `yum-config-manager` to enable it.

```
# yum-config-manager --enable repository
```

4. Unsubscribe to the 4.2 ULN channels OR disable the 4.2 repositories using yum.

- **For ULN registered hosts only**: If the host is registered on ULN, unsubscribe to the following channels.
 - `ol7_x86_64_ovirt42`
 - `ol7_x86_64_ovirt42_extras`

- **For Oracle Linux yum server hosts only**: Run the following commands.

```
# yum-config-manager --disable ovirt-4.2
```
Adding a KVM Host

5. (Optional) Open the Cockpit port.

```
# yum-config-manager --disable ovirt-4.2-extra
```

```
# firewall-cmd --zone=public --add-port=9090/tcp
```

The Cockpit web interface can be used to monitor the host’s resources and to perform administrative tasks. You can access the host’s Cockpit web interface from the Administration Portal or by connecting directly to the host.

For more information about configuring firewalld, see Configuring Packet-filtering Firewalls in the Oracle Linux 7: Security Guide.

6. (Optional) Complete the previous steps to prepare additional KVM hosts.

The Oracle Linux KVM host is now ready to be added to the Manager using the Administration Portal.

2.2.2 Adding a KVM Host

Once you have configured an Oracle Linux KVM host, you use the Administration Portal to add the host to a data center so that it can be used to run virtual machines. You can follow the steps below to add KVM hosts installed with other supported guest operating systems.

Note

When you install Oracle Linux Virtualization Manager, a data center and cluster named Default is created. You can rename and configure this data center and cluster, or you can add new data centers and clusters, to meet your needs. See the Data Centers and Clusters tasks in the Oracle Linux Virtualization Manager: Administration Guide for details of how to do this.

To add an Oracle Linux KVM host:

1. Log in to the Administration Portal.

 See Section 2.1.3, “Logging in to the Administration Portal” for details.

2. Go to Compute and then click Hosts.

3. On the Hosts pane, click New.

 The New Host dialog box opens with the General tab selected on the sidebar.

4. From the Host Cluster drop-down list, select the data center and host cluster for the host.

 By default, the Default data center is selected.

5. In the Name field, enter a name for the host.

6. In the Hostname field, enter the fully-qualified DNS name for the host.

7. In the SSH Port field, change the standard SSH port 22 if the SSH server on the host uses a different port.

8. Under Authentication, select the authentication method to use.

 Oracle recommends that you select SSH Public Key authentication. If you select this option, copy the key displayed in the SSH Public Key field to the /root/.ssh/authorized_keys file on the host.
Adding a KVM Host

Otherwise, enter the root user’s password to use password authentication.

9. **(Optional)** Configure other settings for the host from the other tabs on the **New Host** sidebar.

 ![Note]
 If you do not want to set any other configuration options now, you can always make changes later by selecting a host from the **Hosts** pane and clicking **Edit**.

10. Click **OK** to add the host to the data center.

 The host is added to the list of hosts in the Manager. While the Manager is installing the host agent (VDSM) and other required packages on the host, the status of the host is shown as **Installing**. You can view the progress of the installation in the details pane. When the host is added to the Manager, the host status changes to **Up**.

11. **(Optional)** Complete the previous steps to add more KVM hosts to the Manager.

 ![Important]
 Oracle Linux Virtualization Manager allows you to overallocate a KVM host's memory and CPU resources. As the KVM host itself also needs memory and CPU in order to run, Oracle recommends that you reserve some memory and CPU for the KVM host. To do this, go to **Administration** and set a memory quota and a vCPU quota.

Now that you have your engine and host(s) configured, you can complete other configuration and administrative tasks. See Chapter 3, **Quick Start** for information on configuring your environment with storage, networks, virtual machines and learn how to create templates and back up your environment. See the **Oracle Linux Virtualization Manager: Administration Guide** for more detailed configuration and administrative tasks.
Chapter 3 Quick Start

Table of Contents

3.1 Before You Begin .. 23
3.2 Adding a KVM Host to the Manager 24
3.3 Adding Storage .. 25
 3.3.1 Attaching an iSCSI Data Domain 25
 3.3.2 Uploading Images to the Data Domain 26
3.4 Creating a Logical Network ... 28
 3.4.1 Creating a Virtual Machine Network 28
 3.4.2 Assigning the Virtual Machine Network to a KVM Host 29
3.5 Creating a New Virtual Machine ... 32
 3.5.1 Installing Remote Viewer on Client Machine 32
 3.5.2 Creating a New Oracle Linux Virtual Machine 33
 3.5.3 Creating a New Microsoft Windows Virtual Machine 39
3.6 Creating a Template ... 46
 3.6.1 Sealing an Oracle Linux Virtual Machine for Use as a Template 46
 3.6.2 Creating an Oracle Linux Template 47
 3.6.3 Creating a Cloud-Init Enabled Template 49
3.7 Creating a Virtual Machine from a Template 51
 3.7.1 Creating an Oracle Linux Virtual Machine from a Template ... 51
3.8 Backing Up and Restoring the Manager 53
 3.8.1 Backing Up the Manager ... 54
 3.8.2 Restoring a Full Backup of the Manager 54

To get you started with Oracle Linux Virtualization Manager, the following example scenario walks you through the procedures for adding hosts, adding storage, setting up a network, creating virtual machines, and backing up and restoring the Manager.

3.1 Before You Begin

Before you begin the quick start tasks, you should be familiar with the concepts that are presented in the Oracle Linux Virtualization Manager: Architecture and Planning Guide and ensure the following prerequisites are met.

- The procedures in this section assume that you have installed and configured Oracle Linux Virtualization Manager in your environment. For more information, refer to Chapter 2, Installation and Configuration.
- For tasks that must be completed in the Manager, the procedures in this emphasisde assume that you are logged in to the Administration Portal.
- Oracle Linux Virtualization Manager creates a default data center and cluster during installation. For the purpose of this example scenario, the default data center and cluster are used. For the procedures to create new data centers or a new clusters, refer to Clusters in the Oracle Linux Virtualization Manager: Administration Guide.
- For Section 3.2, “Adding a KVM Host to the Manager”, you must have access to a host that you can add to your virtualization environment.
- For Section 3.3, “Adding Storage”, an Internet Small Computer System Interface (iSCSI) storage device is used for the example scenario. If you do not have access to an iSCSI device, refer to Storage in the Oracle Linux Virtualization Manager: Administration Guide for the procedures for adding other storage types to your virtualization environment.
• For Section 3.3.2, “Uploading Images to the Data Domain”, the `ovirt-engine` certificate must be registered as a valid CA in the browser to connect to the `ovirt-imageio-proxy` service.

• In Section 3.5, “Creating a New Virtual Machine”:
 • The procedures for creating an Oracle Linux virtual machine assume you are using an Oracle Linux 7 guest operating system.

 Note
 For detailed information on the supported guest operating systems, see the Oracle® Linux: KVM User’s Guide.

• The procedures for creating Oracle Linux and Microsoft Windows virtual machines assume that you have added the ISO images to the data domain on the storage device used in Section 3.3, “Adding Storage”.

• To use the console to access a virtual machine, you must install the Remote Viewer application on the client from which you want to access. This application provides users with a graphical console for connecting to virtual machines.

 1. Install the `virt-viewer` package.

     ```bash
     # yum install virt-viewer
     ```

 2. Restart your browser for the changes to effect in the Oracle Linux Virtualization Manager.

3.2 Adding a KVM Host to the Manager

To add a KVM host to the Manager:

1. Go to Compute and then click Hosts.

2. On the Hosts pane, click New.

 The New Host dialog box opens with the General tab selected on the sidebar.

3. From the Host Cluster drop-down list, select Default.

 For this example scenario, you use the default data center and cluster. If you want to create a new data center or a new cluster, refer to the Data Centers or Clusters tasks in the Oracle Linux Virtualization Manager: Administration Guide.

4. For the Name field, enter a name for the new host.

5. For the Hostname field, enter the host name for the new host. You must use the DNS host name for the host.

6. For the SSH Port field, the standard SSH port, port 22, is auto-filled.

7. Under Authentication, select the authentication method to use.

 Oracle recommends that you select SSH PublicKey authentication. If you select this option, copy the key displayed in the SSH PublicKey field to the `/root/.ssh/authorized_keys` file on the host.

 Otherwise, enter the root user’s password to use password authentication.

8. (Optional) Configure other settings for the new host from the other tabs on the New Host sidebar.
Note
If you do not want to set any other configuration options now, you can always make changes later by selecting a host from the Hosts pane and clicking Edit.

9. Click OK to add the host to the data center.

The host is added to the list of hosts in the Manager. While the Manager is installing the host agent (VDSM) and other required packages on the host, the status of the host is shown as Installing. You can view the progress of the installation in the details pane. When the host is added to the Manager, the host status changes to Up.

Important
Oracle Linux Virtualization Manager allows you to overallocate a KVM host's memory and CPU resources. As the KVM host itself also needs memory and CPU in order to run, Oracle recommends that you reserve some memory and CPU for the KVM host. To do this, go to Administration and set a memory quota and a vCPU quota.

3.3 Adding Storage

For this example scenario, you attach an iSCSI storage to your virtualization environment and then upload an ISO image to the data domain. If you do not have access to an iSCSI device, refer to Storage in the Oracle Linux Virtualization Manager: Administration Guide for the procedures for adding other storage types to your virtualization environment.

3.3.1 Attaching an iSCSI Data Domain

For iSCSI storage, a storage domain is created from a volume group that is composed of pre-existing LUNs.

To attach an iSCSI data domain to your virtualization environment:

1. Go to Storage and then click Domains.

 The Storage Domains pane opens.

2. Click New Domain.

 The New Domain dialog box opens.

3. For the Name field, enter a name for the data domain.

4. From the Data Center drop-down list, select the Data Center for which to attach the data domain.

 By default, the Default option is selected in the drop-down list.

 For this step, leave Default selected from the drop-down list because the default data center and cluster are used for the example scenario.

 For the procedures to create new data centers or a new clusters, refer to Data Centers or Clusters tasks in the Oracle Linux Virtualization Manager: Administration Guide.

5. From the Domain Function drop-down list, select the domain function. By default, the Data option is selected in the drop-down list.
For this step, leave Data as the domain function because you are creating a data domain in this example.

6. From the Storage Type drop-down list, select iSCSI.

7. For the Host to Use drop-down list, select the host for which to attach the data domain.

For this example scenario, select the host added in Section 3.2, “Adding a KVM Host to the Manager”.

8. When iSCSI is selected for the Storage Type, the Discover Targets dialog box opens and the New Domain dialog box automatically displays the known targets with unused LUNs under the Target Name column.

 If the Discover Targets dialog box is not visible in the New Domain dialog box, make sure that you have selected the Target > LUNS view on the left-side of the column.

 If the target from which you are adding storage is not listed, complete the following fields in the Discover Targets dialog box:

 a. For the Address field, enter fully qualified domain name or IP address of the iSCSI host on the storage array.

 b. For the Port field, enter the port to connect to on the host when browsing for targets. By default, this field is automatically populated with the default iSCSI Port, 3260.

 After completing these fields, click Discover.

 The Target Name column updates to list all the available targets discovered on the storage array.

9. Under the Target Name column, select the desired target and select the black right-directional arrow to log in to the target.

 The Storage Domains pane refreshes to list only the targets for which you logged in.

10. Click + to expand the desired target.

 The target expands to display all the unused LUNS.

11. Click Add for each LUN ID that is to connect to the target.

12. (Optional) Configure the advanced parameters.

 If you are using ZFS storage, you must uncheck the Discard after Delete option.

13. Click OK.

 You can click Tasks to monitor the various processing steps that are completed to attach the iSCSI data domain to the data center.

 After the iSCSI data domain has been added to your virtualization environment, you can then upload the ISO images that are used for creating virtual machines in Section 3.5, “Creating a New Virtual Machine”.

3.3.2 Uploading Images to the Data Domain

Before using the Manager to upload images to the data domain, you must perform the following steps to ensure that the prerequisites for uploading images have been met on the Manager and KVM hosts.
3.3.2.1 Before You Begin

To ensure that the prerequisites for uploading images to the data domain have been met:

1. On the engine host, verify that the `ovirt-image-proxy` service has been configured and is running.

   ```
   systemctl status ovirt-imageio-proxy.service
   ```

 When the service is running, the output displays as follows.

   ```
   systemctl status ovirt-imageio-proxy.service
   ovirt-imageio-proxy.service - oVirt ImageIO Proxy
   Loaded: loaded (/usr/lib/systemd/system/ovirt-imageio-proxy.service; enabled;
   vendor preset: disabled)
   Active: active (running) since Mon 2019-03-25 13:12:29 PDT; 2 weeks 0 days ago
   Main PID: 28708 (ovirt-imageio-p)
   CGroup: /system.slice/ovirt-imageio-proxy.service
   └─28708 /usr/bin/python2 /usr/bin/ovirt-imageio-proxy
   ...
   ```

 This service is automatically configured and is started when you run the `engine-setup` command during the installation of the Manager.

2. On the KVM host, verify that the `ovirt-image-proxy` service has been configured and is running. For example:

   ```
   systemctl status ovirt-imageio-daemon
   ovirt-imageio-daemon.service - oVirt ImageIO Daemon
   Loaded: loaded (/usr/lib/systemd/system/ovirt-imageio-daemon.service; disabled;
   vendor preset: disabled)
   Active: active (running) since Wed 2019-03-27 18:38:36 EDT; 3 weeks 4 days ago
   Main PID: 366 (ovirt-imageio-d)
   Tasks: 4
   CGroup: /system.slice/ovirt-imageio-daemon.service
   └─366 /usr/bin/python /usr/bin/ovirt-imageio-daemon
   Mar 27 18:38:36 myserver systemd[1]: Starting oVirt ImageIO Daemon...
   Mar 27 18:38:36 myserver systemd[1]: Started oVirt ImageIO Daemon.
   ```

3. Verify that the certificate authority has been imported into the web browser used to access the Manager by browsing to the following URL and enabling the trust settings:

   ```
   https://engine_address/ovirt-engine/services/pki-resource?resource=ca-certificate&format=X509-PEM-CA
   ```

4. Verify that you are using a browser that meets the browser requirement to access the Administration Portal.

 For more information, refer to the Section 2.1.3, “Logging in to the Administration Portal”.

5. Proceed to Section 3.3.2.2, “Uploading an ISO Image to the Data Domain”.

3.3.2.2 Uploading an ISO Image to the Data Domain

To upload an ISO image to data domain using the Manager:

1. Download or copy an ISO image file that you want to upload into your environment to a location on your desktop, laptop, or a system where the Manager is accessible from a Web browser.

2. Go to Storage and then click Disks.

 The Disks pane opens.
3. Click **Upload** and then select **Start** from the drop-down list.

 The **Upload Image** dialog box opens.

4. Click **Choose File** and navigate to the location where you saved the ISO image.

5. Complete the **Disk Options** section of the dialog box.

6. Ensure that the prerequisites have been met by clicking **Test Connection**.

 If the test returns a warning or error message, refer to Section 3.3.2.1, “Before You Begin” to review the prerequisites.

7. Click **OK** to start uploading the ISO image.

 The status field on the **Disks** pane tracks the progress of the upload.

 After the ISO image upload is completed successfully, you can attach the image to virtual machines as CDROMs or use the image to boot virtual machines.

3.4 Creating a Logical Network

For this example scenario, you create a virtual machine network that you then assign to the KVM host added in Section 3.2, “Adding a KVM Host to the Manager”. This network is used as the virtual machine network for the virtual machines created in Section 3.5, “Creating a New Virtual Machine”.

3.4.1 Creating a Virtual Machine Network

To create a virtual machine network:

1. Go to **Network** and then click **Networks**.

2. On the **Networks** pane, click **New**.

 The **New Logical Network** dialog box opens with the **General** tab selected on the sidebar.

3. From the **Data Center** drop-down list, select the Data Center for the network.

 By default, the **Default** option is selected in the drop-down list.

 For this step, leave **Default** selected from the drop-down list because the default data center and cluster are used in this example scenario.

 For the procedures to create new data centers or a new clusters, refer to Data Centers or Clusters tasks in the *Oracle Linux Virtualization Manager: Administration Guide*.

4. For the **Name** field, enter a name for the new network.

5. Leave the **VM Network** check box selected.

 Under the **Network Parameters** section, the **VM Network** check box is selected by default, which is left selected because a virtual machine network is being created in this example.

6. **(Optional)** Configure other settings for the new logical network from the other tabs on the **New Logical Network** sidebar.

 The default settings are used for this example scenario.
7. Click **OK** to create the network.

The following screenshot shows the **General** tab of the **New Logical Network** dialog box completed for the new logical network that is being created in this example:

- From the **Data Center** drop-down list, the **Default** option is selected.
- For the **Name** field, **vm_pub** is entered.
- Under the **Network Parameters** section, the **VM Network** check box is selected.

Figure 3.1 New Logical Network Dialog Box: General Tab

3.4.2 Assigning the Virtual Machine Network to a KVM Host

To assign the virtual machine network to a KVM host:

1. Go to **Compute** and then click **Hosts**.

 The **Hosts** pane opens.

2. Under the **Name** column, click the name of the host for which to add the network.

 The following screenshot shows the **Hosts** pane with the name of the host highlighted in a red rectangular box to emphasize where you need to click to set up a network on a host.
After clicking the name of the host, the **General** tab opens with details about the host.

3. Click the **Network Interfaces** tab on the horizontal menu.

 The **Network Interfaces** tab opens with details about the network interfaces on the available host.

4. Highlight the network interface that you want to use for the network being added by clicking the row for the respective interface.

5. Click **Setup Host Networks**.

 The **Setup Host Networks** dialog box opens for the host. The physical interfaces on the host are listed under the **Interfaces** column and any logical networks assigned to the interface are displayed under the **Assigned Logical Networks** column. Unassigned logical networks are displayed under the **Unassigned Logical Networks** column.

 As shown in the following screenshot, the logical network created in Section 3.4, "Creating a Logical Network" named `vm_pub` is displayed under the **Unassigned Logical Networks** column. In the next
step, you assign this network to the network interface named eno2, which currently has no network assigned to it.

Figure 3.3 Setup Host Dialog Box: Unassigned Logical Networks

6. Select the network you want to add from the Unassigned Logical Networks column by left-clicking the network and, while holding down the mouse, drag the network over to the box to the right of the available network interface where you want to add the network.

Alternatively, you can right-click the network and select the available interface from a drop-down list.

For this example, the logical network named vm_pub is assigned to the available network interface named eno2. As shown in the following screenshot, after dragging the network from Unassigned
Logical Networks over to this interface, the network named vm_pub appears under the Assigned Logical Networks column as assigned to the network interface named eno2.

Figure 3.4 Setup Host Dialog Box: Assigned Logical Networks

7. After editing the network settings, click OK to save the settings.
8. Click OK to add the network.

3.5 Creating a New Virtual Machine

Before creating new virtual machines for use in your virtualization environment, refer to Section 3.1, “Before You Begin” for more information about the prerequisites for this example scenario.

Note
In addition to creating virtual machines, you can import an Open Virtual Appliance (OVA) file into your environment from any host in the data center. For more information, see oVirt Virtual Machine Management emphasisde in oVirt Documentation.

3.5.1 Installing Remote Viewer on Client Machine

A console is a UI that allows you to view and interact with a virtual machine similar to a physical machine. The default console is Remove Viewer application that provides users with a UI for connecting to virtual machines.
Creating a New Oracle Linux Virtual Machine

Before you begin a Linux or Windows installation, download the appropriate install package from the Virtual Machine Manager web site.

For more information, see Consoles in the Oracle Linux Virtualization Manager: Architecture and Planning Guide.

To install Remote Viewer on Linux:

1. Ensure you have downloaded the virt-viewer installation package.
2. Install the virt-viewer package using one of the following commands depending on your system.

   ```
   # yum install virt-viewer
   # dnf install virt-viewer
   ``

3. Restart your browser for the changes to take effect in the Oracle Linux Virtualization Manager.

You can now connect to your virtual machines using the VNC protocol.

To install Remote Viewer on Windows:

1. Ensure you have downloaded either the 32-bit or 64-bit virt-viewer installer depending on the architecture of your system.
2. Go to the folder where you saved the file and double-click the file.
3. If prompted with a security warning, click Run.
4. If prompted by User Account Control, click Yes.

Once installed, you can access Remote Viewer in the VirtViewer folder of All Programs from the Start menu.

### 3.5.2 Creating a New Oracle Linux Virtual Machine

For the example scenario, you create a new Oracle Linux virtual machine, install the Oracle Linux guest OS, and install the Linux guest agent for this Oracle Linux virtual machine.

**Note**

For detailed information on the supported guest operating systems, see the Oracle® Linux: KVM User’s Guide.

To create a new Oracle Linux virtual machine:

1. Go to Compute and then click Virtual Machines.

   The Virtual Machines pane opens with the list of virtual machines that have been created.

2. Click New.

   The New Virtual Machine dialog box opens with the General tab selected on the sidebar.

3. From the Cluster drop-down list, select the data center and host cluster for the new host.

   By default, the Default option is selected in the drop-down list.

   For this step, leave Default selected from the drop-down list because the default data center and cluster are used in this example scenario. For the procedures to create new data centers or a
new clusters, refer to Data Centers or Clusters tasks in the Oracle Linux Virtualization Manager: Administration Guide.

4. From the Operating System drop-down list, select the operating system for the virtual machine.

5. For the Name field, enter a name for the new virtual machine.

6. Under Instance Images, add storage to the virtual machine by either using an existing virtual disk or creating a new virtual disk.

   • To use an existing virtual disk, click Attach and select the virtual disk to use for the virtual machine storage. Then click OK.

   • To create a new virtual disk, click Create and update the fields for the virtual machine storage or accept the default settings. Then click OK.

For the example scenario, all of the default settings are accepted for the new virtual disk that is being created, except the Size (GiB) field, which is set to 4. The following screenshot shows the New Virtual Disk dialog box for the Oracle Linux virtual machine being created in this example scenario.

Figure 3.5 New Virtual Disk Dialog Box
7. Connect the virtual machine to a network by adding a network interface. To do that, select the vNIC profile created in Section 3.4, "Creating a Logical Network" from the nic1 drop-down list.

For information about customizing vNICs, refer to Customizing vNIC Profiles for Virtual Machines in the Oracle Linux Virtualization Manager: Administration Guide.

The following screenshot shows the General tab open on the New Virtual Machine dialog box for the new Oracle Linux virtual machine being created in this example scenario. In the dialog box, the following key fields are completed:

- From the Cluster drop-down list, the Default option is selected.
- For the Operating System drop-down list, Oracle Linux 7.x x64 is selected.
- For the Name field, ol7-vm1 is entered.
- Under Instance Images, a virtual disk named ol7-vm1_Disk1 is being created, which has been set to a size of 4GB.
- From the nic1 drop-down list, the logical network named vm_pub is selected.

Figure 3.6 New Virtual Machine Dialog Box
8. Click **Show Advanced Options** to display additional configuration options available for the new virtual machine.

9. **(Optional)** Click the **System** tab on the sidebar to adjust the CPU and memory size for the virtual machine from the defaults.

   For this example scenario the default values are used:

   - For **Memory Size** field, the default value of **1024 MB** is used.
   - For the **Maximum memory** field, the default value of **4096 MB** is used.
   - For the **Total Virtual CPUs** field, the default value of **1** is used.
10. Click the **Boot Options** tab on the sidebar to specify the boot sequence for the virtual device and then select the device from the **First Device** drop-down list.

In the following screenshot, **CD-ROM** is selected from the **First Device** drop-down list. The **Attach CD** check box is also selected with the appropriate ISO file chosen from the drop-down list. For this example scenario, **OracleLinux-R7-U6-Server-x86_64-dvd.iso** is selected.

**Figure 3.7 New Virtual Machines Dialog Box: Boot Options Tab**

After you install the Oracle Linux guest OS, change the **First Device** from **CD-ROM** to **Hard Disk** from the drop-down list. For more information, refer to Section 3.5.2.1, “Installing the Oracle Linux Guest OS”.

11. Click **OK** to create the virtual machine.

12. Proceed to Section 3.5.2.1, “Installing the Oracle Linux Guest OS”.

### 3.5.2.1 Installing the Oracle Linux Guest OS

To install the Oracle Linux 7 guest OS for this example scenario:

1. Go to **Compute** and then click **Virtual Machines**.
Creating a New Oracle Linux Virtual Machine

The Virtual Machines pane opens with the list of virtual machines that have been created.

2. Select the virtual machine created in Section 3.5.2, “Creating a New Oracle Linux Virtual Machine” and click Run.

3. Click Console to open a console to the virtual machine.

   If you have not installed the Remote Viewer application, refer to Section 3.1, “Before You Begin”.

4. Install the Oracle Linux guest OS.

   Refer to the Oracle® Linux 7: Installation Guide for more information on how to install Oracle Linux.

5. After you finish installing the Oracle Linux guest OS, return to the Virtual Machines pane, highlight the row for this virtual machine, and click Edit.

   The Edit Virtual Machines dialog box opens.

6. Click the Boot Options tab on the sidebar of the dialog box to specify the boot sequence for the virtual device and then change CD-ROM to Hard Disk from the First Device drop-down list.

7. Click OK to save the changes to the virtual machine configuration.

   The Oracle Linux virtual machine now boots from the virtual disk where the operating system is installed.

8. (Optional) If you use a proxy server for Internet access, configure Yum with the proxy server settings. For more information, see Configuring Packet-filtering Firewalls in the Oracle® Linux 7: Security Guide.

9. (Optional) If you are using yum to update the host, make sure the host is using the modular yum repository configuration. For more information, see Getting Started with Oracle Linux Yum Server.

10. Proceed to Section 3.5.2.2, “Installing the Oracle Linux Guest Agent”.

3.5.2.2 Installing the Oracle Linux Guest Agent

To install the Oracle Linux guest agent for this example scenario, follow the Oracle Linux 7 parts of the steps below.

1. Open a console session for the Oracle Linux guest and log in to the terminal.

2. Install the latest guest agent package.

   For Oracle Linux 8 guests:

   ```bash
 # dnf install dnf-utils -y
 # yum-config-manager --enable ol8_appstream
 # dnf install qemu-guest-agent
   ```

   (Example scenario) For Oracle Linux 7 guests:

   ```bash
 # yum install yum-utils -y
 # yum-config-manager --enable ol7_latest
 # yum install qemu-guest-agent
   ```

   For Oracle Linux 6 guests:

   ```bash
 # yum install yum-utils -y
 # yum-config-manager --enable ol6_latest
 # yum install qemu-guest-agent
   ```
Creating a New Microsoft Windows Virtual Machine

For Oracle Linux 5 guests:

```bash
yum install yum-utils -y
yum install http://yum.oracle.com/repo/OracleLinux/OL7/ovirt42/x86_64/getPackage/
 ovirt-guest-agent-1.0.13-2.el5.noarch.rpm
```

3. Start the guest agent service for the Oracle Linux guest.

  *(Example scenario)* For Oracle Linux 8 and Oracle Linux 7 guests:

```bash
systemctl start qemu-guest-agent.service
```

For Oracle Linux 6 guests:

```bash
service qemu-ga enable
service qemu-ga start
```

For Oracle Linux 5 guests:

```bash
service ovirt-guest-agent enable
service ovirt-guest-agent start
```

4. *(Optional)* Enable an automatic restart of the guest agent service when the virtual machine is rebooted.

  *(Example scenario)* For Oracle Linux 8 and Oracle Linux 7 guests:

```bash
systemctl enable qemu-guest-agent.service
```

For Oracle Linux 6 guests:

```bash
chkconfig qemu-ga on
```

For Oracle Linux 5 guests:

```bash
chkconfig ovirt-guest-agent on
```

### 3.5.3 Creating a New Microsoft Windows Virtual Machine

For the example scenario, you create a new Microsoft Windows virtual machine, install the Microsoft Windows guest OS, and install the Microsoft Windows guest agent and VirtIO drivers for this virtual machine.

#### 3.5.3.1 Before You Begin

Before creating Microsoft Windows virtual machines, ensure the following prerequisites are met.

1. Install the `ovirt-guest-tools-iso` package on the Manager:

   ```bash
 # yum install ovirt-guest-tools-iso
   ```

2. Verify the package installation:

   ```bash
 # rpm -ql ovirt-guest-tools-iso
   ```

#### 3.5.3.2 Creating a New Microsoft Windows Virtual Machine

To create a new Microsoft Windows virtual machine:

1. Go to Compute and then click Virtual Machines.

   The Virtual Machines pane opens with the list of virtual machines that have been created.
2. Click **New**.

   The **New Virtual Machine** dialog box opens with the **General** tab selected on the sidebar.

3. From the **Cluster** drop-down list, select the data center and host cluster for the new host.

   By default, the **Default** option is selected in the drop-down list.

   For this step, leave **Default** selected from the drop-down list because the default data center and cluster are used in this example scenario. For the procedures to create new data centers or a new clusters, refer to **Data Centers or Clusters** tasks in the *Oracle Linux Virtualization Manager: Administration Guide*.

4. From the **Operating System** drop-down list, select the appropriate Microsoft Windows operating system for the virtual machine.

5. For the **Name** field, enter a name for the new virtual machine.
6. Under **Instance Images**, add storage to the virtual machine by either using an existing virtual disk or creating a new virtual disk.

   - To use an existing virtual disk, click **Attach** and select the virtual disk to use for the virtual machine storage. Then click **OK**.
   - To create a new virtual disk, click **Create** and update the fields for the virtual machine storage or accept the default settings. Then click **OK**.

   The following screenshot shows the **New Virtual Disk** dialog box for the Oracle Linux virtual machine being created in this example scenario. In the dialog box, the following key fields are completed:

   - For the **Size (GiB)** field, a value of **12** is entered.
   - From the **Interface** drop-down list, **IDE** is selected.
   - From the **Allocation Policy** drop-down list, **Thin Provision** is selected.

**Figure 3.8 New Virtual Disk Dialog Box**

7. Connect the virtual machine to a network by selecting the vNIC profile created in **Section 3.4, “Creating a Logical Network”** from the **nic1** drop-down list.

   For information about customizing vNICs, refer to **Customizing vNIC Profiles for Virtual Machines** in the **Oracle Linux Virtualization Manager: Administration Guide**.

   The following screenshot shows the **General tab on New Virtual Machine** dialog box for the new Microsoft Windows virtual machine that is being created in this example scenario. In the dialog box, the following key fields are completed:

   - From the **Cluster** drop-down list, the **Default** option is selected.
   - For the **Operating System** drop-down list, **Windows 10 x64** is selected.
   - For the **Name** field, **windows-10-vm** is entered.
• Under **Instance Images**, a virtual disk named *windows-10-vm_Disk1* is being created, which has been set to a size of **12GB**.

• From the **nic1** drop-down list, the logical network named *vm_pub* is selected.

**Figure 3.9 New Virtual Machine Dialog Box**

![New Virtual Machine Dialog Box](image)
8. Click the **System** tab on the sidebar to adjust the memory size for the virtual machine from the defaults. In this example, change the **Memory Size** field to **4096 MB** and the **Total Virtual CPUs** field to **4**.

The following screenshot shows the **System** tab on **New Virtual Machine** dialog box for the new Microsoft Windows virtual machine that is being created in this example scenario. In the dialog box, the following key fields are completed:

- The **Memory Size** field is changed to **4096 MB**.
- The **Maximum memory** field automatically updates to **16384 MB** when the **Memory Size** field is changed to **4096 MB**.
- The **Total Virtual CPUs** field is changed to **4**.

*Figure 3.10 New Virtual Machine Dialog Box: System Tab*
9. Click the **Boot Options** tab on the sidebar of the dialog box to specify the boot sequence for the virtual device.

   a. From the **First Device** drop-down list select **CD-ROM**.

   b. Select the **Attach CD** checkbox and choose the appropriate ISO image from the drop-down list.

   After you install the Microsoft Windows guest OS, change the **First Device** drop-down list from **CD-ROM** to **Hard Disk** from the drop-down list. For more information, refer to Section 3.5.3.4, “Installing the Microsoft Windows Guest Agent and VirtIO Drivers”.

   In the following screenshot, CD-ROM is selected from the **First Device** drop-down list. The **Attach CD** check box is also selected with the **en_windows_10_enterprise_1511_x64_dvd.iso** ISO file chosen from the drop-down list.

   **Figure 3.11 New Virtual Machines Dialog Box: Boot Options Tab**

10. Click **OK** to create the virtual machine.

11. Proceed to Section 3.5.2.1, “Installing the Oracle Linux Guest OS”.
3.5.3.3 Installing the Microsoft Windows Guest OS

To install the Microsoft Windows guest OS:

1. Go to Compute and then click Virtual Machines.

   The Virtual Machines pane opens with the list of virtual machines that have been created.

2. Select the Microsoft Windows virtual machine created in Section 3.5.3, “Creating a New Microsoft Windows Virtual Machine” and click Run.

3. Click Console to open a console to the virtual machine.

   If you have not installed the Remote Viewer application, refer to Section 3.1, “Before You Begin”.

4. Install the Microsoft Windows guest OS.

   Refer to the applicable Microsoft Windows documentation for instructions on how to install the operating system.

5. Proceed to Section 3.5.3.4, “Installing the Microsoft Windows Guest Agent and VirtIO Drivers”.

3.5.3.4 Installing the Microsoft Windows Guest Agent and VirtIO Drivers

To install the Microsoft Windows guest agent and VirtIO drivers:

1. After you finish installing the Microsoft Windows guest OS, return to the Virtual Machines pane, highlight the row for this virtual machine, and click Edit.

   The Edit Virtual Machines dialog box opens.

2. Click the Boot Options tab on the sidebar of the dialog box to specify the boot sequence for the virtual device.

   a. From the First Device drop-down list, change CD-ROM to Hard Disk.

   b. From the Second Device drop-down list, select CD-ROM.

   c. Select the Attach CD checkbox and choose ovirt-tools-setup.iso from the drop-down list.

3. Click OK to save the changes to the virtual machine configuration.

4. Click OK when the Pending Virtual Machine changes dialog box appears.

5. From the Virtual Machines pane, reboot the virtual machine.

6. Click Console to open a console to the virtual machine and navigate to the CDROM.

7. Double-click ovirt-guest-tools-setup to install the Microsoft Windows guest agent.

8. Double-click the virtio folder and then click Setup to start the Oracle VirtIO Drivers for Microsoft Windows installer.

   The installer window is displayed.

9. Click Install to start the Oracle VirtIO Drivers for Microsoft Windows installer.

   The installer copies the Oracle VirtIO Drivers for Microsoft Windows installer files and then installs the drivers on the Microsoft Microsoft Windows guest OS.
10. Click *Yes, I want to restart my computer now* and click *Finish*.

The virtual machine is restarted.

11. Stop the virtual machine.

12. Go to *Compute* and then click *Virtual Machines*.

The *Virtual Machines* pane opens with the list of virtual machines that have been created.

13. Select the Microsoft Windows virtual machine created in *Section 3.5.3, “Creating a New Microsoft Windows Virtual Machine”* and click *Edit*.

14. Edit the virtual disk. From the *Interface* drop-down list, change *IDE* to *VirtIO-SCSI*.

15. Click the *Boot Options* tab on the sidebar.
   
   a. Do not make any changes to the *First Device* drop-down list. The *Hard Disk* option is selected from a previous step.
   
   b. From the *Second Device* drop-down list, select *None*.
   
   c. Deselect the *Attach CD* checkbox.

16. Click *OK* to save the changes to the virtual machine configuration.

17. Run the Microsoft Windows virtual machine.

For more information, see the *Oracle® Linux: KVM User's Guide*

### 3.6 Creating a Template

For this example scenario, you seal the Oracle Linux virtual machine created in *Section 3.5, “Creating a New Virtual Machine”* and then you create an Oracle Linux template based on that virtual machine. You then use that template as the basis for a Cloud-Init enabled template to automate the initial setup of a virtual machine.

A template is a copy of a virtual machine that you can use to simplify the subsequent, repeated creation of similar virtual machines. Templates capture the configuration of software, the configuration of hardware, and the software installed on the virtual machine on which the template is based, which is known as the source virtual machine.

Virtual machines that are created based on a template use the same NIC type and driver as the original virtual machine but are assigned separate, unique MAC addresses.

**Important**

Oracle provides pre-installed and pre-configured templates that allow you to deploy a fully configured software stack. Use of Oracle Linux templates eliminates the installation and configuration costs and reduces the ongoing maintenance costs. For more information, see *Importing an Oracle Linux Template* in the *Oracle Linux Virtualization Manager: Administration Guide*.

### 3.6.1 Sealing an Oracle Linux Virtual Machine for Use as a Template

Sealing is the process of removing all system-specific details from a virtual machine before creating a template based on that virtual machine. Sealing is necessary to prevent the same details from appearing
Creating an Oracle Linux Template

on multiple virtual machines that are created based on the same template. It is also necessary to ensure the functionality of other features, such as predictable vNIC order.

To seal an Oracle Linux virtual machine for use as a template:

1. Log in to the Oracle Linux virtual machine as the root user.
2. Flag the system for reconfiguration.
   
   ```bash
 # touch /.unconfigured
   ```
3. Remove the SSH host keys.
   
   ```bash
 # rm -rf /etc/ssh/ssh_host_*
   ```
4. Set the host name value of the HOSTNAME=localhost.localdomain in the /etc/sysconfig/network file for Oracle Linux 6 or the /etc/hostname file for Oracle Linux 7.
5. Remove /etc/udev/rules.d/70-*. 
   
   ```bash
 # rm -rf /etc/udev/rules.d/70-*
   ```
6. Remove the HWADDR and UUID lines in the /etc/sysconfig/network-scripts/ifcfg-eth* file.
7. (Optional) Delete all the logs from /var/log and build logs from /root.
8. Cleanup the command history.
   
   ```bash
 # history -c
   ```
9. Shutdown the virtual machine.
   
   ```bash
 # poweroff
   ```

The Oracle Linux virtual machine is now sealed and ready to be made into a template.

3.6.2 Creating an Oracle Linux Template

When you create a template based on a virtual machine, a read-only copy of the virtual machine’s disk is created. This read-only disk becomes the base disk image of the new template, and of any virtual machines that are created based on the template. As such, the template cannot be deleted while any virtual machines based on that template exist in the virtualization environment.

To create an Oracle Linux template:

1. Go to Compute, and then click Virtual Machines.

   The Virtual Machines pane opens with the list of virtual machines that have been created.

2. Click More Actions to expand the drop-down list and select Make Template from the drop-down list.

   The following screenshot shows the More Actions drop-down list expanded to display the Make Template option. The Make Template option is highlighted with a red rectangular box for emphasis.
Figure 3.12 Make Template Option

3. For the **Name** field, enter a name for the new virtual machine template.

4. In the **Disc Allocation**: section under the **Alias** column, rename the disk alias to be the same as the template name entered for the **Name** field.
5. Click the **Seal Template (Linux only)** checkbox.

The following screenshot shows the **New Template** dialog box completed for the new template named `ol7-vm-template`, which is being created in this example scenario. In the dialog box, the disk alias has been renamed to `ol7-vm-template` and the **Seal Template (Linux only)** checkbox is selected.

*Figure 3.13 New Template Dialog Box*

6. Click the **OK** button to create the template.

The virtual machine displays a status of image *Locked* while the template is being created. The time it takes for the template to be created depends on the size of the virtual disk and the capabilities of your storage hardware. When the template creation process completes, the template is added to the list of templates displayed on the **Templates** pane.

You can now create new Oracle Linux virtual machines that are based on this template.

### 3.6.3 Creating a Cloud-Init Enabled Template

For Oracle Linux 7 (and later) virtual machines, you can use the Cloud-Init tool to automate the initial setup of virtual machines. Common tasks, such as configuring host names, network interfaces, and authorized keys, can be automated by using this tool. When provisioning virtual machines that have been deployed based on a template, the Cloud-Init tool can be used to prevent conflicts on the network.
3.6.3.1 Before You Begin

Before you create Cloud-Init enabled templates, ensure the following prerequisites are met:

- To use Cloud-Init, the `cloud-init` package must first be installed on the virtual machine. Once installed, the Cloud-Init service starts during the boot process and searches for instructions on what to configure. You can use options in the `Run Once` window to provide these instructions on a one-time only basis, or use the options in the New Virtual Machine, Edit Virtual Machine, and Edit Template dialog boxes to provide these instructions every time the virtual machine starts.

- You must have seal an Oracle Linux for use as a template. For more information, refer to Section 3.6.1, “Sealing an Oracle Linux Virtual Machine for Use as a Template”.

- You must create a template. For more information, refer to Section 3.6.2, “Creating an Oracle Linux Template”.

1. Log in to a Oracle Linux virtual machine.

2. List the `cloud-init` package.
   
   ```bash
 # yum list cloud-init
   ```

3. Install the `cloud-init` package.
   
   ```bash
 # yum install cloud-init
   ```

4. Run the following command to enable the `cloud-init` service.
   
   ```bash
 # systemctl enable cloud-init
   ```

5. Run the following command to start the `cloud-init` service.
   
   ```bash
 # systemctl start cloud-init
   ```

3.6.3.2 Using Cloud-Init to Automate the Initial Setup of a Virtual Machine

To use Cloud-Init to automate the initial setup of a virtual machine:

1. Go to Compute and then click Templates.

   The Templates pane opens with the list of templates that have been created.

2. Select a template and click the Edit button.

3. Click Show Advanced Options.

4. Click the Initial Run tab and select the Use Cloud-Init/Sysprep check box.

5. Enter a host name in the VM Hostname text field.

6. Select the Configure Time Zone check box and select a time zone from the Time Zone drop-down list.

7. Expand the Authentication section.

   - Select the Use already configured password check box to use the existing credentials, or clear that check box and enter a root password in the Password and Verify Password text fields to specify a new root password.

   - Enter any SSH keys to be added to the authorized hosts file on the virtual machine in the SSH Authorized Keys text area.
Creating a Virtual Machine from a Template

- Select the **Regenerate SSH Keys** check box to regenerate SSH keys for the virtual machine.

8. Expand the **Networks** section.
   - Enter any DNS servers in the **DNS Servers** text field.
   - Enter any DNS search domains in the **DNS Search Domains** text field.
   - Select the **In-guest Network Interface** check box and use the + Add new and - Remove selected buttons to add or remove network interfaces to or from the virtual machine.

Important
---
You must specify the correct network interface name and number (for example, *eth0*, *eno3*, *enp0s*); otherwise, the virtual machine’s interface connection will be up but will not have the Cloud-Init network configuration.

9. Expand the **Custom Script** section and enter any custom scripts in the **Custom Script** text area.

### 3.7 Creating a Virtual Machine from a Template

For this example scenario, you create an Oracle Linux virtual machine from the template created in **Section 3.6, “Creating a Template”**.

#### 3.7.1 Creating an Oracle Linux Virtual Machine from a Template

To create an Oracle Linux virtual machine from a template:

1. Go to **Compute** and then click **Templates**.
   - The **Templates** pane opens with the list of templates that have been created.

2. On the far right corner of the **Templates** pane, click **New VM**.
   - The **New Virtual Machine** dialog box opens for the template.

3. On the **Cluster** drop-down list, select the data center and host cluster for the new host.
   - By default, the **Default** option is selected in the drop-down list.
     - For this step, leave **Default** selected from the drop-down list because the default data center and cluster are used in this example scenario.
     - For the procedures to create new data centers or a new clusters, refer to **Data Centers** or **Clusters** tasks in the *Oracle Linux Virtualization Manager: Administration Guide*.

4. For the **Template** drop-down list, select the desired template from the drop-down list.
   - For this example scenario, select the template created in **Section 3.6.2, “Creating an Oracle Linux Template”**.

5. For the **Operating System** drop-down list, select the operating system from the drop-down list.

6. For the **Name** field, enter a name for the virtual machine.

The following screenshot shows the **New Virtual Machine** dialog box for the new Oracle Linux virtual machine that is being created based on the template that was created in **Section 3.6.2, “Creating an Oracle Linux Template”**. In the dialog box, the following key fields are completed:
• From the **Cluster** drop-down list, the **Default** option is selected.
• From the **Template** drop-down list, the template named **ol7-vm-template** is selected.
• For the **Operating System** drop-down list, **Oracle Linux 7.x x64** is selected.
• For the **Name** field, **ol7-vm2** is entered.
• From the **nic1** drop-down list, the logical network named **vm_pub** is selected.

**Figure 3.14 New Virtual Machine Dialog Box for a Template - General Tab**
7. Click the **Boot Options** tab and ensure that the **First Device** is set to **Hard Disk**.

The following screenshot shows the **New Virtual Machines** dialog box with the **Boot Options** tab options selected for the new Oracle Linux virtual machine named `ol7-vm4` that is being created from the template named `ol7-vm-template` in this example. The **First Device** is set to **Hard Disk**.

![Figure 3.15 New Virtual Machine Dialog Box for a Template - Boot Options Tab](image)

8. Click **OK** to create the virtual machine from the template.

The new virtual machine appears on the **Virtual Machines** pane.

9. Highlight the virtual machine that you created from the template and then click **Run** to boot the virtual machine.

The red down arrow icon to the left of the virtual machine turns green and the **Status** column displays **Up** when the virtual machine is up and running on the network.

### 3.8 Backing Up and Restoring the Manager

For this example scenario, you backup and restore the Oracle Linux Virtualization Manager by using the `engine-backup` command utility.
3.8.1 Backing Up the Manager

To backup the Manager:

1. Log into the host that is running the Manager.

   Note
   When running the Manager within a virtual machine (standalone or self-hosted engine) log into the virtual machine that is running the engine.

2. Create a full backup of the Manager.

   ```
 # engine-backup --mode=backup --scope=all --file=path --log=path
   ```

   The following example shows how to use the `engine-backup` command to create a full backup of the Manager. A backup file and log file for the Manager backup is created in the path specified.

   ```
 # engine-backup --mode=backup --scope=all --file=/backup/file/ovirt-engine-backup --log=/backup/log/ovirt-engine-backup.log
   ```

3. (Optional) Set up a cron job to take regular backups.

   By default, the Manager does not take automatic backups. Oracle recommends that you take you regular backups of the Manager.

   The following example shows a sample `cron` job defined in a `crontab`-format file.

   ```
 today=`date +'%Y%m%d-%H%M'`
   ```

3.8.2 Restoring a Full Backup of the Manager

To restore a full backup of the Manager:

1. Login to the host that is running the Manager.

   Note
   When running the Manager within a virtual machine (standalone or self-hosted engine) log into the virtual machine that is running the engine.

2. Clean up the objects associated with the Manager.

   ```
 # engine-cleanup
   ```

   This `engine-cleanup` command removes the configuration files and cleans the database associated with the Manager.

   The following example shows output from the `engine-cleanup` command.

   ```
 # engine-cleanup
 [INFO] Stage: Initializing
   ```
3. **Restore a full backup of the Manager.**

The following form of the `engine-backup` command is used to restore a full backup of the Manager.

```bash
engine-backup --mode=restore --scope=all --file=path --log-path --restore-permissions
```

The following example shows how to use the `engine-backup` command to restore a full backup of the Manager.

```bash
engine-backup --mode=restore --scope=all --file=backup/file/ovirt-engine-backup \
```

---

---
Restoring a Full Backup of the Manager

```
--log=backup/log/ovirt-engine-backup.log --restore-permissions
Preparing to restore:
- Unpacking file 'backup/file/ovirt-engine-backup'
Restoring:
- Files
- Engine database 'engine'
 - Cleaning up temporary tables in engine database 'engine'
 - Updating DbJustRestored VdcOption in engine database
 - Resetting DwhCurrentlyRunning in dwh_history_timekeeping in engine database
 - Resetting HA VM status
--
Please note:

The engine database was backed up at 2019-03-25 12:48:02.000000000 -0700.

Objects that were added, removed or changed after this date, such as virtual
machines, disks, etc., are missing in the engine, and will probably require
recovery or recreation.
--
- DWH database 'ovirt_engine_history'
You should now run engine-setup.
Done.
```

4. Run the `engine-setup` command to complete the setup of the restored Manager.

```
engine-setup
```

This command reconfigures the firewall and ensures that the Manager service is correctly configured.

5. Log in to the Manager and verify that the Manager has been restored to the backup.
You can upgrade Oracle Linux Virtualization Manager from Release 4.2.8 to Release 4.3.10 by upgrading your engine and KVM hosts.

You can also perform an update from Release 4.3.6 to Release 4.3.10.

Note
An upgrade is considered to be a move from one Oracle Linux Virtualization Manager version to another, such as 4.2 to 4.3. If you are moving within a version, such as 4.3.x to 4.3.x, this is considered an update.

4.1 Upgrading or Updating the Engine

You can perform an upgrade from Release 4.2.8 to 4.3.10 or an update from Release 4.3.6 to 4.3.10.

Important
If the upgrade or update fails, the engine-setup command attempts to rollback your installation to its previous state. Do not remove the repositories required by the 4.2 engine until after the upgrade/update successfully completes. If you encounter a failed upgrade or update, detailed instructions display explaining how to restore your installation.

To upgrade your engine install the ovirt-engine package and run the engine-setup command to configure the engine. To update your engine, you do not need to install the ovirt-engine package.

1. (Only for upgrading from 4.2.8 to 4.3.10.) Subscribe to the required ULN channels OR install the Release 4.3.10 package using yum.

   • For ULN registered hosts only: If the host is registered on ULN, subscribe the system to the required channels.

      a. Log in to https://linux.oracle.com with your ULN user name and password.
      b. On the Systems tab, click the link named for the host in the list of registered machines.
      c. On the System Details page, click Manage Subscriptions.
      d. On the System Summary page, select each required channel from the list of available channels and click the right arrow to move the channel to the list of subscribed channels. Subscribe the system to the following channels:

         • ol7_x86_64_ovirt43
         • ol7_x86_64_ovirt43_extras
e. Click **Save Subscriptions**.

- **For Oracle Linux yum server hosts only**: Install the Oracle Linux Virtualization Manager Release 4.3.10 package.

  ```
 # yum install oracle-ovirt-release-el7
  ```

2. Check to see if your engine is eligible to upgrade or update and if there are updates for any packages.

  ```
 # engine-upgrade-check
 ...
 Upgrade available.
  ```

3. Update the setup packages and resolve dependencies.

  ```
 # yum update ovirt*setup*
 ...
 Complete!
  ```

4. Put the self-hosted engine in global maintenance mode.

a. Log into the KVM host serving the self-hosted engine virtual machine.

b. Run the following command:

   ```
 # hosted-engine --set-maintenance --mode=global
   ```

5. Run the **engine-setup** command. The upgrade or update process may take some time, so allow it to complete and do not stop the process once initiated.

   ```
 # engine-setup
 ...
 [INFO] Execution of setup completed successfully
   ```

   The **engine-setup** script prompts you with some configuration questions, then stops the **ovirt-engine** service, downloads and installs the updated packages, backs up and updates the database, performs post-installation configuration, and starts the **ovirt-engine** service. For more information about the configuration options, see the Section 2.1.2, “Engine Configuration Options”.

**Note**

When you run the engine-setup script during the installation process your configuration values are stored. During an upgrade, these stored values display when previewing the configuration and they might not be up-to-date if you ran engine-config after installation. For example, if you ran engine-config to update `SANWipeAfterDelete` to `true` after installation, engine-setup outputs `Default SAN wipe after delete: False` in the configuration preview. However, your updated values are not overwritten by engine-setup.
6. *(Only for upgrading from 4.2.8 to 4.3.10.)* Unsubscribe to the 4.2 ULN channels OR disable the 4.2 repositories using yum.

- **For ULN registered hosts only:** If the host is registered on ULN, unsubscribe to the following channels.
  - `ol7_x86_64_ovirt42`
  - `ol7_x86_64_ovirt42_extras`

- **For Oracle Linux yum server hosts only:** Run the following commands.

```
yum-config-manager --disable ovirt-4.2
yum-config-manager --disable ovirt-4.2-extra
```

**Important**

Before you execute `yum-config-manager` ensure the `yum-utils` package is installed on your system. For more information, see *Using Yum Utilities to Manage Configuration* in *Oracle® Linux 7: Managing Software*

7. Update the base operating system and any optional packages installed.

```
yum update
```

**Important**

If the update upgraded any kernel packages, reboot the system to complete the changes.

You are now ready to proceed with *Section 4.2, “Upgrading or Updating KVM Hosts”.*

### 4.2 Upgrading or Updating KVM Hosts

After you upgrade or update your engine, you have the option of working with Release 4.2.8 or Release 4.3.6 KVM hosts or upgrading/updating them to Release 4.3.10. If you choose to upgrade or update one or more hosts, any virtual machines residing on a host are put into Maintenance mode before the host is upgraded. After the upgrade completes, the virtual machines are restarted on the newly upgraded host.

**Note**

An upgrade is considered to be a move from one Oracle Linux Virtualization Manager version to another, such as 4.2 to 4.3. If you are moving within a version, such as 4.3.x to 4.3.x, this is considered an update.

Before you upgrade or update a KVM host, here are a few considerations.

- If migration is enabled at the cluster level, virtual machines are automatically migrated to another host in the cluster.

- The cluster must contain more than one host before performing an upgrade or update.

- Do not attempt to upgrade or update all hosts at the same time because one host must remain available to perform Storage Pool Manager (SPM) tasks.

- The cluster must have sufficient memory reserve in order for its hosts to perform maintenance. If a cluster lacks sufficient memory, the virtual machine migration hangs and then fails. You can reduce
the memory usage of virtual machine migration by shutting down some or all virtual machines before updating the host.

- You cannot migrate a virtual machine using a vGPU to a different host. Virtual machines with vGPUs installed must be shut down before updating the host.

To upgrade or update a KVM host you install the `ovirt-engine` package and then complete the upgrade steps in the Administration Portal.

1. *(Only for upgrading from 4.2.8 to 4.3.10.)* Subscribe to the required ULN channels OR install the Release 4.3.10 package using yum.
   a. **For ULN registered hosts only:** If the host is registered on ULN, subscribe the system to the required channels.
      i. Log in to `https://linux.oracle.com` with your ULN user name and password.
      ii. On the Systems tab, click the link named for the host in the list of registered machines.
      iii. On the System Details page, click **Manage Subscriptions.**
      iv. On the System Summary page, select each required channel from the list of available channels and click the right arrow to move the channel to the list of subscribed channels. Subscribe the system to the following channels:
         • `ol7_x86_64_ovirt43`
         • `ol7_x86_64_ovirt43_extras`
      v. Click **Save Subscriptions.**
   b. **For Oracle Linux yum server hosts only:** Install the Oracle Linux Virtualization Manager Release 4.3.10 package.
      ```
yum install oracle-ovirt-release-el7
```

2. In the Administration portal, go to **Compute** and then click **Hosts.**
3. In the **Hosts** pane, select a host, click **Installation** and then **Check for Upgrade.**
4. From the Upgrade Host window, click **OK.**
   The engine checks the KVM host to see if it requires an upgrade.
5. To proceed with the upgrade, click **Installation** and then **Upgrade.**
6. From the Upgrade Host window, click **OK** to begin the upgrade process.
   On the **Hosts** pane you can watch the host transition through the upgrade stages: **Maintenance, Installing, Up.** The host is rebooted after the upgrade and displays a status of Up if successful. If any virtual machines were migrated off the host, they are migrated back.

   **Note**
   If the update fails, the host’s status changes to **Install Failed** and you must click **Installation** and then **Upgrade** again.

7. *(Only for upgrading from 4.2.8 to 4.3.10.)* Unsubscribe to the 4.2 ULN channels OR disable the 4.2 repositories using yum.
Post-Upgrade Data Center and Cluster Compatibility Versions

a. For ULN registered hosts only: If the host is registered on ULN, unsubscribe to the following channels.
   - ol7_x86_64_ovirt42
   - ol7_x86_64_ovirt42_extras

b. For Oracle Linux yum server hosts only: Run the following commands.

```
yum-config-manager --disable ovirt-4.2
yum-config-manager --disable ovirt-4.2-extra
```

Important

Before you execute `yum-config-manager` ensure the `yum-utils` package is installed on your system. For more information, see Using Yum Utilities to Manage Configuration in Oracle® Linux 7: Managing Software

8. (Optional) Repeat the previous steps for any KVM host in your environment that you want to upgrade or update.

4.3 Post-Upgrade Data Center and Cluster Compatibility Versions

Oracle Linux Virtualization Manager data centers and clusters have a compatibility version. The data center compatibility version indicates the version of Oracle Linux Virtualization Manager that the data center is intended to be compatible with. The cluster compatibility version indicates the features supported by all of the hosts in the cluster. The cluster compatibility is set according to the version of the least capable host operating system in the cluster.

4.3.1 About Compatibility Versions

To ensure you do not have issues with compatibility versions after you upgrade, keep in mind the following.

- The data center compatibility level is the minimum version you can use for all clusters in your data center. For example:
  - If your data center compatibility level is 4.3, you can only have 4.3 compatibility level clusters.
  - If your data center compatibility level is 4.2, you can have 4.2 and 4.3 compatibility level clusters.
- The cluster compatibility level is the minimum version of any host you add to the cluster. For example:
  - If you have a 4.2 compatibility version cluster, you can add 4.2 or 4.3 hosts.
  - If you have a 4.3 compatibility version cluster, you can only add 4.3 hosts.
- If you try to change the cluster compatibility version from 4.2 to 4.3 when you have 4.2 hosts running, you get the following error:
  ```
 [Error while executing action: Cannot change Cluster Compatibility Version to higher version when there are active Hosts with lower version. -Please move Host [hostname] with lower version to maintenance first.]
  ```
- If you try to change the data center compatibility version from 4.2 to 4.3 when you have a 4.2 compatibility version cluster, you get the following error:
  ```
 [Cannot update Data Center compatibility version to a value that is greater than its cluster's version. The following clusters should be upgraded: [clustername]]
  ```
• When you put a 4.2 host in maintenance mode, you can change the cluster and then data center compatibility version to 4.3. However, the host shows non-operational with the following event:

```plaintext
[Host [hostname] is compatible with versions (3.6,4.0,4.1,4.2) and cannot join Cluster [clustername] which is set to version 4.3.]
```

• If you attempt to add a new 4.2 host to a 4.3 engine you might get an error message in the ansible log similar to the following:

```plaintext
[ValueError: need more than 1 value to unpack.]
```

To resolve this error, log onto the host as root and execute the following two commands and then attempt to add the host to the engine again.

```bash
sed 's|enabled=1|enabled=0|g' /etc/yum/pluginconf.d/enabled_repos_upload.conf -i
sed 's|enabled=1|enabled=0|g' /etc/yum/pluginconf.d/package_upload.conf -i
```

Note

The preferred approach after upgrading your engine to 4.3 is to upgrade all hosts to 4.3 and then change the cluster compatibility to 4.3. You can then add new hosts as 4.3 hosts.

4.3.2 Changing Cluster and Data Center Compatibility Versions

To change the cluster compatibility version, you must have first upgraded all the hosts in your cluster to a level that supports your desired compatibility level. To change the data center compatibility version, you must have first upgraded all the clusters in your data center to a level that supports your desired compatibility level.

Complete the following steps to change a cluster’s compatibility version:

1. In the Administration Portal, go to Compute and click Clusters.
2. Select the cluster to change and click Edit.
3. From the Edit Cluster dialog box, select General.
4. For Compatibility Version, select desired value and click OK.
5. On the Change Cluster Compatibility Version confirmation window, click OK.

Important

You might get an error message warning that some virtual machines and templates are incorrectly configured. To fix this error, edit each virtual machine manually. The Edit Virtual Machine window provides additional validations and warnings that show what to correct. Sometimes the issue is automatically corrected and the virtual machine’s configuration just needs to be saved again. After editing each virtual machine, you will be able to change the cluster compatibility version.

6. Update the cluster compatibility version of all running or suspended virtual machines by restarting them from within the Administration Portal.

Note

Virtual machines continue to run in the previous cluster compatibility level until they are restarted. Those virtual machines that require a restart are marked
with the **Next-Run** icon (triangle with an exclamation mark). However, the self-hosted engine virtual machine does not need to be restarted.

You cannot change the cluster compatibility version of a virtual machine snapshot that is in preview; you must first commit or undo the preview.

Now that you have updated the compatibility version of all clusters in a data center, you can change the compatibility version of the data center itself. To do this, complete the following steps:

1. In the **Administration Portal**, go to **Compute** and click **Data Centers**.
2. Select the data center to change and click **Edit**.
3. From the **Edit Data Center** dialog box, change the **Compatibility Version** to the desired value and then click **OK**.
4. On the **Change Data Center Compatibility Version** confirmation window, click **OK**.

   The compatibility version of the data center is now updated.
Chapter 5 Self-Hosted Engine Deployment

Table of Contents

5.1 Self-Hosted Engine Prerequisites .................................................................................. 65
5.2 Deploying the Self-Hosted Engine ............................................................................... 66
  5.2.1 Using the Command Line to Deploy .................................................................... 69
  5.2.2 Using the Cockpit Portal to Deploy .................................................................... 73
5.3 Enabling High-Availability ......................................................................................... 76
  5.3.1 Configuring a Highly Available Host ................................................................. 76
5.4 Installing Additional Self-Hosted Engine Hosts .......................................................... 79
5.5 Cleaning up the Deployment ....................................................................................... 79
5.6 Updating the Self-Hosted Engine .............................................................................. 80
  5.6.1 Enabling Global Maintenance Mode .................................................................. 80
  5.6.2 Updating the Engine ......................................................................................... 80
  5.6.3 Disabling Global Maintenance Mode .................................................................. 81
5.7 Deploying GlusterFS Storage ...................................................................................... 81
  5.7.1 Deploying GlusterFS Storage Using Cockpit .................................................... 82
  5.7.2 Creating a GlusterFS Storage Domain Using the Manager ............................... 83

In Oracle Linux Virtualization Manager, a self-hosted engine is a virtualized environment where the engine runs inside a virtual machine on the hosts in the environment. The virtual machine for the engine is created as part of the host configuration process. And, the engine is installed and configured in parallel to the host configuration.

Since the engine runs as a virtual machine and not on physical hardware, a self-hosted engine requires less physical resources. Additionally, since the engine is configured to be highly available, if the host running the Engine virtual machine goes into maintenance mode or fails unexpectedly the virtual machine is migrated automatically to another host in the environment. A minimum of two KVM hosts are required to support high availability for a single virtual machine running the self-hosted engine.

To review conceptual information, troubleshooting, and administration tasks, see the oVirt Self-Hosted Engine Guide in oVirt Documentation.

To deploy a self-hosted engine, you perform a fresh installation of Oracle Linux 7.6 (or later) on the host, install the Oracle Linux Virtualization Manager Release 4.3.10 package, and then run the hosted engine deployment tool to complete configuration.

Note
Oracle Linux 8 is currently not supported for either the Engine host or the KVM host.

5.1 Self-Hosted Engine Prerequisites

In addition to the Chapter 1, Requirements and Scalability Limits, you must satisfy the following prerequisites before deploying a self-hosted engine.

- A fully qualified domain name for your engine and host with forward and reverse lookup records set in the DNS.
- A directory of at least 5 GB on the host for the oVirt Engine Appliance. During the deployment process the /var/tmp directory is checked to see if it has enough space to extract the appliance files. If the /var/tmp directory is not available, an error message is displayed and the deployment fails.
Deploying the Self-Hosted Engine

`/var/tmp` directory does not have enough space, you can specify a different directory or mount external storage.

Note
The VDSM user and KVM group must have read, write, and execute permissions on the directory.

- Prepared storage of at least 74 GB to be used as a data storage domain dedicated to the engine virtual machine. The data storage domain is created during the self-hosted engine deployment.

If you are using iSCSI storage, do not use the same iSCSI target for the self-hosted engine storage domain and any additional storage domains.

Warning
When you have a data center with only one active data storage domain and that domain gets corrupted, you are unable to add new data storage domains or remove the corrupted data storage domain. If you have deployed your self-hosted engine in such a data center and its data storage domain gets corrupted, you must redeploy your self-hosted engine.

- The host you are using to deploy a self-hosted engine, must be able to access `yum.oracle.com`.

5.2 Deploying the Self-Hosted Engine

You must perform a fresh installation of Oracle Linux 7.6 (or later) on an Oracle Linux Virtualization Manager host before deploying a self-hosted engine. You can download the installation ISO for Oracle Linux 7.6 (or later) from the Oracle Software Delivery Cloud at `https://edelivery.oracle.com`.

1. Install Oracle Linux 7.6 (or later) on the host using the Minimal Install base environment.

   Follow the instructions in the Oracle® Linux 7: Installation Guide.

   Important
   Do not install any additional packages until after you have installed the Manager packages, because they may cause dependency issues.

2. Ensure that the firewalld service is enabled and started.

   For more information about firewalld, see Configuring Packet-filtering Firewalls in the Oracle® Linux 7: Security Guide.

3. (Optional) If you use a proxy server for Internet access, modify your proxy server settings so your host can access `yum.oracle.com`. For example:

   ```bash
 # export http_proxy=http://www-proxy.company.com:8080
 # export https_proxy=https://www-proxy.company.com:8080
 # export no_proxy=my-ovirt-she.company.com
   ```

   Important
   If your environment requires the use of a proxy for internet access and these proxy environment variables are NOT defined, once you begin the self-hosted-engine deployment process, the process eventually hangs due to yum not being able to reach appropriate yum repos. If you do NOT define `no_proxy` to include to your self-hosted-engine’s FQDN, then the deployment process fails.
Deploying the Self-Hosted Engine

For more information, see Yum Configuration in the Oracle® Linux 7: Managing Software.
4. Subscribe the system to the required ULN channels **OR** install the Release 4.3.10 package using yum and enable the required repositories.

   • **For ULN registered hosts only**: If the host is registered on ULN, subscribe the system to the required channels.
     a. Log in to [https://linux.oracle.com](https://linux.oracle.com) with your ULN user name and password.
     b. On the Systems tab, click the link named for the host in the list of registered machines.
     c. On the System Details page, click **Manage Subscriptions**.
     d. On the System Summary page, select each required channel from the list of available channels and click the right arrow to move the channel to the list of subscribed channels. Subscribe the system to the following channels:
       • `ol7_x86_64_latest`
       • `ol7_x86_64_optional_latest`
       • `ol7_x86_64_kvm_utils`
       • `ol7_x86_64_ovirt43`
       • `ol7_x86_64_ovirt43_extras`
       • `ol7_x86_64_gluster6`
       • (For VDSM) `ol7_x86_64_UEKR6`
     e. Click **Save Subscriptions**.

   • **For Oracle Linux yum server hosts only**: Install the Oracle Linux Virtualization Manager Release 4.3.10 package and enable the required repositories.
     a. **(Optional)** Make sure the host is using the modular yum repository configuration. For more information, see *Getting Started with Oracle Linux Yum Server*.
     b. Enable the `ol7_latest` yum repository.

       ```sh
 # yum-config-manager --enable ol7_latest
       ```

       **Important**
       Before you execute `yum-config-manager` ensure the `yum-utils` package is installed on your system. For more information, see *Using Yum Utilities to Manage Configuration* in *Oracle® Linux 7: Managing Software*.
     c. Install the Oracle Linux Virtualization Manager Release 4.3.10 package.

       ```sh
 # yum install oracle-ovirt-release-el7
       ```
     d. Use the `yum` command to verify that the required repositories are enabled.
       i. Clear the yum cache.

       ```sh
 # yum clean all
       ```
Using the Command Line to Deploy

ii. List the configured repositories and verify that the required repositories are enabled.

```
yum repolist
```

The following repositories must be enabled:

- `ol7_latest`
- `ol7_optional_latest`
- `ol7_kvm-utils`
- `ol7_gluster6`
- `ol7_UERK6`
- `ovirt-4.3`
- `ovirt-4.3-extra`

iii. If a required repository is not enabled, use the `yum-config-manager` to enable it.

```
yum-config-manager --enable repository
```

5. Unsubscribe to the 4.2 ULN channels OR disable the 4.2 repositories using yum.

- **For ULN registered hosts only**: If the host is registered on ULN, unsubscribe to the following channels.
  - `ol7_x86_64_ovirt42`
  - `ol7_x86_64_ovirt42_extras`

- **For Oracle Linux yum server hosts only**: Run the following commands.
  - `# yum-config-manager --disable ovirt-4.2`
  - `# yum-config-manager --disable ovirt-4.2-extra`

6. Install the hosted engine deployment tool and engine appliance.

```
yum install ovirt-hosted-engine-setup -y
yum install ovirt-engine-appliance -y
```

You can deploy a self-hosted engine using the command line or Cockpit portal. If you want to use the command line, proceed to Section 5.2.1, “Using the Command Line to Deploy”. If you want to use the Cockpit portal, proceed to Section 5.2.2, “Using the Cockpit Portal to Deploy”.

### 5.2.1 Using the Command Line to Deploy

To deploy the self-hosted engine using the command line, complete the following steps.

1. Start the deployment.

```
hosted-engine --deploy
```

**Note**

You can deploy the hosted engine using all the default settings. Make sure the auto-detected fully qualified DNS name of the host is correct. The fully qualified
Using the Command Line to Deploy

2. Enter **Yes** to begin deployment.

3. Configure the network.
   a. If the gateway that displays is correct, press **Enter** to configure the network.
   b. Enter a pingable address on the same subnet so the script can check the host’s connectivity.
   c. The script detects possible NICs to use as a management bridge for the environment. Select the default.

4. Enter the path to an OVA archive if you want to use a custom appliance for the virtual machine installation. Otherwise, leave this field empty to use the oVirt Engine Appliance.

5. Specify the fully-qualified domain name for the engine virtual machine.

6. Enter and confirm a root password for the engine.

7. Optionally, enter an SSH public key to enable you to log in to the engine as the root user and specify whether to enable SSH access for the root user.

8. Enter the virtual machine’s CPU and memory configuration.
9. Enter a MAC address for the engine virtual machine or accept a randomly generated MAC address.

You may specify a unicast MAC address for the VM or accept a randomly generated default [00:16:3e:3d:34:47]:

**Note**
If you want to provide the engine virtual machine with an IP address using DHCP, ensure that you have a valid DHCP reservation for this MAC address. The deployment script does not configure the DHCP server for you.

10. Enter the virtual machine’s networking details.

How should the engine VM network be configured (DHCP, Static)[DHCP]? 

**Note**
If you specified Static, enter the IP address of the Engine. The static IP address must belong to the same subnet as the host. For example, if the host is in 10.1.1.0/24, the Engine virtual machine’s IP must be in the same subnet range (10.1.1.1-254/24).

Please enter the IP address to be used for the engine VM [x.x.x.x]:
Please provide a comma-separated list (max 3) of IP addresses of domain name servers for the engine VM
Engine VM DNS (leave it empty to skip):

11. Specify whether to add entries in the virtual machine’s `/etc/hosts` file for the engine virtual machine and the base host. Ensure that the host names are resolvable.

Add lines for the appliance itself and for this host to `/etc/hosts` on the engine VM?
Note: ensuring that this host could resolve the engine VM hostname is still up to you (Yes, No)[No]

12. Provide the name and TCP port number of the SMTP server, the email address used to send email notifications, and a comma-separated list of email addresses to receive these notifications. Or, press Enter to accept the defaults.

Please provide the name of the SMTP server through which we will send notifications [localhost]:
Please provide the TCP port number of the SMTP server [25]:
Please provide the email address from which notifications will be sent [root@localhost]:
Please provide a comma-separated list of email addresses which will get notifications [root@localhost]:

13. Enter and confirm a password for the `admin@internal` user to access the Administration Portal.

Enter engine admin password:
Confirm engine admin password:

The script creates the virtual machine which can take time if it needs to install the oVirt Engine Appliance. After creating the virtual machine, the script continues gathering information.

14. Select the type of storage to use.
Using the Command Line to Deploy

Please specify the storage you would like to use (glusterfs, iscsi, fc, nfs):

- If you selected NFS, enter the version, full address and path to the storage, and any mount options.

Please specify the nfs version you would like to use (auto, v3, v4, v4_1)[auto]:
Please specify the full shared storage connection path to use (example: host:/path):
storage.example.com:/hosted_engine/nfs
If needed, specify additional mount options for the connection to the hosted-engine storage domain []:

- If you selected iSCSI, enter the portal details and select a target and LUN from the auto-detected lists. You can only select one iSCSI target during the deployment, but multipathing is supported to connect all portals of the same portal group.

Note

To specify more than one iSCSI target, you must enable multipathing before deploying the self-hosted engine. There is also a Multipath Helper tool that generates a script to install and configure multipath with different options.

Please specify the iSCSI portal IP address:
Please specify the iSCSI portal port [3260]:
Please specify the iSCSI discover user:
Please specify the iSCSI discover password:
Please specify the iSCSI portal login user:
Please specify the iSCSI portal login password:

The following targets have been found:
TPGT: 1, portals:
192.168.1.xxx:3260
192.168.2.xxx:3260
192.168.3.xxx:3260

Please select a target (1) [1]: 1

The following luns have been found on the requested target:
[1] 360003ff44de75adcb5046390a16b4beb 199GiB MSFT Virtual HD
status: free, paths: 1 active

Please select the destination LUN (1) [1]:

- If you selected GlusterFS, enter the full address and path to the storage, and any mount options. Only replica 3 Gluster storage is supported.

* Configure the volume as follows as per [Gluster Volume Options for Virtual Machine Image Store]
(documentation/admin-guide/chap-Working_with_Gluster_Storage#Options set on Gluster Storage Volumes to Store Virtual Machine Images)

Please specify the full shared storage connection path to use (example: host:/path):
storage.example.com:/hosted_engine/gluster_volume
If needed, specify additional mount options for the connection to the hosted-engine storage domain []:
Using the Cockpit Portal to Deploy

- If you selected Fibre Channel, select a LUN from the auto-detected list. The host bus adapters must be configured and connected. The deployment script auto-detects the available LUNs, and the LUN must not contain any existing data.

<table>
<thead>
<tr>
<th>LUN Details</th>
<th>Status</th>
<th>Paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>3514f0c5447600351 30GiB XtremIO XtremApp</td>
<td>used, paths: 2 active</td>
<td></td>
</tr>
<tr>
<td>3514f0c5447600352 30GiB XtremIO XtremApp</td>
<td>used, paths: 2 active</td>
<td></td>
</tr>
</tbody>
</table>

Please select the destination LUN (1, 2) [1]:

15. Enter the engine disk size:

Please specify the size of the VM disk in GB: [50]:

If successful, one data center, cluster, host, storage domain, and the engine virtual machine are already running.

16. Optionally, log into the Oracle Linux Virtualization Manager Administration Portal to add any other resources.

In the Administration Portal, the engine virtual machine, the host running it, and the self-hosted engine storage domain are flagged with a gold crown.

17. Enable the required repositories on the Engine virtual machine.

18. Optionally, add a directory server using the `ovirt-engine-extension-aaa-ldap-setup` interactive setup script so you can add additional users to the environment.

### 5.2.2 Using the Cockpit Portal to Deploy

To deploy the self-hosted engine using the Cockpit portal, complete the following steps.

1. Install the Cockpit dashboard.

   ```
 # yum install cockpit-ovirt-dashboard -y
   ```

2. Open the Cockpit port 9090 on firewalld.

   ```
 # firewall-cmd --permanent --zone=public --add-port=9090/tcp
 # systemctl restart firewalld
   ```

3. Start the Cockpit service

   ```
 # systemctl start cockpit
 # systemctl enable cockpit
   ```

4. Log into the Cockpit portal from the following URL:

   ```
 https://host_IP_or_FQDN:9090
   ```

5. To start the self-hosted engine deployment, click **Virtualization** and select **Hosted Manager**.

6. Click **Start** under **Hosted Manager**.

7. Provide the following details for the Engine virtual machine.
a. In the **Engine VM FQDN** field, enter the Engine virtual machine FQDN. Do not use the FQDN of the host.

b. In the **MAC Address** field, enter a MAC address for the Engine virtual machine or leave blank and the system provides a randomly-generated address.

c. From the **Network Configuration** drop-down list, select **DHCP** or **Static**.
   - To use **DHCP**, you must have a DHCP reservation (a pre-set IP address on the DHCP server) for the Engine virtual machine. In the **MAC Address** field, enter the MAC address.
   - To use **Static**, enter the virtual machine IP, the gateway address, and the DNS servers. The IP address must belong to the same subnet as the host.

d. Select the **Bridge Interface** from the drop-down list.

e. Enter and confirm the virtual machine’s **Root Password**.

f. Specify whether to allow **Root SSH Access**.

g. Enter the **Number of Virtual CPUs** for the virtual machine.

h. Enter the **Memory Size (MiB)**. The available memory is displayed next to the field.

8. Optionally, click **Advanced** to provide any of the following information.
   - Enter a **Root SSH Public Key** to use for root access to the Engine virtual machine.
   - Select the **Edit Hosts File** check box if you want to add entries for the Engine virtual machine and the base host to the virtual machine’s `/etc/hosts` file. You must ensure that the host names are resolvable.
   - Change the management **Bridge Name**, or accept the default of `ovirtmgmt`.
   - Enter the **Gateway Address** for the management bridge.
   - Enter the **Host FQDN** of the first host to add to the Engine. This is the FQDN of the host you are using for the deployment.

9. Click **Next**.

10. Enter and confirm the **Admin Portal Password** for the `admin@internal` user.

11. Optionally, configure event notifications.
   - Enter the **Server Name** and **Server Port Number** of the SMTP server.
   - Enter a **Sender E-Mail Address**.
   - Enter **Recipient E-Mail Addresses**.

12. Click **Next**.

13. Review the configuration of the Engine and its virtual machine. If the details are correct, click **Prepare VM**.

14. When the virtual machine installation is complete, click **Next**.
15. Select the **Storage Type** from the drop-down list and enter the details for the self-hosted engine storage domain.

- For NFS:
  a. In the **Storage Connection** field, enter the full address and path to the storage.
  b. If required, enter any **Mount Options**.
  c. Enter the **Disk Size (GiB)**.
  d. Select the **NFS Version** from the drop-down list.
  e. Enter the **Storage Domain Name**.

- For iSCSI:
  b. Click **Retrieve Target List** and select a target. You can only select one iSCSI target during the deployment, but multipathing is supported to connect all portals of the same portal group.
  c. Enter the **Disk Size (GiB)**.
  d. Enter the **Discovery Username** and **Discovery Password**.

- For FibreChannel:
  a. Enter the **LUN ID**. The host bus adapters must be configured and connected and the LUN must not contain any existing data.
  b. Enter the **Disk Size (GiB)**.

- For Gluster Storage:
  a. In the **Storage Connection** field, enter the full address and path to the storage.
  b. If required, enter any **Mount Options**.
  c. Enter the **Disk Size (GiB)**.

16. Click **Next**.

17. Review the storage configuration. If the details are correct, click **Finish Deployment**.

18. When the deployment is complete, click **Close**.

    If successful, one data center, cluster, host, storage domain, and the engine virtual machine are already running.
19. Optionally, log into the Oracle Linux Virtualization Manager Administration Portal to add any other resources.

   In the Administration Portal, the engine virtual machine, the host running it, and the self-hosted engine storage domain are flagged with a gold crown.

20. Enable the required repositories on the Engine virtual machine.

21. Optionally, add a directory server using the `ovirt-engine-extension-aaa-ldap-setup` interactive setup script so you can add additional users to the environment.

22. To view the self-hosted engine’s status in Cockpit, under Virtualization click Hosted Engine.

### 5.3 Enabling High-Availability

The host that houses the self-hosted engine is not highly available by default. Since the self-hosted engine runs inside a virtual machine on a host, if you do not configure high-availability for the host, then live VM migration is not possible.

Further, you must have an additional self-hosted engine host so that it is capable of hosting the engine virtual machine in case of a failure, maintenance issue, etc. This ensures that the Engine virtual machine can failover to another host thus making it highly available.

#### 5.3.1 Configuring a Highly Available Host

If you want the hosts in a cluster to be responsive and available when unexpected failures happen, you should use fencing. Fencing allows a cluster to react to unexpected host failures and enforce power saving, load balancing, and virtual machine availability policies. You should configure the fencing parameters for your host’s power management device and test their correctness from time to time.

A **Non Operational** host is different from a **Non Responsive** host. A Non Operational host can communicate with the Manager, but has incorrect configuration, for example a missing logical network. A Non Responsive host cannot communicate with the Manager.

In a fencing operation, a non-responsive host is rebooted, and if the host does not return to an active status within a prescribed time, it remains non-responsive pending manual intervention and troubleshooting.

The Manager can perform management operations after it reboots, by a proxy host, or manually in the Administration Portal. All the virtual machines running on the non-responsive host are stopped, and highly available virtual machines are restarted on a different host. At least two hosts are required for power management operations.

---

**Important**

If a host runs virtual machines that are highly available, power management must be enabled and configured.

#### 5.3.1.1 Configuring Power Management and Fencing on a Host

The Manager uses a proxy to send power management commands to a host power management device because the engine does not communicate directly with fence agents. The host agent (VDSM) executes power management device actions and another host in the environment is used as a fencing proxy. This means that you must have at least two hosts for power management operations.

When you configure a fencing proxy host, make sure the host is in:
• the same cluster as the host requiring fencing.
• the same data center as the host requiring fencing.
• **UP** or **Maintenance** status to remain viable.

Power management operations can be performed in three ways:
• by the Manager after it reboots
• by a proxy host
• manually in the **Administration Portal**

To configure power management and fencing on a host:
1. Click **Compute** and select **Hosts**.
2. Select a host and click **Edit**.
3. Click the **Power Management** tab.
4. Check **Enable Power Management** to enable the rest of the fields.
5. Check **Kdump integration** to prevent the host from fencing while performing a kernel crash dump. Kdump integration is enabled by default.

**Important**
If you enable or disable Kdump integration on an existing host, you must reinstall the host.

6. *(Optional)* Check **Disable policy control of power management** if you do not want your host’s power management to be controlled by the scheduling policy of the host’s cluster.
7. To configure a fence agent, click the plus sign (+) next to **Add Fence Agent**.
   The **Edit fence agent** pane opens.
8. Enter the **Address** (IP Address or FQDN) to access the host’s power management device.
9. Enter the **User Name** and **Password** of the of the account used to access the power management device.
10. Select the power management device **Type** from the drop-down list.
11. Enter the **Port** (SSH) number used by the power management device to communicate with the host.
12. Enter the **Slot** number used to identify the blade of the power management device.
13. Enter the **Options** for the power management device. Use a comma-separated list of key-value pairs.
   • If you leave the **Options** field blank, you are able to use both IPv4 and IPv6 addresses
   • To use only IPv4 addresses, enter `inet4_only=1`
   • To use only IPv6 addresses, enter `inet6_only=1`
14. Check **Secure** to enable the power management device to connect securely to the host.
   You can use ssh, ssl, or any other authentication protocol your power management device supports.
15. Click **Test** to ensure the settings are correct and then click **OK**.

**Test Succeeded, Host Status is: on** displays if successful.

**Warning**

Power management parameters (userid, password, options, etc.) are tested by the Manager only during setup and manually after that. If you choose to ignore alerts about incorrect parameters, or if the parameters are changed on the power management hardware without changing in the Manager as well, fencing is likely to fail when most needed.

16. Fence agents are sequential by default. To change the sequence in which the fence agents are used:
   a. Review your fence agent order in the **Agents by Sequential Order** field.
   b. To make two fence agents concurrent, next to one fence agent click the **Concurrent with** drop-down list and select the other fence agent.

   You can add additional fence agents to this concurrent fence agent group.

17. Expand the **Advanced Parameters** and use the up and down buttons to specify the order in which the Manager searches the host’s **cluster** and **dc** (data center) for a power management proxy.

18. To add an additional power management proxy:
   a. Click the plus sign (+) next to **Add Power Management Proxy**.

   The **Select fence proxy preference type to add** pane opens.
   b. Select a power management proxy from the drop-down list and then click **OK**.

   Your new proxy displays in the **Power Management Proxy Preference** list.

**Note**

By default, the Manager searches for a fencing proxy within the same cluster as the host. If The Manager cannot find a fencing proxy within the cluster, it searches the data center.

19. Click **OK**.

From the list of hosts, the exclamation mark next to the host’s name disappeared, signifying that you have successfully configured power management and fencing.

### 5.3.1.2 Preventing Host Fencing During Boot

After you configure power management and fencing, when you start the Manager it automatically attempts to fence non-responsive hosts that have power management enabled after the quiet time (5 minutes by default) has elapsed. You can opt to extend the quiet time to prevent, for example, a scenario where the Manager attempts to fence hosts while they boot up. This can happen after a data center outage because a host’s boot process is normally longer than the Manager boot process.

You can configure quiet time using the `engine-config` command option `DisableFenceAtStartupInSec`:

```
engine-config -s DisableFenceAtStartupInSec=<number>
```
5.3.1.3 Checking Fencing Parameters

To automatically check the fencing parameters, you can configure the `PMHealthCheckEnabled` (false by default) and `PMHealthCheckIntervalInSec` (3600 sec by default) engine-config options.

```bash
engine-config -s PMHealthCheckEnabled=True
engine-config -s PMHealthCheckIntervalInSec=<number>
```

When set to true, `PMHealthCheckEnabled` checks all host agents at the interval specified by `PMHealthCheckIntervalInSec` and raises warnings if it detects issues.

5.4 Installing Additional Self-Hosted Engine Hosts

You add self-hosted engine hosts the same way as a regular host, with an additional step to deploy the host as a self-hosted engine host. The shared storage domain is automatically detected and the host can be used as a failover host to host the Engine virtual machine when required. You can also add regular hosts to a self-hosted engine environment, but they cannot be used to host the Engine virtual machine.

To install an additional self-hosted engine host, complete the following steps.

1. In the Administration Portal, go to Compute and click Hosts.
2. Click New.
   
   For information on additional host settings, see the Admin Guide in the latest upstream oVirt Documentation.
3. Use the drop-down list to select the Data Center and Host Cluster for the new host.
4. Enter the Name and the Address of the new host. The standard SSH port, port 22, is auto-filled in the SSH Port field.
5. Select an authentication method to use for the engine to access the host.
   - Enter the root user’s password to use password authentication.
   - Alternatively, copy the key displayed in the SSH PublicKey field to `/root/.ssh/authorized_keys` on the host to use public key authentication.
6. Optionally, configure power management, where the host has a supported power management card. For information, see Section 5.3.1.1, “Configuring Power Management and Fencing on a Host”.
7. Click the Hosted Engine sub-tab.
8. Select the Deploy radio button.
9. Click OK.

5.5 Cleaning up the Deployment

If your self-hosted engine deployment fails, you must perform a few cleanup tasks before retrying.

1. Run the hosted engine cleanup command:
   ```bash
 # /usr/sbin/ovirt-hosted-engine-cleanup
   ```
2. Remove the storage:
5.6 Updating the Self-Hosted Engine

You can update your self-hosted engine from Release 4.3.6 to Release 4.3.10. After you upgrade the self-hosted engine, you have the option to upgrade any additional self-hosted engine hosts in your environment.

To perform an update, you must place the environment in global maintenance mode and then follow the standard procedure for updating.

5.6.1 Enabling Global Maintenance Mode

Before you can update your self-hosted engine, you must place the self-hosted engine environment in global maintenance mode.

1. Log into your self-hosted engine host and enable global maintenance mode.

   ```
 # hosted-engine --set-maintenance --mode=global
   ```

2. Confirm that the environment is in maintenance mode.

   ```
 # hosted-engine --vm-status
   ```

   You should see the following message indicating that the cluster is in maintenance mode.

   ```
 !! Cluster is in GLOBAL MAINTENANCE mode !!
   ```

5.6.2 Updating the Engine

When you run the `engine-setup` script during the installation process your configuration values are stored. During an upgrade, these stored values display when previewing the configuration and they might not be up-to-date if you ran `engine-config` after installation. For example, if you ran `engine-config` to update `SANWipeAfterDelete` to `true` after installation, `engine-setup` outputs `Default SAN wipe after delete: False` in the configuration preview. However, your updated value of `true` is not overwritten by `engine-setup`.

1. Log in to the engine virtual machine and check to see if your engine is eligible to update and if there are updates for any packages.

   ```
 # engine-upgrade-check
 ... Upgrade available.
   ```

2. Update the setup packages and resolve dependencies.

   ```
 # yum update ovirt*setup*
 ... Complete!
   ```

3. Run the `engine-setup` command.

   ```
 # engine-setup
 ...
Disabling Global Maintenance Mode

The `engine-setup` script prompts you with some configuration questions, then stops the `ovirt-engine` service, downloads and installs the updated packages, backs up and updates the database, performs post-installation configuration, and starts the `ovirt-engine` service. For more information about the configuration options, see the Section 2.1.2, “Engine Configuration Options”.

4. Update the base operating system and any optional packages installed on the engine.

```
# yum update
```

Important

If any kernel packages were updated, disable global maintenance mode and reboot the machine to complete the update.

5.6.3 Disabling Global Maintenance Mode

After you update your self-hosted engine, you must disable global maintenance mode for the self-hosted engine environment.

1. Log in to the engine virtual machine and shut it down.
2. Log in to the self-hosted engine host and disable global maintenance mode.

```
# hosted-engine --set-maintenance --mode=none
```

Note

When you exit global maintenance mode, `ovirt-ha-agent` starts the engine virtual machine, and then the engine automatically starts. This process can take up to ten minutes.

3. Confirm that the environment is running.

```
# hosted-engine --vm-status
```

The status information shows **Engine Status** and its value should be:

```
{"health": "good", "vm": "up", "detail": "Up"}
```

When the virtual machine is still booting and the engine hasn’t started yet, the **Engine status** is:

```
{"reason": "bad vm status", "health": "bad", "vm": "up", "detail": "Powering up"}
```

If this happens, wait a few minutes and try again.

5.7 Deploying GlusterFS Storage

Oracle Linux Virtualization Manager has been integrated with GlusterFS, an open source scale-out distributed filesystem, to provide a hyperconverged solution where both compute and storage are provided from the same hosts. Gluster volumes residing on the hosts are used as storage domains in the Manager to store the virtual machine images. In this scenario, the Manager is run as a self-hosted engine within a virtual machine on these hosts.

Note

For more information about using GlusterFS, including prerequisites, see the latest upstream **oVirt Documentation**.
5.7.1 Deploying GlusterFS Storage Using Cockpit

To deploy GlusterFS storage using the Cockpit web interface, complete the following steps.

Note

Ensure that on all three hosts you have installed the following packages:
- `cockpit-ovirt-dashboard` to provide a UI for installation
- `vdsm-gluster` to manage gluster services
- `ansible-host-roles` on the KVM host used for cockpit deployment

1. Go to **Compute**, and then click **Hosts**.

 The **Hosts** pane opens.

2. Under the **Name** column, click the host to be used as the designated server.

3. Click **Host Console**.

 The login page for the Cockpit web interface opens.

4. Enter your login credentials (the user name and password of the root account.).

5. Go to **Virtualization** and then click **Hosted Engine**.

6. Click **Redeploy** under **Hosted Engine Setup**.

7. Click **Start** under **Hyperconverged**.

8. On the **Hosts** screen, enter 3 (or more) KVM hosts that are in the data center to be used for GlusterFS, with the main designated KVM host entered first and click **Next** when finished.

9. On the **FQDNs** screen, enter the FQDN (or IP address) for the hosts to be managed by the Hosted Engine and click **Next** when finished.

Note

The FQDN of the designated server is input during the Hosted Engine deployment process and is not asked for here.

10. Click **Next** on the **Packages** screen.

11. On the **Volumes** screen, create the minimum storage domains that are required: `engine`, `data`, `export`, and `iso`. Click **Next** when finished.

 For example:

 - **Name**: `engine`
 - **Volume Type**: `Replicate` (default)
 - **Arbiter**: Ensure the check box is selected.
 - **Brick Dirs**: `/gluster_bricks/engine/engine` (default)

 data
• **Name:** data
 • **Volume Type:** Replicate (default)
 • **Arbiter:** Ensure the check box is selected.
 • **Brick Dirs:** /gluster_bricks/data/data (default)

export
• **Name:** export
 • **Volume Type:** Replicate (default)
 • **Arbiter:** Ensure the check box is selected.
 • **Brick Dirs:** /gluster_bricks/export/export (default)

iso
• **Name:** iso
 • **Volume Type:** Replicate (default)
 • **Arbiter:** Ensure the check box is selected.
 • **Brick Dirs:** /gluster_bricks/iso/iso (default)

12. On the **Brick Locations** screen, specify the brick locations for your volumes and click **Next** when finished.

 For this step, you specify the brick locations for your volumes (engine, data, export, and iso).

13. Review the screen and click **Deploy**.

 • If you are using an internal disk as the Gluster disk, no edits are required and you can simply click **Deploy** to continue with the deployment.

 • If you are using an external iSCSI ZFS external drive as the Gluster disk, click **Edit** to edit the `gdeployConfig.conf` file and specify the block device on each server that is being used for storage. Click **Save** and then click **Deploy** to continue with the deployment.

 This process takes some time to complete, as the gdeploy tool installs required packages and configures Gluster volumes and their underlying storage.

 A message display on the screen when the deployment completes successfully.

5.7.2 Creating a GlusterFS Storage Domain Using the Manager

To add a GlusterFS storage volume as a storage domain:

1. Go to **Storage** and then click **Domains**.

 The **Storage Domains** pane opens.

2. On the **Storage Domains** pane, click the **New Domain** button.

 The **New Domain** dialog box opens.
3. For the **Name** field, enter a name for the data domain.

4. From the **Data Center** drop-down list, select the data center where the GlusterFS volume is deployed. By default, the **Default** option is selected in the drop-down list.

5. From the **Domain Function** drop-down list, select the domain function. By default, the **Data** option is selected in the drop-down list.

 For this step, leave **Data** as the domain function because a data domain is being created in this example.

6. From the **Storage Type** drop-down list, select **GlusterFS**.

7. For the **Host to Use** drop-down list, select the host for which to attach the data domain.

8. When **GlusterFS** is selected for the **Storage Type**, the **New Domain** dialog box updates to display additional configuration fields associated with GlusterFS storage domains.

9. Ensure the **Use managed gluster volume** check box is not selected.

10. From the **Gluster** drop-down list, select the path to which domain function you are creating.

11. For the **Mount Options** option, specify additional mount options in a comma-separated list, as you would using the `mount -o` command.

12. (Optional) Configure the advanced parameters.

13. Click **OK** to mount the volume as a storage domain.

 You can click **Tasks** to monitor the various processing steps that are completed to add the GlusterFS storage domain to the data center.