
Deterministic Garbage Collection:
Unleash the Power of Java with
Oracle JRockit Real Time

An Oracle White Paper
August 2008

Deterministic Garbage Collection:
Unleash the Power of Java with

Oracle JRockit Real Time

INTRODUCTION
The Java virtual machine (JVM) is the cornerstone of the Java platform—the
technology responsible for Java’s hardware and operating system independence.
Although it is an essential component of enterprise Java applications, the
hardworking JVM has remained largely anonymous, with little distinction made
between the many versions on the market. But all JVMs are not created equal.

Oracle JRockit Real Time incorporates a number of unique, industry leading
technological advances that push Java into the domain of real-time systems and the
realm of application debugging and memory leak control. One of its most
important advances is deterministic garbage collection: an automatic memory
management technique that minimizes transaction latency.

Java is a “garbage-collected” language; in other words, objects that are no longer
referenced must be periodically cleared out so that processing can continue.
Automated, traditional garbage collection processes are highly unpredictable,
placing high demand on the JVM and causing erratic pause-and-response times.
The deterministic garbage collection capabilities in Oracle JRockit Real Time
smooth these performance spikes to deliver faster, more-reliable performance that
enables the use of Java technology in markets where it was previously impractical.

The deterministic garbage collection
capabilities in Oracle JRockit Real Time

enable the use of Java technology in
markets where it was previously

impractical, including financial services
and telecommunications.

UNDERSTANDING GARBAGE COLLECTION
Efficient memory use increases application performance and stability. Garbage
collection as a form of memory management greatly influences Java application
performance. In the process, it performs two basic activities:

• Determines which objects in memory are or are not being used

• Reclaims the memory being consumed by inactive, discarded objects

Improper handling of garbage collection inhibits application execution and
seriously detracts from system performance and reliability. Some applications
require the highest-possible application throughput and can tolerate periodic
garbage collection pauses. Others cannot; they demand consistency, sacrificing
some amount of throughput to minimize pause times.

Deterministic Garbage Collection: Unleash the Power of Java with Oracle JRockit Real Time Page 2

TRADITIONAL GARBAGE COLLECTION
Java is certainly not the first programming language to rely on garbage collection,
but it is probably the most widely used. The benefits are clear: increased reliability,
decoupling of memory management from class interface design, and less developer
time spent chasing memory management errors. This results in a faster time to
market because less time is spent on debugging and development.

However, garbage collection is not without its costs: unpredictable performance
impacts, pauses, and configuration complexity, among others. Figure 1 illustrates
what happens when the garbage collection method used by the JVM does not have
the capability to dynamically set pause times. The top line is of key concern. This
line shows the long pause times of the garbage collector. Each time the collector
pauses to clean out the unused objects (the garbage), the application experiences a
delay in returning a rapid response. When performed multiple times in the course
of normal operation, this delay affects both application performance and service-
level agreements.

Garbage collection is the process of
reclaiming unused memory to increase

application performance. Although
beneficial overall, traditional garbage

collection techniques have unpredictable
performance impacts.

Figure 1: Application using typical garbage collection technology (measured in milliseconds)

One of the more commonly used garbage collection methods is parallel garbage
collection, as shown in Figure 2. In a parallel garbage collection strategy, the pause
times are less frequent, but involve longer periods of time.

Deterministic Garbage Collection: Unleash the Power of Java with Oracle JRockit Real Time Page 3

Figure 2: Application using parallel garbage collection technology (measured in milliseconds)

DETERMINISTIC GARBAGE COLLECTION
Ideally, garbage collection implementation would be completely invisible: there
would be no collection pauses and no CPU time lost to garbage collection.
Unfortunately, there are no ideal garbage collectors, but the deterministic garbage
collection functionality in Oracle JRockit Real Time represents a significant
improvement over traditional methods.

Deterministic garbage collection is the ability to specify and maintain a maximum
pause time for the memory system with a high level of confidence. Designed to
deliver short, predictable pause times with minimal manual tuning, it helps in
situations where there is a continuous querying of events or where it is necessary to
find correlations over streams and time periods in real time or near real time.

Deterministic garbage collection is the
ability to specify and maintain a maximum
pause time for the memory system with a
high level of confidence. It is designed to

deliver short, predictable pause times with
minimal manual tuning.

The memory management system of Oracle JRockit Real Time offers an array of
garbage collection strategies tailored for different applications and environments. It
also offers an adaptive mode that uses runtime analysis to dynamically adjust the
garbage collection strategy and tuning parameters to best fit the performance and
behavioral requirements of the application.

Figure 3 shows how deterministic garbage collection can smooth out the spikes in
collection and pause times. In this example, the maximum pause time is set at 50
milliseconds and all the garbage collection activity takes place beneath that
threshold. By using many short garbage collection pauses, the duration of each
garbage collection period is kept to a minimum, thereby improving performance.

Deterministic Garbage Collection: Unleash the Power of Java with Oracle JRockit Real Time Page 4

Figure 3: Application using deterministic garbage collection

Figure 4 compares the pause times between deterministic garbage collection and
parallel garbage collection. The long pause times for the parallel garbage collector
can be fatal for applications that are sensitive to delays, such as real-time trading
applications. With the deterministic garbage collector, pause times are guaranteed to
be kept to a minimum, even when running applications with gigabyte-size heaps.
The short, frequent pauses in the deterministic garbage collector ensure that an
application will not experience time-outs like those of the parallel garbage collection
method, which occur when the JVM using parallel collection pauses while purging
unused items from memory.

Figure 4: Comparison of deterministic garbage collection and parallel garbage collection pauses

REAL-TIME ENTERPRISE JAVA: THE PROMISE OF DETERMINISTIC
GARBAGE COLLECTION
Many enterprises have noticed productivity gains in development and maintenance
when switching to Java and want to expand its use to the greatest extent possible.
However, several markets that rely upon high-speed, high-volume applications have
been unable to use Java due to unpredictable garbage collection, including

• Financial services. Response times of less than 20 milliseconds are typical
for trade-processing applications because every millisecond of downtime
translates into lost revenue. Decreasing the amount of downtime maximizes
the number of trades that can take place, and because the trade execution

Deterministic Garbage Collection: Unleash the Power of Java with Oracle JRockit Real Time Page 5

takes place sooner, it also enables the maximum number of trades
to be completed.

• Telecommunications. Responses times between 50 and 100 milliseconds
are typical for telecom infrastructures. The rapid response times maximize the
number of calls that can be set up in a given time period. Delayed response
times result in more dropped calls and a higher frequency of busy signals.

With the availability of deterministic
garbage collection, customers can now

consider the multiple benefits of moving
expensive C/C++ legacy systems to

less expensive, more flexible
Java-based systems.

• Gaming. Betting and betting exchange transactions are inhibited by long
system response times as a result of dropped frames when rendering to
the screen.

Due to these demanding response times, Java has not been a viable option because
these time metrics could not be guaranteed. As a result these sectors are dominated
by applications written in C/C++. With the availability of deterministic garbage
collection, customers can now consider the multiple benefits of moving expensive
legacy systems to less expensive, more flexible Java-based systems.

Figures 5 and 6 show the performance gains that deterministic garbage collection
can bring to real-time systems. These examples illustrate the response times for a
financial services trading application using different platforms and methods of
garbage collection.

Figure 5: Trader response time and throughput using Sun JVM; shows unpredictable spikes that

surpass the maximum order pause on several occasions

Deterministic Garbage Collection: Unleash the Power of Java with Oracle JRockit Real Time Page 6

Figure 6: Trader response time and throughput using Oracle JRockit Real Time and deterministic

garbage collection; no pause exceeds the threshold and most under 100 milliseconds

PROGRESSIVE OPTIMIZATION
Progressive optimization complements adaptive memory capabilities to further
enhance performance. Oracle JRockit Real Time provides continuous performance
improvement in real time—from initial deployment through the life of the
application. It automatically adapts its behavior to the operating conditions of the
application and the underlying environment to deliver optimal performance,
scalability, and reliability. The solution compiles each method the first time it
encounters it, generating machine code with platform-specific optimizations. For
more-aggressive optimization, it then monitors an application as it executes and
identifies the methods on which it spends the most time. This approach eliminates
many performance bottlenecks early on, and continues to do so throughout the life
of the application.

Oracle JRockit Real Time provides
continuous performance improvement in

real time—from initial deployment through
the life of the application.

PLATFORM UBIQUITY
Oracle JRockit Real Time continues to demonstrate superior application
performance and price-to-performance ratios as measured by a series of industry
standard benchmarks.1 Oracle JRockit Real Time has set numerous SPECjbb2000
and SPECjbb2005 performance records2 on Intel and AMD platforms. It is
optimized for performance on systems built from industry standard Intel- and
AMD-based servers, from 32- and 64-bit Intel Xeon and AMD Opteron processor-
based systems to servers using the 64-bit Intel Itanium 2 processors. It is also
effective on Sun SPARC systems.

1 For various benchmark results, please refer to www.spec.org.
2 For SPECjbb benchmark results, please refer to
www.spec.org/jbb2000/results/jbb2000.html and
www.spec.org/jbb2005/results/jbb2005.html.

Deterministic Garbage Collection: Unleash the Power of Java with Oracle JRockit Real Time Page 7

SPARC customers can now go from the top of the application stack into the
operating system using Oracle-supported Java technology. With Oracle JRockit
Real Time on Solaris SPARC, Sun users have a choice of JVMs optimized for their
needs and can take advantage of real-time deterministic garbage collection without
additional hardware investments.

When applications are deployed on these
Intel, AMD, or Sun processor-based

platforms with Oracle JRockit Real Time,
the Java programming language becomes

the ultimate deployment platform
for large-scale, server-side,

enterprise-class applications.

When applications are deployed on any of these processor-based platforms with
Oracle JRockit Real Time, the Java programming language becomes the ultimate
deployment platform for large-scale, server-side, enterprise-class applications—
making it cost effective for organizations to scale enterprise applications and
remain competitive.

CONCLUSION
Java’s promise of “write once, run anywhere” is made possible through
industrywide adoption of JVMs that run on a variety of operating systems and
hardware chipsets. Unfortunately, not all JVMs are created equal, and Java
performance on various platforms has suffered from the limitations of previous
JVM implementations. These limitations have restricted the use of Java in certain
sectors due primarily to memory management and garbage collection processes that
were not designed to minimize transaction latency.

With its deterministic garbage collection capabilities and other enhanced features,
including progressive optimization, Oracle JRockit Real Time enables enterprises
that depend on low-latency, real-time applications to capture the benefits of Java.

Deterministic Garbage Collection: Unleash the Power of Java with Oracle JRockit Real Time Page 8

Deterministic Garbage Collection: Unleash the Power of Java with Oracle JRockit Real Time
August 2008

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2008, Oracle and/or its affiliates. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

