
Oracle Rdb™

SQL Reference Manual
Volume 4

Release 7.4.1.1 for HPE OpenVMS Industry Standard 64 for Integrity
Servers and OpenVMS Alpha operating systems

September 2021

®

SQL Reference Manual, Volume 4

Oracle Rdb Release 7.4.1.1 for HPE OpenVMS Industry Standard 64 for Integrity Servers and
OpenVMS Alpha operating systems

Copyright © 1987, 2021 Oracle and/or its affiliates. All rights reserved.
Oracle Corporation - Worldwide Headquarters, 2300 Oracle Way, Austin, TX 78741, United States

Primary Author: Rdb Engineering and Documentation group

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,
translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited. The information contained
herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing. If this is software or related documentation that is
delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or
iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle CODASYL
DBMS, Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are registered trademarks of
Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Contents

Send Us Your Comments . vi

Preface . vii

8 SQL Statements

HELP Statement . 8–2
IF Control Statement . 8–4
IMPORT Statement . 8–6
INCLUDE Statement . 8–25
INSERT Statement . 8–32
INSERT from FILENAME Statement . 8–45
INTEGRATE Statement . 8–47
ITERATE Control Statement . 8–60
LEAVE Control Statement . 8–62
LOCK TABLE Statement . 8–65
LOOP Control Statement . 8–68
OPEN Statement . 8–70
Operating System Invocation ($) Statement . 8–74
PREPARE Statement . 8–76
PRINT Statement . 8–85
QUIT Statement . 8–87
RELEASE Statement . 8–88
RELEASE SAVEPOINT Statement . 8–91
RENAME Statement . 8–93
REPEAT Control Statement . 8–100
REPLACE Statement . 8–103
RETURN Control Statement . 8–115
REVOKE Statements . 8–117
REVOKE Statement . 8–118
REVOKE Statement: ANSI/ISO-Style . 8–127
REVOKE Statement: Database System Privileges 8–134
REVOKE Statement: Roles . 8–136
ROLLBACK Statement . 8–138
ROLLBACK TO SAVEPOINT Statement . 8–142
SAVEPOINT Statement . 8–144
SELECT Statement: General Form . 8–146
SELECT Statement: Singleton Select . 8–158
SET Statement . 8–161

iii

SET ALIAS Statement . 8–179
SET ANSI Statement . 8–181
SET AUTOMATIC TRANSLATION Statement . 8–183
SET CATALOG Statement . 8–185
SET CHARACTER LENGTH Statement . 8–189
SET COMPOUND TRANSACTIONS Statement . 8–192
SET CONNECT Statement . 8–194
SET CONSTRAINTS Statement . 8–197
SET Control Statement . 8–200
SET DEFAULT CHARACTER SET Statement . 8–202
SET DEFAULT CONSTRAINT MODE Statement 8–204
SET DEFAULT DATE FORMAT Statement . 8–206
SET DIALECT Statement . 8–208
SET DISPLAY Statement . 8–219
SET DISPLAY CHARACTER SET Statement . 8–225
SET FLAGS Statement . 8–227
SET HOLD CURSORS Statement . 8–253
SET IDENTIFIER CHARACTER SET Statement 8–256
SET KEYWORD RULES Statement . 8–258
SET LITERAL CHARACTER SET Statement . 8–260
SET NAMES Statement . 8–262
SET NATIONAL CHARACTER SET Statement . 8–264
SET OPTIMIZATION LEVEL Statement . 8–266
SET QUERY Statement . 8–270
SET QUIET COMMIT Statement . 8–274
SET QUOTING RULES Statement . 8–276
SET SCHEMA Statement . 8–279
SET SESSION AUTHORIZATION Statement . 8–282
SET SQLDA Statement . 8–284
SET TRANSACTION Statement . 8–291
SET VIEW UPDATE RULES Statement . 8–313
SHOW Statement . 8–316
SIGNAL Control Statement . 8–349
Simple Statement . 8–353
START TRANSACTION Statement . 8–355
TRACE Control Statement . 8–359
TRUNCATE TABLE Statement . 8–363
UNDECLARE Cursor Statement . 8–366
UNDECLARE Variable Statement . 8–367
UPDATE Statement . 8–368
WHENEVER Statement . 8–374
WHILE Control Statement . 8–377

iv

Index

Examples

8–1 Updating the Database File Using Repository Definitions 8–50
8–2 Modifying Repository Definitions Using the INTEGRATE Statement

with the ALTER DICTIONARY Clause . 8–52
8–3 Storing Existing Database File Definitions in the Repository 8–55
8–4 Modifying Repository Field Using the INTEGRATE DOMAIN

Statement with the ALTER DICTIONARY Clause 8–57
8–5 Example 1: Revoking Database System Roles 8–135

Tables

8–1 SQL Statements That Can Be Dynamically Executed 8–80
8–2 Comparison between RENAME and ALTER Statements 8–96
8–3 Supported SQL*Plus SET statements . 8–168
8–4 Logical Names for Internationalization of SET Statements 8–170
8–5 Dialect Settings . 8–208
8–6 SQL Share Modes . 8–294
8–7 Comparison of Row Locking for Updates . 8–294
8–8 Phenomena Permitted at Each Isolation Level 8–295
8–9 Effects of Lock Specifications on Multiuser Access 8–299
8–10 Defaults for the SET and DECLARE TRANSACTION Statements . . . 8–300
8–11 Phenomena Permitted at Each Isolation Level 8–356

v

Send Us Your Comments

Oracle Rdb for OpenVMS
Oracle SQL Reference Manual, Release 7.4.1.1
Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this publication. Your input is an important part of the information
used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most?

If you find any errors or have any other suggestions for improvement, please
indicate the document title, release date, chapter, section, and page number (if
available).

Please direct all comments, and corrections to this email address:
infordb_us@oracle.com.

If you have problems with the software, please contact your local Oracle Support
Services.

vi

Preface

This manual describes the syntax and semantics of the statements and language
elements for the SQL (structured query language) interface to the Oracle Rdb
database software.

Intended Audience
To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the
OpenVMS operating system.

Operating System Information
You can find information about the versions of the operating system and optional
software that are compatible with this version of Oracle Rdb in the Oracle Rdb
Installation and Configuration Guide.

For information on the compatibility of other software products with this version
of Oracle Rdb, refer to the Oracle Rdb Release Notes.

Contact your Oracle representative if you have questions about the compatibility
of other software products with this version of Oracle Rdb.

Access to Oracle Support
Oracle customers that have purchased support have access to
electronic support through My Oracle Support. For information,
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Structure
This manual is divided into five volumes. Volume 1 contains Chapter 1 through
Chapter 5 and an index. Volume 2 contains Chapter 6 and an index. Volume
3 containsChapter 7 and an index. Volume 4 contains Chapter 8 and an index.
Volume 5 contains the appendixes and an index.

The index for each volume contains entries for the respective volume only and
does not contain index entries from the other volumes in the set.

The following table shows the contents of the chapters and appendixes in Volumes
1, 2, 3, 4, and 5 of the Oracle Rdb SQL Reference Manual:

vii

Chapter 1 Introduces SQL (structured query language) and briefly
describes SQL functions. This chapter also describes
conformance to the SQL database standard, how to read
syntax diagrams, executable and nonexecutable statements,
keywords and line terminators, and support for Multivendor
Integration Architecture.

Chapter 2 Describes the language and syntax elements common to many
SQL statements.

Chapter 3 Describes the syntax for the SQL module language and the
SQL module processor command line.

Chapter 4 Describes the syntax of the SQL precompiler command line.

Chapter 5 Describes SQL routines.

Chapter 6
Chapter 7
Chapter 8

Describe in detail the syntax and semantics of the SQL
statements. These chapters include descriptions of data
definition statements, data manipulation statements, and
interactive control commands.

Appendix A Describes the different types of errors encountered in SQL and
where they are documented.

Appendix B Describes the SQL standards to which Oracle Rdb conforms.

Appendix C Describes the SQL Communications Area, the message vector,
and the SQLSTATE error handling mechanism.

Appendix D Describes the SQL Descriptor Areas and how they are used in
dynamic SQL programs.

Appendix E Summarizes the logical names that SQL recognizes for special
purposes.

Appendix F Summarizes the obsolete SQL features of the current Oracle
Rdb version.

Appendix G Summarizes the SQL functions that have been added to
the Oracle Rdb SQL interface for compatibility with Oracle
Database SQL. This appendix also describes the SQL syntax
for performing an outer join between tables using Oracle
Database syntax.

Appendix H Describes the Oracle Rdb system tables.

Appendix I Describes information tables that can be used with Oracle Rdb.

Appendix J Describes the Database vault feature.

Related Manuals
For more information on Oracle Rdb, see the other manuals in this documentation
set, especially the following:

• Oracle Rdb Guide to Database Design and Definition

• Oracle Rdb7 Guide to Database Performance and Tuning

• Oracle Rdb Introduction to SQL

• Oracle Rdb Guide to SQL Programming

viii

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown where
it is important to depict an interactive sequence exactly; otherwise, they are
omitted.

The following conventions are also used in this manual:

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts of
the statement or command not directly related to the example have been
omitted.

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

boldface
text

Boldface type in text indicates a new term.

< > Angle brackets enclose user-supplied names in syntax diagrams.

[] Brackets enclose optional clauses from which you can choose one or none.

$ The dollar sign represents the command language prompt. This symbol
indicates that the command language interpreter is ready for input.

References to Products
The Oracle Rdb documentation set to which this manual belongs often refers to
the following Oracle Corporation products by their abbreviated names:

• In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS. Version 7.4 of
Oracle Rdb software is often referred to as V7.4.

• Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

• Oracle ODBC Driver for Rdb software is referred to as the ODBC driver.

• OpenVMS I64 refers to HPE OpenVMS Industry Standard 64 for Integrity
Servers.

• OpenVMS means the OpenVMS I64 and OpenVMS Alpha operating systems.

ix

8
SQL Statements

This chapter describes the syntax and semantics of statements in SQL. SQL
statements include data definition statements; data manipulation statements;
statements that control the environment and program flow; and statements that
give information.

See Chapter 2 in Volume 1 for detailed descriptions of the language and syntax
elements referred to by the syntax diagrams in this chapter.

Chapter 6 in Volume 2 describes the statements from ACCEPT to CREATE
SCHEMA. Chapter 7 in Volume 3 describes the statements from CREATE
SEQUENCE to GRANT.

SQL Statements 8–1

HELP Statement

HELP Statement

Gives you access to assistance on all SQL statements, components, and concepts.

Environment

You can issue the HELP statement only in interactive SQL.

Format

HELP
help-topic

Arguments

topic
The SQL statement or concept on which you need help.

Usage Notes

• When you type HELP:

A menu of topics on which assistance is available replaces the SQL
prompt (SQL>).

After the menu scrolls by, the cursor remains at a ‘‘Topic?’’ prompt.
Typing any of the menu items yields assistance on that topic. Many of
the topics have further levels of assistance, indicated by a ‘‘Subtopic?’’
prompt.

To move back to the next higher level, press the Return key. For example,
pressing the Return key at the ‘‘Subtopic?’’ prompt brings you to the
‘‘Topic?’’ prompt, and pressing the Return key again returns you to the
SQL prompt.

To see the list of additional topics at any level, type a question mark (?)
and press the Return key.

To leave Help, enter Ctrl/Z or at the ‘‘Topic?’’ prompt, press the Return
key.

The responses to these prompts need only include sufficient unique
characters to match the desired topic. For example the HELP CREATE
SEQUENCE command will report this list of subtopics.

Additional information available:

Environment Format Arguments Examples

CREATE SEQUENCE Subtopic?

In this case ‘‘En’’, ‘‘F’’, ‘‘A’’ and ‘‘Ex’’ are sufficient to uniquely identify a
subtopic. Entering ‘‘*’’ will select and display all subtopics.

• Most Help entries in SQL have a similar structure. The main screen shows
a brief description of the topic and, if you requested help on a statement, a
syntax diagram. In many cases, this screen gives you all the information you
need to execute the statement.

8–2 SQL Statements

HELP Statement

The main screen also displays a list of ‘‘Additional information available.’’
This list usually includes these additional entries:

Environment: This topic describes which SQL environment supports the
statement.

Format: One or more syntax diagrams which detail the syntax choices.

Arguments: Subtopics describing the arguments.

Examples: One or more examples of the statement in use.

• SQL uses the default size of your terminal session; usually established by the
DCL SET TERMINAL command. Many of the help topics contain more than
will fix on a page and SQL will pause with the ‘‘Press RETURN for more:’’
prompt. Use the SQL SET PAGE LENGTH statement to adjust the page size
for comfortable reading or set the page length to 32000 effectively disable this
type of paging.

Example

Example 1: Obtaining online Help in SQL

SQL> HELP SELECT

SELECT

Additional information available:

General_Form Singleton_Select

SELECT Subtopic?

SQL Statements 8–3

IF Control Statement

IF Control Statement

Executes one or more SQL statements conditionally. It then continues processing
by executing any SQL statement that immediately follows the block.

Environment

You can use the IF control statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

if-statement =

IF predicate THEN compound-use-statement

ELSEIF predicate THEN compound-use-statement

END IF
ELSE compound-use-statement

Arguments

compound-use-statement
See the Compound Statement for a description of the SQL statements that are
valid in a compound statement.

END IF
Marks the end of an IF statement. Every IF statement must end with the END
IF clause.

ELSE compound-use-statement
Executes one or more SQL statements associated with the ELSE clause but
only when the value of the IF and ELSEIF predicates evaluate to FALSE or
UNKNOWN.

ELSEIF predicate THEN compound-use-statement
If the ELSEIF predicate evaluates to TRUE, SQL executes the SQL statements
in the THEN clause. If the ELSEIF predicate does not evaluate to TRUE, SQL
evaluates the predicates in any subsequent ELSEIF or ELSE clauses.

8–4 SQL Statements

IF Control Statement

IF predicate THEN compound-use-statement
Executes one or more SQL statements in an IF . . . END IF block only when
the value of an IF predicate evaluates to TRUE. A predicate, also called a
conditional expression, specifies a condition that SQL evaluates to TRUE, FALSE,
or UNKNOWN. If the predicate evaluates to TRUE, SQL executes the statement
in the THEN clause. If the predicate does not evaluate to TRUE, SQL evaluates
the predicate in any ELSEIF clauses. If the IF statement contains no ELSEIF
clauses, SQL executes any statements in the ELSE clause.

predicate
See Section 2.7 for more information on predicates.

Usage Notes

• As with all compound statements, you can nest IF statements.

• Using the ELSEIF clause instead of a nested IF statement can make your
code easier to read. While both methods produce the same results, using
nested IF statements can obscure logic flow.

• When SQL drops out of the IF . . . END IF block, it then continues processing
by executing any SQL statement that immediately follows the block.

• The testing of predicates proceeds from the IF clause to each of the ELSEIF
clauses in the order in which they appear. The statements of the first IF or
ELSEIF clause that evaluates to TRUE are executed. The statements of the
ELSE clause are executed if none of these is TRUE. Under no circumstance is
more than one branch of an IF statement executed.

Examples

Example 1: Using an IF control statement

IF (SELECT COUNT (*) FROM STUDENTS
WHERE CLASS = :CLASS_NUM)

> 30

THEN
SET :MSG = ’Class is too large.’;

ELSE
SET :MSG = ’Class size is O.K.’;

END IF;

SQL Statements 8–5

IMPORT Statement

IMPORT Statement

Creates an Oracle Rdb database from an interchange .rbr file.

If COMPRESSION was used during the EXPORT, the metadata in the
interchange file defines the compression algorithm to be used by the IMPORT
DATABASE statement and indicates which tables were compressed by the
EXPORT DATABASE statement.

You use the IMPORT statement with the EXPORT statement to make changes
to Oracle Rdb databases that cannot be made any other way. The EXPORT
statement unloads a database to an .rbr file. The IMPORT statement re-creates
the database with changes that may not be allowed by an ALTER DATABASE
statement. The IMPORT statement lets you:

• Convert from a single-file to a multifile database, and vice versa.

• Change database root file parameters that you cannot change with the
ALTER DATABASE statement:

COLLATING SEQUENCE

SEGMENTED STRING STORAGE AREA

PROTECTION IS ANSI/ACLS

DEFAULT STORAGE AREA

• Change storage area parameters that you cannot change with the ALTER
DATABASE statement:

PAGE SIZE

PAGE FORMAT

THRESHOLDS

INTERVAL

FILENAME, SNAPSHOT FILENAME

• Reload tables with existing rows to take advantage of newly created hashed
indexes.

• Reload tables to take advantage of new or changed storage maps.

• Move a database to another directory or disk structure. However, if moving a
database is the only change you need to make, it is more efficient to use the
RMU Backup and RMU Restore commands.

• Create an empty target database that uses the same data definitions as a
source database by copying the metadata, but not the data, to the target.

If you use the NO DATA option, the IMPORT statement creates an Oracle
Rdb database whose metadata is identical to that found in the source
database used by the EXPORT statement, but the duplicate database
contains no data. The NO DATA option is not compatible with the repository
databases. See the description in the Arguments section under the NO DATA
option.

8–6 SQL Statements

IMPORT Statement

Environment

You can use the IMPORT statement in interactive SQL only.

Format

IMPORT DATABASE FROM <file-spec>

FILENAME <file-spec>
literal-user-auth

WITH ALIAS <alias>

import-options
character-sets
import-root-file-params-1
import-root-file-params-2
import-root-file-params-3
import-root-file-params-4
storage-area-params-1
storage-area-params-2
create-clause/statement
drop-statement

literal-user-auth =

USER ’username’ USING ’password’
(’password1’ , ’password2’)

import-options=
ACL

NO BANNER
BATCH UPDATE
CDD LINKS
DATA
FORWARD_REFERENCES
TRACE

COMMIT EVERY TABLE
COMMIT EVERY n ROWS

character-sets =

DEFAULT CHARACTER SET <support-char-set>
NATIONAL CHARACTER SET <support-char-set>
IDENTIFIER CHARACTER SET <names-char-set>
DISPLAY CHARACTER SET <support-char-set>

SQL Statements 8–7

IMPORT Statement

import-root-file-params-1 =

PATHNAME <path-name>
attach-options
COLLATING SEQUENCE <sequence-name>

COMMENT IS ’<string> ’

<ncs-name>
FROM <library-name>

NUMBER OF USERS <number-users>
NUMBER OF BUFFERS <number-buffers>
NUMBER OF CLUSTER NODES <number-nodes>

(SINGLE INSTANCE)
MULTIPLE

NUMBER OF RECOVERY BUFFERS <number-buffers>
BUFFER SIZE IS <buffer-blocks> BLOCKS
global-buffer-params

attach-options =

DBKEY SCOPE IS ATTACH
ROWID TRANSACTION
MULTISCHEMA IS ON

OFF
PRESTARTED TRANSACTIONS ARE ON

OFF
RESTRICTED ACCESS

NO

global-buffer-params=

GLOBAL BUFFERS ARE ENABLED
DISABLED

(LARGE MEMORY IS ENABLED)
DISABLED

MEMORY ALLOCATION IS <mem-octets>
NUMBER IS <number-glo-buffers>
PAGE TRANSFER VIA DISK

MEMORY
USER LIMIT IS <max-glo-buffers>

,

8–8 SQL Statements

IMPORT Statement

import-root-file-params-2 =

SNAPSHOT IS ENABLED IMMEDIATE
DEFERRED

DISABLED
DICTIONARY IS REQUIRED

NOT REQUIRED
ADJUSTABLE LOCK GRANULARITY IS ENABLED alg-options

DISABLED
LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS
SEGMENTED STRING STORAGE AREA IS <area-name>
LIST
DEFAULT
PROTECTION IS ANSI

ACLS
RESERVE <n> CACHE SLOTS

JOURNALS
STORAGE AREAS
SEQUENCES

alg-options =

(COUNT IS <n>)

import-root-file-params-3 =

CARDINALITY COLLECTION IS ENABLED
CARRY OVER LOCKS ARE DISABLED
DATABASE VAULT IS
GALAXY SUPPORT IS
LOCK PARTITIONING IS
LOGMINER SUPPORT IS
METADATA CHANGES ARE
STATISTICS COLLECTION IS
WORKLOAD COLLECTION IS
SYSTEM INDEX COMPRESSION IS ENABLED

DISABLED
(system-index-options)

,
PRESTARTED TRANSACTIONS ARE ENABLED prestart-trans-options

DISABLED
SECURITY CHECKING IS security-checking-options
SYNONYMS ARE ENABLED

system-index-options =

COMPRESSION IS ENABLED
PREFIX CARDINALITY COLLECTION IS DISABLED
PREFIX CARDINALITY COLLECTION IS ENABLED FULL
TYPE IS SORTED

RANKED

prestart-trans-options =

WAIT <n> SECONDS FOR TIMEOUT
WAIT <n> MINUTES FOR TIMEOUT
NO TIMEOUT

SQL Statements 8–9

IMPORT Statement

security-checking-options =

EXTERNAL
(PERSONA SUPPORT IS ENABLED)

DISABLED
INTERNAL

(ACCOUNT CHECK IS ENABLED)
DISABLED

import-root-file-params-4 =

ASYNC BATCH WRITES ARE ENABLED async-bat-wr-options
DISABLED

ASYNC PREFETCH IS
DETECTED

ENABLED async-prefetch-options
DISABLED

ROW CACHE IS ENABLED
DISABLED row-cache-options

INCREMENTAL BACKUP SCAN OPTIMIZATION
NO
MULTITHREAD AREA ADDITIONS multithread-options
RECOVERY JOURNAL (ruj-options)
SHARED MEMORY IS SYSTEM

PROCESS
RESIDENT

asynch-bat-wr-options =

(CLEAN BUFFER COUNT IS <buffer-count> BUFFERS)
MAXIMUM BUFFER COUNT IS <buffer-count> BUFFERS

,

async-prefetch-options =

(DEPTH IS <number-buffers> BUFFERS)
THRESHOLD IS <number-buffers> BUFFERS

,

row-cache-options =

(CHECKPOINT ALL ROWS TO BACKING FILE)
TIMED EVERY <n> SECONDS
UPDATED ROWS TO BACKING FILE

DATABASE
LOCATION IS <directory-spec>
NO LOCATION

SWEEP INTERVAL
SWEEP INTERVAL IS <n> SECONDS

,

8–10 SQL Statements

IMPORT Statement

multithread-options =

(ALL AREAS)
LIMIT TO <n> AREAS

ruj-options =

LOCATION IS <directory-spec>
NO LOCATION
BUFFER MEMORY IS LOCAL

GLOBAL

storage-area-params-1 =

ALLOCATION IS <number-pages> PAGES
CACHE USING <row-cache-name>
NO ROW CACHE
extent-params
INTERVAL IS <number-data-pages>
LOCKING IS ROW LEVEL

PAGE
PAGE FORMAT IS UNIFORM

MIXED
PAGE SIZE IS <page-blocks> BLOCKS

extent-params =

EXTENT IS ENABLED
DISABLED
<extent-pages> PAGES
(extension-options)

extension-options =

MINIMUM OF <min-pages> PAGES,

MAXIMUM OF <max-pages> PAGES,

PERCENT GROWTH IS <growth>

storage-area-params-2 =

CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
SNAPSHOT FILENAME <file-spec>
THRESHOLDS ARE (<val1>)

, <val2>
, <val3>

SQL Statements 8–11

IMPORT Statement

create-clause/statement =

create-cache-clause
create-index-statement
create-storage-area-clause
create-storage-map-statement

drop-statement =

DROP CACHE <row-cache-name>
DROP INDEX <index-name>
DROP STORAGE AREA <area-name>
DROP STORAGE MAP <map-name>

Arguments

ACL
NO ACL
Specifies that the IMPORT statement uses the access control lists from the
original database when it creates the new database. The ACL option is the
default. If you are using the IMPORT statement to restructure a database, you
typically want to use the ACL option and preserve the access control lists.

The NO ACL option overrides the ACLs from the original database and uses the
database system default ACLs. Specify NO ACL if you are using the IMPORT
statement to rebuild a database on a different system. The NO ACL option makes
you the owner of the new database and creates default access control lists.

BANNER
NO BANNER
This clause requests that IMPORT display informational messages during the
import of the database header, such as product identification, and values for
some database parameters. The default is NO BANNER which will mean most
IMPORT statements generate no output.

BATCH UPDATE
NO BATCH UPDATE
Specifies whether the IMPORT statement stores user data and indexes using
batch-update transactions (BATCH UPDATE) or read/write transactions for each
table (NO BATCH UPDATE). The NO BATCH UPDATE option is the default.

A batch-update transaction is faster but does not perform recovery-unit
journaling, which means you cannot recover the database in the event of a
failure during the IMPORT operation. With the NO BATCH UPDATE option, you
can recover the database.

For more information about batch-update transactions, see the SET
TRANSACTION Statement.

CDD LINKS
NO CDD LINKS
Determines whether the IMPORT statement tries to reestablish links between
database definitions originally based on repository definitions (domains and tables
created with the FROM path name clause) and their sources in the repository.

8–12 SQL Statements

IMPORT Statement

The default depends on whether or not the IMPORT statement specifies the
PATHNAME option. If the IMPORT statement does specify PATHNAME, the
default is CDD LINKS; if it does not specify PATHNAME, the default is NO CDD
LINKS.

The CDD LINKS option specifies that the IMPORT statement tries to reestablish
repository links even if you do not specify the PATHNAME option. If you
specify CDD LINKS and the database repository definition on which a database
definition was based does not exist, the IMPORT statement generates a warning
message.

The NO CDD LINKS option specifies that the IMPORT statement does not
establish data repository links even if you specify the PATHNAME option.
Specify NO CDD LINKS if you are using the IMPORT statement to rebuild a
database on a different system.

COMMIT EVERY TABLE
COMMIT EVERY n ROWS
Specifies whether the IMPORT statement commits entire tables, or commits a
certain number of rows at regular intervals. If you use the COMMIT EVERY n
ROWS clause, you can supply a value from 1 to 2147483647 for n.

The default is COMMIT EVERY TABLE. If you use the COMMIT EVERY n
ROWS clause, the table will be left with a partial set of rows if the IMPORT
process fails.

Note

If the table being imported includes a storage map with the PLACEMENT
VIA INDEX clause, then the COMMIT EVERY clause is ignored for that
table. A message is displayed to inform the database administrator of
the tables that did not have COMMIT EVERY applied. This condition is
shown in Example 6.

create-cache-clause
See the CREATE CACHE Clause for a complete description.

create-index-statement
See the CREATE INDEX Statement for a complete description.

create-storage-area-clause
See the CREATE STORAGE AREA Clause for a complete description.

create-storage-map-statement
See the CREATE STORAGE MAP Statement for a complete description.

DATA
NO DATA
Specifies whether the database created by the IMPORT statement includes the
data and metadata contained in the source database, or the metadata only. DATA
is the default.

When you specify the NO DATA option, you import the metadata that defines a
database from an .rbr file and exclude the data. Duplicating the metadata of a
database while excluding the data offers the following benefits:

SQL Statements 8–13

IMPORT Statement

• You can use established, tested metadata to create a database to store new
data. Standardized metadata can be created once but used in multiple
databases.

• You can use the duplicated metadata to test the database structure. You can
experiment with storage areas and storage maps, and by entering sample
data, you can test other aspects of database structure.

• If a database needs testing by someone outside of your group, you can submit
the database metadata without exposing any sensitive data. Also, if the
database is very large, you need not submit multiple reels of tape to the
tester.

Note

The NO DATA option is not compatible with repository databases
(CDD$DATABASE.RDB). An .rbr file, created by an EXPORT
statement with the DATA option (the default) and generated from a
CDD$DATABASE.RDB file, cannot be used with the NO DATA option for
the IMPORT statement. SQL issues an error message stating that the
NO DATA option is not valid for repository databases.

DROP CACHE row-cache-name
Prevents the specified row area from being imported.

DROP INDEX index-name
Prevents the specified index from being imported.

DROP STORAGE AREA area-name
Prevents the specified storage area from being imported.

DROP STORAGE MAP map-name
Prevents the specified storage map from being imported.

FILENAME file-spec
Specifies the file associated with the database.

If you omit the FILENAME argument, the file specification takes the following
defaults:

• Device: the current device for the process

• Directory: the current directory for the process

• File name: the alias (if you omit the FILENAME argument, you must specify
the WITH ALIAS clause)

Use either a full file specification or a partial file specification. You can use a
logical name for all or part of a file specification.

If you use a simple file name, SQL creates the database in the current default
directory. Because the IMPORT statement may create more than one file with
different file extensions, do not specify a file extension with the file specification.

FORWARD_REFERENCES
NOFORWARD_REFERENCES
The EXPORT interchange file contains declarations of all routines that will be
referenced by other definitions. The default is to declare the interfaces to those

8–14 SQL Statements

IMPORT Statement

routines prior to creating domains, tables, views, triggers, functions, procedures
and modules that may need them. The default is FORWARD_REFERENCES.

Use NO FORWARD_REFERENCES to disable these declarations. However, this
may result in definition failures during the IMPORT.

If you include the FORWARD_REFERENCES option on the IMPORT command
line then informational messages will be generated for each declared routine.

FROM file-spec
Names the interchange .rbr file that the IMPORT statement uses as a source to
create a new database.

import-root-file-params-1
import-root-file-params-2
import-root-file-params-3
import-root-file-params-4
Parameters that control the characteristics of the database root file associated
with the database, or characteristics stored in the database root file that apply to
the entire database.

For more information on other "import-root-file-params-1", "import-root-file-
params-2", "import-root-file-params-3", and "import-root-file-params-4", see the
descriptions of "root-file-params-1", "root-file-params-2", "root-file-params-3",
and "root-file-params-4" in the CREATE DATABASE Statement.

literal-user-auth
Specifies the user name and password for access to databases, particularly remote
databases.

This literal lets you explicitly provide user name and password information in the
IMPORT statement.

order-by-clause
See Section 2.8.1 for information about the ORDER BY clause.

PROTECTION IS ANSI
PROTECTION IS ACLS
By default, the IMPORT statement retains the protection style of the database
that was exported. However, if you specify PROTECTION IS ANSI or
PROTECTION IS ACLS, then the IMPORT statement creates a database
with that protection type. If the protection of the database created is different
from the protection of the database that was exported, then no protection records
are imported and you will receive default protections.

select-clause
See Section 2.8.1 for information about the SELECT clause.

storage-area-params1
storage-area-params2
Specifies parameters that control the characteristics of database storage area
files. You can specify most storage area parameters for either single-file or
multifile databases, but the effect of the clauses differs.

• For single-file databases, the storage area parameters specify the
characteristics for the single storage area in the database.

SQL Statements 8–15

IMPORT Statement

• For multifile databases, the storage area parameters specify a set of default
values for any storage areas created by the IMPORT statement that do not
specify their own values for the same parameters. The attributes of a storage
area are supplied by the interchange file unless redefined by the IMPORT
statement. The default values apply to the storage area named in CREATE
STORAGE AREA database elements.

For details about storage area parameters, see the CREATE STORAGE AREA
Clause.

Note

The CREATE STORAGE AREA clauses can override these default values.
The default values do not apply to any storage areas created later with
the ALTER DATABASE statement.

TRACE
NO TRACE
Specifies whether usage statistics are logged by the IMPORT statement. The NO
TRACE option is the default.

Some actions taken by the IMPORT statement can consume significant amounts
of I/O resources and CPU time. These actions include the following operations:

• Loading data

• Defining indexes

• Defining constraints

When you specify the TRACE option with the IMPORT statement, SQL writes
a message when each operation begins, and writes a summary of DIO (direct
input/output operations), CPU, and PAGE FAULT statistics when the operation
completes. When the IMPORT statement finishes execution, a summary of all
DIO, CPU, and PAGE FAULT statistics is displayed. The display also includes
information on access to the .rbr file, database creation, and loading of data. For
more information about these statistics, see the Oracle Rdb7 Guide to Database
Performance and Tuning.

USER ’username’
Defines a character string literal that specifies the operating system user name
that the database system uses for privilege checking.

USING ’password’
USING (’password’, ’password’)
A character string literal that specifies the user’s password for the user name
specified in the USER clause. If the user requires two passwords, then specify
both values in parenthesis and separated by a comma.

WITH ALIAS alias
Specifies the alias for the implicit database attach executed by the IMPORT
statement. An alias is a name for a particular attachment to a database.

You must specify an alias or a file name. If you omit the WITH ALIAS
clause, the default alias for the database created by the IMPORT statement
is RDB$DBHANDLE. If you omit the FILENAME argument, the IMPORT
statement also uses the alias as the file name for the database root file and

8–16 SQL Statements

IMPORT Statement

creates the root file in the current default directory. If you omit WITH ALIAS,
you must specify the FILENAME argument.

Usage Notes

• You must be granted the special rights identifier RDBVMS$DATABASE_
VAULT_MANAGER to execute the DATABASE VAULT clause. Reference
Appendix J, Guide to Database Management: Database Vault for more
details.

• IMPORT executes two phases when importing a database:

1. Create the database using the definitions saved in the interchange (.rbr)
file, unless they were replaced or dropped by the IMPORT statement.

2. Create all the metadata:

The database access control and security information

All synonyms used in the database

All roles, users, and profiles

All catalog information for a multischema database

All schema information for a multischema database

The LIST STORAGE MAP

All sequences

All collating sequences

All forward references to routines

All domain definitions

All external routines

All tables

For each table the following actions are performed:

* If a PLACEMENT VIA INDEX is defined, it will be created

* Create the storage map

* Import data for the current table if required

* Create all indexes for the current table

All view definitions

All constraint definitions

All trigger definitions

All stored modules

All outlines

The import process commits frequently to preserve any successfully
executed definitions. A commit is performed after table load and each
index creation to limit the size of the recovery unit journal (.ruj). Define
the logical name RDMS$SET_FLAGS to the value "TRANSACTION" to
see the transaction activity during the import process.

SQL Statements 8–17

IMPORT Statement

• If you wish to restructure an existing database with the EXPORT and
IMPORT statements and keep database system files in the same directory,
the Oracle recommends the following sequence:

1. RMU Backup

Preserve a copy of the original database in case of failure of the IMPORT
command.

2. EXPORT

Save the database metadata and table data for subsequent IMPORT.
Make sure that sufficient space exists for this export (rbr) file.

3. DROP DATABASE

If you do not delete the database, the IMPORT statement fails because
the database storage areas files already exist.

4. IMPORT

Using the saved file rebuild the database, adding any changed database
parameters, storage areas and index definitions in the IMPORT command.
Note that after image journal file from the original database can not be
applied to this totally new database.

5. 5. RMU Backup the new database

Preserve a copy of the new database for use with RMU/RESTORE and
RMU/RECOVER.

• When importing the CDD$COMPATIBILITY repository, use the
DICTIONARY IS NOT USED clause to prevent SQL from attempting to
use the repository.

• The CREATE STORAGE AREA, CREATE STORAGE MAP, and CREATE
INDEX statements within an IMPORT statement can refer to storage areas,
storage maps, and indexes that existed in the original database. When they
refer to existing elements, the IMPORT statement replaces those elements of
the same name using the characteristics specified in the CREATE statements
(or the database system defaults for characteristics not specified in the
CREATE statements).

• The IMPORT statement creates a new database that inherits the
characteristics of the database that was the source for the .rbr file used
by the IMPORT statement. Only the elements you create will differ from the
original database.

• If you do not specify a page size when creating a storage area with the
IMPORT statement, the page size is inherited from RDB$SYSTEM.

• To move the database root file, storage areas, and snapshot files to different
disks, use the RMU Move_Area command. To move database files to another
system, use the RMU Backup and RMU Restore commands. For more
information about Oracle RMU commands, see the Oracle RMU Reference
Manual.

• You can use the IMPORT statement to convert to a multifile database from
a single-file database by specifying any CREATE STORAGE AREA clause
within the IMPORT statement.

8–18 SQL Statements

IMPORT Statement

• You can use the IMPORT statement to convert to a single-file database from
a multifile database. Use the following steps:

1. Specify the DROP STORAGE AREA clause for every area in the database,
including RDB$SYSTEM. This prevents IMPORT from using the
information in the interchange file (.rbr) to define storage areas.

You can use the command RMU Dump Export command with the Nodata
qualifier to extract the metadata in the import interchange file to see the
names of the storage areas in the database.

2. Specify the DROP STORAGE MAP clause for every table that contains a
storage map.

Alternately, you could map all tables to the default storage area by
specifying the CREATE STORAGE MAP . . . STORE IN RDB$SYSTEM
clause.

3. Specify the DROP INDEX or CREATE INDEX clauses to remove or
replace the indexes that are mapped to areas other than RDB$SYSTEM.

4. Specify the DROP STORAGE MAP clause for the LISTS (segmented
string) storage map.

5. Define the default for LISTS STORAGE AREA to be RDB$SYSTEM.

6. Define the DEFAULT STORAGE AREA to be RDB$SYSTEM.

• The RESTRICTED ACCESS clause of the IMPORT statement ensures that
other users cannot attach to the database before the IMPORT operation is
complete. By default, Oracle Rdb uses the RESTRICTED ACCESS clause on
the IMPORT statement.

• See the Oracle Rdb Guide to Database Maintenance for a complete discussion
of when to use the IMPORT, EXPORT, and ALTER DATABASE statements.

• The IMPORT statement is compatible with succeeding versions of Oracle Rdb.
For example, you can import a database using a higher version of Oracle Rdb
than the version used to create the database you are importing. You cannot
import a database using a lower version of Oracle Rdb.

• If you have created a database specifying the SYSTEM INDEX
COMPRESSION clause, you can change the compression mode during an
import operation. For example, if you created a database specifying the
SYSTEM INDEX (COMPRESSION IS DISABLED), you can specify SYSTEM
INDEX (COMPRESSION IS ENABLED) during an import operation.

• Oracle Rdb does not recalculate the asynchronous prefetch DEPTH
BUFFERS, the asynchronous batch write CLEAN BUFFER COUNT, or
the asynchronous batch write MAXIMUM BUFFER COUNT when you import
a database, even if you specify a value for the NUMBER OF BUFFER clause.
Oracle Rdb uses the values from the export operation, unless you specify
values for each clause.

• Oracle Rdb recommends that you specify the UNIFORM page format for
improved performance when specifying a default storage area.

• You cannot delete a storage area that has been established as the database
default storage area.

• You cannot enable after-image journaling or add after-image journal files with
the IMPORT statement. You must use the ALTER DATABASE statement to
enable after-image journaling or add after-image journal files.

SQL Statements 8–19

IMPORT Statement

• After-image journal attributes cannot be imported and are disabled after
IMPORT completes. Therefore, fast commit is also disabled.

Prior to executing the EXPORT statement, use the RMU Extract Item=Alter_
Database command to generate a script of the after-image journal definition.
Once the database has been exported and imported, run the script against
the imported database to re-create the original after-image journal attributes.
See the Oracle RMU Reference Manual for more information on the RMU
Extract command.

• A node specification may only be specified for the root FILENAME clause of
the IMPORT DATABASE statement.

This means that the directory or file specification specified with the following
clauses can only be a device, directory, file name, and file type:

LOCATION clause of the ROW CACHE IS ENABLED, RECOVERY
JOURNAL, ADD CACHE, and CREATE CACHE clauses

SNAPSHOT FILENAME clause

FILENAME and SNAPSHOT FILENAME clauses of the CREATE
STORAGE AREA clause

• If the interchange file is being used by a previous version of Oracle Rdb, the
NOFORWARD_REFERENCES clause should be used on EXPORT to prevent
the dependency information being exported. In addition, the dependency
information in the interchange file can be ignored by Oracle Rdb Release
7.1.0.4 and later versions using the NOFORWARD_REFERENCES clause of
the IMPORT DATABASE statement.

Examples

Example 1: Converting to a multifile database

This example uses the EXPORT and IMPORT statements to convert the online
sample database, personnel, to a multifile database.

SQL> export database
cont> filename PERSONNEL
cont> into PERS;
SQL>
SQL> import database
cont> from PERS
cont> filename MF_PERSONNEL
cont> default storage area MFP0
cont> create storage area MFP0
cont> filename MFP0_DEFAULT
cont> page format is UNIFORM
cont> create storage area MFP1
cont> filename MFP1
cont> create storage area MFP2
cont> filename MFP2
cont> create storage map EMPLOYEES_MAP
cont> for EMPLOYEES
cont> store randomly across (MFP1, MFP2);
SQL>
SQL> show storage area;
Storage Areas in database with filename MF_PERSONNEL

MFP0 Default storage area
MFP1
MFP2
RDB$SYSTEM List storage area.

8–20 SQL Statements

IMPORT Statement

Note that the storage area RDB$SYSTEM was created implicitly in this
example. The database administrator could add a CREATE STORAGE AREA
RDB$SYSTEM clause to this IMPORT example so that the name, location and
space allocation for the RDB$SYSTEM area can be controlled.

Example 2: Importing a database created with ANSI/ISO-style privileges

This example imports a database originally created using ACLS style protection
to create a new database with ANSI style protections.

SQL> import database
cont> from PERS
cont> alias NEW_PERS
cont> filename MF_PERSONNEL
cont> protection is ANSI
cont> ;
SQL> show protection on database NEW_PERS;
Protection on Alias NEW_PERS
[DEV,SMITH]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY,DISTRIBTRAN
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

SQL>
SQL> show protection on table NEW_PERS.EMPLOYEES;
Protection on Table NEW_PERS.EMPLOYEES
[DEV,SMITH]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,REFERENCES
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

Example 3: Importing a database and displaying statistics

This example imports a database and uses the TRACE option to display DIO,
CPU, and PAGE FAULT statistics.

SQL> IMPORT DATABASE FROM personnel.rbr
cont> FILENAME personnel_new.rdb
cont> TRACE
cont> CREATE INDEX LOCAL_INDEX ON jobs (job_code);
IMPORTing STORAGE AREA: RDB$SYSTEM
IMPORTing table COLLEGES
Completed COLLEGES. DIO = 103, CPU = 0:00:00.89, FAULTS = 169
Starting INDEX definition COLL_COLLEGE_CODE
Completed COLL_COLLEGE_CODE. DIO = 25, CPU = 0:00:00.24, FAULTS = 26
IMPORTing table DEGREES
Completed DEGREES. DIO = 96, CPU = 0:00:01.15, FAULTS = 9
Starting INDEX definition DEG_COLLEGE_CODE
Completed DEG_COLLEGE_CODE. DIO = 27, CPU = 0:00:00.36, FAULTS = 1
Starting INDEX definition DEG_EMP_ID
Completed DEG_EMP_ID. DIO = 39, CPU = 0:00:00.49, FAULTS = 2
IMPORTing table DEPARTMENTS
Completed DEPARTMENTS. DIO = 99, CPU = 0:00:00.70, FAULTS = 3
IMPORTing table EMPLOYEES
Completed EMPLOYEES. DIO = 182, CPU = 0:00:01.60, FAULTS = 21

SQL Statements 8–21

IMPORT Statement

.

.

.
Starting CONSTRAINT definition SH_EMPLOYEE_ID_IN_EMP
Completed SH_EMPLOYEE_ID_IN_EMP. DIO = 48, CPU = 0:00:00.56, FAULTS = 2
Starting CONSTRAINT definition WS_STATUS_CODE_DOM_NOT_NULL
Completed WS_STATUS_CODE_DOM_NOT_NULL. DIO = 36, CPU = 0:00:00.23, FAULTS = 0
Completed import. DIO = 3530, CPU = 0:00:32.97, FAULTS = 2031
SQL>

Example 4: Reserving Sequence Slots During an Import Operation

SQL> IMPORT DATABASE FROM MF_PERSONNEL.RBR
cont> FILENAME ’mf_personnel.rdb’ BANNER
cont> RESERVE 64 SEQUENCES;

.

.

.
Unused Sequences were 32 now are 64
IMPORTing STORAGE AREA: RDB$SYSTEM
IMPORTing STORAGE AREA: DEPARTMENTS
IMPORTing STORAGE AREA: EMPIDS_LOW

Example 5: Specifying the BANNER option

SQL> import data from x file mf_personnel BANNER;
Exported by Oracle Rdb V7.2-501 Import/Export utility
A component of Oracle Rdb SQL V7.2-501
Previous name was mf_personnel
It was logically exported on 29-MAY-2003 12:32
Multischema mode is DISABLED
Database NUMBER OF USERS is 50
Database NUMBER OF CLUSTER NODES is 16
Database NUMBER OF DBR BUFFERS is 20
Database SNAPSHOT is ENABLED
Database SNAPSHOT is IMMEDIATE
Database JOURNAL ALLOCATION is 512
Database JOURNAL EXTENSION is 512
Database BUFFER SIZE is 6 blocks
Database NUMBER OF BUFFERS is 20
Adjustable Lock Granularity is Enabled Count is 3
Database global buffering is DISABLED
Database number of global buffers is 250
Number of global buffers per user is 5
Database global buffer page transfer is via DISK
Journal fast commit is DISABLED
Journal fast commit checkpoint interval is 0 blocks
Journal fast commit checkpoint time is 0 seconds
Commit to journal optimization is Disabled
Journal fast commit TRANSACTION INTERVAL is 256
LOCK TIMEOUT is 0 seconds
Statistics Collection is ENABLED
Unused Storage Areas are: 0
System Index Compression is DISABLED
Journal was Disabled
Unused Journals are: 1
Journal Backup Server was: Manual
Journal Log Server was: Manual
Journal Overwrite was: Disabled
Journal shutdown minutes was 60
Asynchronous Prefetch is ENABLED
Async prefetch depth buffers is 5
Asynchronous Batch Write is ENABLED
Async batch write clean buffers is 5
Async batch write max buffers is 4
Lock Partitioning is DISABLED
Incremental Backup Scan Optim uses SPAM pages

8–22 SQL Statements

IMPORT Statement

Unused Cache Slots are: 1
Workload Collection is DISABLED
Cardinality Collection is ENABLED
Metadata Changes are ENABLED
Row Cache is DISABLED
Detected Asynchronous Prefetch is ENABLED
Detected Asynchronous Prefetch Depth Buffers is 4
Detected Asynchronous Prefetch Threshold Buffers is 4
Open is Automatic, Wait period is 0 minutes
Shared Memory is PROCESS
Unused Sequences are: 32
The Transaction Mode(s) Enabled are:

ALL
IMPORTing STORAGE AREA: RDB$SYSTEM
IMPORTing STORAGE AREA: DEPARTMENTS
IMPORTing STORAGE AREA: EMPIDS_LOW
IMPORTing STORAGE AREA: EMPIDS_MID
IMPORTing STORAGE AREA: EMPIDS_OVER
IMPORTing STORAGE AREA: EMP_INFO
IMPORTing STORAGE AREA: JOBS
IMPORTing STORAGE AREA: MF_PERS_SEGSTR
IMPORTing STORAGE AREA: SALARY_HISTORY
IMPORTing table CANDIDATES
IMPORTing table COLLEGES
IMPORTing table DEGREES
IMPORTing table DEPARTMENTS
IMPORTing table EMPLOYEES
IMPORTing table JOBS
IMPORTing table JOB_HISTORY
IMPORTing table RESUMES
IMPORTing table SALARY_HISTORY
IMPORTing table WORK_STATUS
IMPORTing view CURRENT_SALARY
IMPORTing view CURRENT_JOB
IMPORTing view CURRENT_INFO

Example 6: Using the COMMIT EVERY option

SQL> import database
cont> from ’TEST$DB_SOURCE:MF_PERSONNEL’
cont> filename ’MF_PERSONNEL’
cont>
cont> commit every 10 rows
cont>
cont> create storage area DEPARTMENTS
cont> filename ’DEPARTMENTS’
cont> page format is mixed
cont> snapshot filename ’DEPARTMENTS’
cont> create storage area EMPIDS_LOW
cont> filename ’EMPIDS_LOW’
cont> page format is mixed
cont> snapshot filename ’EMPIDS_LOW’
cont> create storage area EMPIDS_MID
cont> filename ’EMPIDS_MID’
cont> page format is mixed
cont> snapshot filename ’EMPIDS_MID’
cont> create storage area EMPIDS_OVER
cont> filename ’EMPIDS_OVER’
cont> page format is mixed
cont> snapshot filename ’EMPIDS_OVER’

.

.

.

SQL Statements 8–23

IMPORT Statement

cont> ; ! end of import
Definition of STORAGE AREA RDB$SYSTEM overridden
Definition of STORAGE AREA MF_PERS_SEGSTR overridden
Definition of STORAGE AREA EMPIDS_LOW overridden
Definition of STORAGE AREA EMPIDS_MID overridden
Definition of STORAGE AREA EMPIDS_OVER overridden
Definition of STORAGE AREA DEPARTMENTS overridden
Definition of STORAGE AREA SALARY_HISTORY overridden
Definition of STORAGE AREA JOBS overridden
Definition of STORAGE AREA EMP_INFO overridden
COMMIT EVERY ignored for table EMPLOYEES due to PLACEMENT VIA INDEX processing
COMMIT EVERY ignored for table JOB_HISTORY due to PLACEMENT VIA INDEX processing
SQL>

8–24 SQL Statements

INCLUDE Statement

INCLUDE Statement

Inserts declarations or code into a precompiled host language program. You can
use the INCLUDE statement to insert:

• Host language declarations for the SQL Communications Area (SQLCA) and
a message vector

• Host language declarations for the SQL Descriptor Areas (SQLDA and
SQLDA2)

• Host language source code

• Host language declarations for repository record definitions

Environment

You can use the INCLUDE statement in precompiled host language programs
only. Programs must either use an INCLUDE SQLCA statement or explicitly
declare an SQLCODE variable. The other forms of the INCLUDE statement are
optional (see the Usage Notes).

Format

INCLUDE SQLCA
EXTERNAL

SQLDA
SQLDA2
<file-spec>
MODULE <name>

FROM LIBRARY <lib-file-spec>
FROM DICTIONARY <path-name>

FIXED
NULL TERMINATED BYTES
NULL TERMINATED CHARACTERS

AS <name>

Arguments

AS name
Specifies a name to override the structure name of the record from the repository.
By default, the SQL precompiler takes the structure name from the repository
record name.

EXTERNAL
Declares an external reference to the SQLCA structure for SQL precompiled
C programs. If you have multiple modules that use the INCLUDE SQLCA
statement, you can add the EXTERNAL keyword to all but one of them.

SQL Statements 8–25

INCLUDE Statement

If your application shares the SQLCA among multiple images, one image must
define the SQLCA while all other images must reference the SQLCA. Use the
EXTERNAL keyword to reference the SQLCA.

file-spec
The file specification for source code to be inserted into your program. The file
specification must refer to a standard OpenVMS text file. SQL does not support
the INCLUDE statement from text libraries (file extension .tlb). Use the SQL
INCLUDE statement in either of these cases:

• The source code to be included contains embedded SQL statements.

• The source code to be included contains host language variable declarations
to which embedded SQL statements in other parts of the program refer.

If the source code contains neither SQL statements nor variables to which SQL
statements refer, using the SQL INCLUDE statement is no different from using
host language statements to include files.

FIXED
The FIXED and NULL TERMINATED BYTES clauses tell the precompiler how
to interpret C language CHAR fields. If you specify FIXED, the precompiler
interprets CHAR fields from the repository as fixed character strings.

FROM DICTIONARY path-name
Specifies the path name for a repository record definition. Because SQL treats
the path name as a string literal, you should enclose it in single quotation marks.
SQL declares a host structure corresponding to the repository record definition
and gives it the same name. SQL statements embedded in the program can then
refer to the host structure.

Typically, programs use the FROM DICTIONARY argument as a convenient
way to declare host structures that correspond to table definitions stored in the
repository.

SQL stores table definitions in the repository in the following cases only:

• Both the CREATE DATABASE statement and the database declaration
for the attach in which the table was defined specified the PATHNAME
argument.

• The database definitions were copied to the repository with an INTEGRATE
statement.

However, programs can use the FROM DICTIONARY argument to declare
host structures for any CDD$RECORD repository object type, including those
repository objects defined as part of the database.

Using the INCLUDE statement does more than using a comparable host language
statement that inserts a CDD$RECORD object into the program. The INCLUDE
FROM DICTIONARY statement lets you refer to the repository record in an
embedded SQL statement, while the host language statement does not.

MODULE FROM LIBRARY <library-file-spec>
This command will include the source text from the named text library.
The text library should be created using the OpenVMS command
LIBRARY/CREATE/TEXT. The name of the modules in that library can be
determined using the LIBRARY/LIST/TEXT. It is posible that these modules are
specifically named using the /MODULE qualifier on the LIBRARY command.

8–26 SQL Statements

INCLUDE Statement

$ LIBRARY/CREATE/TEXT PERSONNEL_DEFS.TLB
$ LIBRARY/REPLACE/TEXT PERSONNEL_DEFS.TLB EMPS.LIB/MODULE=EMPLOYEES_REC
$ LIBRARY/REPLACE/TEXT PERSONNEL_DEFS.TLB SH.LIB/MODULE=SALARY_HISTORY_REC
$ LIBRARY/REPLACE/TEXT PERSONNEL_DEFS.TLB JH.LIB/MODULE=JOB_HISTORY_REC
$

To reference this text library, the application would use an INCLUDE statement
as shown below:

EXEC SQL INCLUDE MODULE EMPLOYEES_REC FROM LIBRARY ’PERSONNEL_DEFS.TLB’
END-EXEC

MODULE <modulename>
This abbreviated statement defaults to using the text library named SQL$TEXT_
LIBRARY in the default directory or referenced by the logical name SQL$TEXT_
LIBRARY.

EXEC SQL INCLUDE MODULE EMPLOYEES_REC
END-EXEC

NULL TERMINATED BYTES
Specifies that CHAR fields from the repository are null-terminated. The module
processor interprets the length field in the repository as the number of bytes in
the string. If n is the length in the repository, then the number of data bytes is
n–1, and the length of the string is n bytes.

In other words, the precompiler assumes that the last character of the string is
for the null terminator. Thus, a field that the repository lists as 10 characters can
only hold a 9-character SQL field from the C precompiler.

If you do not specify a character interpretation option, NULL TERMINATED
BYTES is the default.

For more information, see the NULL TERMINATED CHARACTERS argument in
Chapter 3.

NULL TERMINATED CHARACTERS
Specifies that CHAR fields from the dictionary are null-terminated, but the
module processor interprets the length field as a character count. If n is the
length in the dictionary, then the number of data bytes is n, and the length of the
string is �� � bytes.

SQLCA
Specifies that SQL inserts into the program the SQLCA and a message vector
(RDB$MESSAGE_VECTOR) structure specific to supported database systems.
Both the SQLCA and the message vector provide ways of handling error
conditions:

• The SQLCA is a collection of variables that SQL uses to provide information
about the execution of SQL statements to application programs. The SQLCA
shows if a statement was successful and, for some conditions, the particular
error when a statement was not successful.

• The message vector is also a collection of variables that SQL updates after
SQL executes a statement. The message vector also lets programs check if
a statement was successful, but provides more detail than the SQLCA about
the type of error condition if a statement was not successful.

For more information on the SQLCA and the message vector, see Appendix C.

SQL Statements 8–27

INCLUDE Statement

SQLDA
Specifies that SQL inserts the SQLDA into the program. The SQLDA is
a collection of variables used only in dynamic SQL. The SQLDA provides
information about dynamic SQL statements to the program, and information
about host language variables in the program to SQL.

SQLDA2
Specifies that SQL inserts the SQLDA2 into the program. The SQLDA2, like the
SQLDA, is a collection of variables that provides information about dynamic SQL
statements to the program and information about host language variables in the
program to SQL. You should use the SQLDA2 in any dynamic statement where
the column name used in a parameter marker or select list item is one of the
date-time or interval data types.

For more information on the SQLDA and SQLDA2, see Appendix D.

Usage Notes

• The Ada and Pascal precompilers do not support the INCLUDE FROM
DICTIONARY statement.

• You do not have to use the INCLUDE SQLCA statement in programs.
However, if you do not, you must explicitly declare the SQLCODE variable to
receive values from SQL.

To comply with the ANSI/ISO SQL standard, you should explicitly declare
the SQLCODE variable instead of using the INCLUDE SQLCA statement.
However, programs that do not use the INCLUDE SQLCA statement will not
have the RDB$MESSAGE_VECTOR message vector structure declared by
the precompiler. Such programs may have to explicitly declare the message
vector. See Appendix C.3 for sample declarations of the message vector.

• Programs that use an INCLUDE SQLCA statement must place it where it is
valid to declare variables.

• All SQL statements embedded in a precompiled program must be within the
scope of either an SQLCODE or SQLCA declaration. The SQL precompiler
supports block structure in Pascal, Ada, and C programs but not in COBOL,
FORTRAN, or PL/I. This means SQL is more restrictive about where it allows
embedded SQL statements in COBOL, FORTRAN, and PL/I programs that
contain multiple modules than in Pascal, Ada, and C (a module is a set of
statements that can be separately compiled).

In COBOL, FORTRAN, and PL/I programs, only one module can declare
an SQLCA or SQLCODE parameter. Because of this, program source files
with more than one module cannot contain embedded SQL statements in
more than one of the modules.

If a module contains more than one routine, you can use SQL statements
in those routines provided they are within the scope of the INCLUDE
SQLCA statement. COBOL and PL/I allow such nested routines, but
FORTRAN does not.

In Ada, C, and Pascal programs, all SQL statements must be within the
scope of an SQLCODE or SQLCA declaration; however, each module of
a program can contain a declaration (or many declarations, such as one
in each routine in the module). Thus, you can embed SQL statements in
more than one module in Ada, C, and Pascal programs.

8–28 SQL Statements

INCLUDE Statement

• SQL does not require programs that use the INCLUDE FROM DICTIONARY
statement to declare aliases with the PATHNAME argument. However,
programs that use the INCLUDE FROM DICTIONARY statement to declare
host structures that correspond to table definitions must specify a complete
repository path name for those table definitions.

The database system stores table definitions in a path name called
RDB$RELATIONS that is subordinate to the database path name. When
referencing these definitions the path name in the INCLUDE FROM
DICTIONARY statement must include the RDB$RELATIONS name in
the path name specification.

• Source code files specified in an SQL INCLUDE file-spec statement cannot
contain nested INCLUDE file-spec statements themselves.

• The SQL precompiler will not process an INCLUDE statement in the middle
of a variable declaration. The following segment from a COBOL program
illustrates an INCLUDE statement that is not processed:

01 dept_rec pic x(24).

01 commarea.

EXEC SQL INCLUDE ’A.DAT’ END-EXEC.

• Using the INCLUDE command makes any included text visible to the SQL
Precompiler and also the target language. Use this command when you wish
to make variable and record definitions visible to SQL or if the included text
also contains EXEC SQL directives.

• The module included from a text library may not also include the INCLUDE
file-spec statement nor the INCLUDE MODULE statement.

• The default file type for the text LIBRARY is .TLB

• If the text library is created with case sensitive names, then the MODULE
name must be in quotes to preserve the case of the name.

$ LIBRARY/CREATE=CASE_SENSITIVE:yes/TEXT PERSONNEL_DEFS.TLB
$ LIBRARY/REPLACE/TEXT -

PERSONNEL_DEFS.TLB -
JH.LIB/MODULE="JobHistoryRecord"

In such cases, the SQL$PRE command line, or the MODULE header must
specify that QUOTING RULES are enabled to allow quoted names. This
can be specified using /SQLOPTIONS qualifier to specify either ANSI_
IDENTIFIERS or ANSI_QUOTING, or compiling with a DECLARE MODULE
statement in a context file.

$! Use a context file and set SQL99 quoting rules
$ CREATE CONTEXT_FILE.SQL
declare module TESTING

pragma (ident ’V1.00’)
quoting rules sql99;

$ DEFINE/USER SQL$TEXT_LIBRARY INCLUDE_MODULE.TLB
$ SQL$PRE/COBOL SAMPLE_APP CONTEXT_FILE.SQL

SQL Statements 8–29

INCLUDE Statement

Examples

Example 1: Including a host structure declaration

This simple COBOL program uses the INCLUDE FROM DICTIONARY
statement to declare a host structure that corresponds to the EMPLOYEES
table in the sample personnel database. The repository path name specifies the
RDB$RELATIONS repository directory between the database directory and the
table name.

IDENTIFICATION DIVISION.
PROGRAM-ID. INCLUDE_FROM_CDD.
*
* Illustrate how to use the INCLUDE FROM DICTIONARY
* statement to declare a host structure corresponding to
* the EMPLOYEES table:
*
DATA DIVISION.
WORKING-STORAGE SECTION.
EXEC SQL WHENEVER SQLERROR GOTO ERR END-EXEC.
*
* Include the SQLCA:
EXEC SQL INCLUDE SQLCA END-EXEC.
*
* Declare the schema:
* (Notice that declaring the alias with the
* FILENAME qualifier would not have precluded
* using the INCLUDE FROM DICTIONARY statement later.)
EXEC SQL DECLARE PERS ALIAS FOR

FILENAME ’SQL$DATABASE’
END-EXEC.

*
* Create a host structure that corresponds to the
* EMPLOYEES table with the INCLUDE FROM DICTIONARY
* statement. The path name in the INCLUDE statement
* must specify the RDB$RELATIONS directory before
* the table name:
EXEC SQL INCLUDE FROM DICTIONARY

’CDD$DEFAULT.PERSONNEL.RDB$RELATIONS.EMPLOYEES’
END-EXEC.
*
* Declare an indicator structure for the host
* structure created by the INCLUDE FROM DICTIONARY statement:
01 EMPLOYEES-IND.

02 EMP-IND OCCURS 12 TIMES PIC S9(4) COMP.
EXEC SQL DECLARE E_CURSOR CURSOR

FOR SELECT * FROM PERS.EMPLOYEES END-EXEC.

PROCEDURE DIVISION.
0.

DISPLAY "Display rows from EMPLOYEES:".
EXEC SQL OPEN E_CURSOR END-EXEC.
EXEC SQL FETCH E_CURSOR INTO :EMPLOYEES:EMP-IND END-EXEC.
PERFORM UNTIL SQLCODE NOT = 0

DISPLAY EMPLOYEE_ID, ’, ’, FIRST_NAME, LAST_NAME
EXEC SQL FETCH E_CURSOR INTO :EMPLOYEES:EMP-IND END-EXEC

END-PERFORM.
EXEC SQL CLOSE E_CURSOR END-EXEC.
EXEC SQL ROLLBACK END-EXEC.
STOP RUN.

ERR.
DISPLAY "unexpected error ", sqlcode with conversion.
CALL "SQL$SIGNAL".

8–30 SQL Statements

INCLUDE Statement

Example 2: Including the SQLCA

This fragment from a PL/I program shows the INCLUDE SQLCA statement and
illustrates how an error-handling routine refers to the SQLCA.

The program creates an intermediate result table, TMP, and copies the
EMPLOYEES table from the personnel database into it. It then declares a
cursor for TMP and displays the rows of the cursor on the terminal screen.

/* Include the SQLCA: */
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO ERROR_HANDLER;
EXEC SQL DECLARE ALIAS FOR FILENAME personnel;
DCL MANAGER_ID CHAR(5),

LAST_NAME CHAR(20),
DEPT_NAME CHAR(20);

DCL COMMAND_STRING CHAR(256);

EXEC SQL CREATE TABLE TMP
(MANAGER_ID CHAR(5),
LAST_NAME CHAR(20),
DEPT_NAME CHAR(20));

COMMAND_STRING =
’INSERT INTO TMP

SELECT E.LAST_NAME,
E.FIRST_NAME,
D.DEPARTMENT_NAME

FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.EMPLOYEE_ID = D.MANAGER_ID’;

EXEC SQL EXECUTE IMMEDIATE :COMMAND_STRING;

EXEC SQL DECLARE X CURSOR FOR SELECT * FROM TMP;
EXEC SQL OPEN X;
EXEC SQL FETCH X INTO MANAGER_ID, LAST_NAME, DEPT_NAME;
DO WHILE (SQLCODE = 0);

PUT SKIP EDIT
(MANAGER_ID, ’ ’, LAST_NAME, ’ ’, DEPT_NAME)
(A,A,A,A,A);

EXEC SQL FETCH X INTO MANAGER_ID, LAST_NAME, DEPT_NAME;
END;
EXEC SQL ROLLBACK;
PUT SKIP EDIT (’ ALL OK’) (A);
RETURN;

ERROR_HANDLER:

/* Display the value of the SQLCODE field in the SQLCA: */
PUT SKIP EDIT (’UNEXPECTED SQLCODE VALUE ’, SQLCODE) (A, F(9));
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK;

SQL Statements 8–31

INSERT Statement

INSERT Statement

Adds a new row, or a number of rows, to a table or view. You can also use the
INSERT statement with a cursor to assign values to the segments in a column of
the LIST OF BYTE VARYING data type.

Before you assign values to the segments in a column of the LIST OF BYTE
VARYING data type, you must first assign a value to one or more other columns
in the same row. To do this, use a positioned insert. A positioned insert is
an INSERT statement that specifies an insert-only table cursor. This type of
INSERT statement sets up the proper row context for subsequent list cursors to
assign values to list segments.

You can specify the name of a static, a dynamic, or an extended dynamic cursor
in a positioned insert. If you specify a static cursor name, that cursor name must
also be specified in a DECLARE CURSOR statement within the same module.
See the DECLARE CURSOR Statement for more information on static, dynamic,
and extended dynamic cursors.

When you use an INSERT statement to assign values to list segments:

• The current transaction must not be read-only.

• You cannot specify a cursor name that refers to an update table cursor.

• Your cursor must specify an intermediate table.

• The value that you assign is appended to the end of the list.

Environment

You can use the INSERT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

INSERT INTO <table-name>
<view-name> AS <correlation-name>
CURSOR <cursor-name>

DEFAULT VALUES
returning-clause

(<column-name>)
,

OVERRIDING SYSTEM VALUE
OVERRIDING USER VALUE

value-clause
select-expr

optimize-clause

8–32 SQL Statements

INSERT Statement

value-clause =

VALUES (<parameter>)
<qualified-parameter>
value-expr
DEFAULT

,

returning-clause =

PLACEMENT ONLY

RETURNING value-expr
, INTO <parameter>

,

value-expr =

numeric-value-expr
binary-value-expr
char-value-expr
date-time-value-expr
interval-value-expr
date-vms-value-expr
DBKEY
NULL
ROWID

select-expr =

select-clause
with-clause

(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause offset-clause limit-to-clause

optimize-clause =

OPTIMIZE AS <query-name>
FOR BITMAPPED SCAN

FAST FIRST
SEQUENTIAL ACCESS
TOTAL TIME

OUTLINE outline-definition
USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

SQL Statements 8–33

INSERT Statement

outline-definition =

MODE mode AS (query-list)
USING

COMPLIANCE MANDATORY
OPTIONAL

EXECUTION OPTIONS (execution-options)

COMMENT IS ’string’
/

select-merge-clause =

EXCEPT
DISTINCT CORRESPONDING

INTERSECT NATURAL
DISTINCT

MINUS
UNION

ALL
DISTINCT

Arguments

column-name
Specifies a list of names of columns in the table or view. You can list the columns
in any order, but the names must correspond to those of the table or view.

If you do not include all the column names in the list, SQL assigns a null value
to those not specified, unless columns were:

• Defined with a default

• Based on a domain that has a default

• Defined as an AUTOMATIC INSERT AS column

• Defined with the IDENTITY attribute

• Defined with the NOT NULL clause in the CREATE TABLE statement

You cannot omit from an INSERT statement the names of columns defined with
the NOT NULL clause. If you do, the statement fails.

Omitting the list of column names altogether is the same as listing all the
columns of the table or view in the same order as they were defined.

You must omit the list of column names when using the INSERT statement to
assign values to the segments in a column of data type LIST OF BYTE VARYING.
Column names are not valid in this context.

CURSOR cursor-name
Keyword required when using cursors. You must use a cursor to insert values
into any row that contains a column of the LIST OF BYTE VARYING data type.

8–34 SQL Statements

INSERT Statement

DEFAULT
Forces the named column to assume the default value defined for that column (or
NULL if none is defined).

If the DEFAULT clause is used in an INSERT statement then one of the following
will be applied:

• If a DEFAULT attribute is present for the column then that value will be
applied during INSERT.

• If an AUTOMATIC attribute is present for the column then that value
will be applied during INSERT. This can only happen if the SET FLAGS
’AUTO_OVERRIDE’ is used since during normal processing these columns
are read-only.

• Otherwise a NULL will be applied during INSERT.

DEFAULT VALUES
Specifies that every column in the table be assigned a default value. Generated
columns (such as AUTOMATIC INSERT AS, GENERATED, or IDENTITY)
will be assigned the result of the value expression used to define the column.
Otherwise NULL will be assigned for non-generated columns, or columns without
a DEFAULT.

INTO parameter
Returns the values from the RETURNING clause into the specified list of
parameters. There must exist one parameter for each value expression listed by
the RETURNING clause.

This clause may be omitted for Interactive SQL which will then print the
returned values.

INTO table-name
INTO view-name
The name of the target cursor, table or view to which you want to add a row.

limit-to-clause
See Section 2.8.1 for a description of the LIMIT TO expression.

OPTIMIZE AS query-name
The OPTIMIZE AS clause assigns a name to the query. Use the SET FLAGS
’STRATEGY’ to see this name displayed.

OPTIMIZE FOR
The OPTIMIZE FOR clause specifies the preferred optimizer strategy for
statements that specify a select expression. The following options are available:

• BITMAPPED SCAN

Requests the Rdb query optimizer attempt to use BITMAPPED SCAN if
there exists multiple supporting indices. This option is not compatible with
SEQUENTIAL ACCESS.

• FAST FIRST

A query optimized for FAST FIRST returns data to the user as quickly as
possible, even at the expense of total throughput.

SQL Statements 8–35

INSERT Statement

If a query can be canceled prematurely, you should specify FAST FIRST
optimization. A good candidate for FAST FIRST optimization is an interactive
application that displays groups of records to the user, where the user has
the option of aborting the query after the first few screens. For example,
singleton SELECT statements default to FAST FIRST optimization.

Choose either FAST FIRST or TOTAL TIME. If optimization strategy is not
explicitly set, FAST FIRST is the default.

• SEQUENTIAL ACCESS

Forces the use of sequential access. This is particularly valuable for tables
that use the strict partitioning functionality. This option is not compatible
with BITMAPPED SCAN.

• TOTAL TIME

If your application runs in batch, accesses all the records in the query,
and performs updates or writes a report, you should specify TOTAL TIME
optimization. Most queries benefit from TOTAL TIME optimization.

Choose either FAST FIRST or TOTAL TIME. Queries inside compound
statements default to TOTAL TIME.

OPTIMIZE OUTLINE outline-definition
The OPTIMIZE OUTLINE clause declares a temporary query outline to be used
with the select expression.

See the CREATE OUTLINE Statement for more information on defining an
outline.

See the CREATE OUTLINE Statement for more information on defining an
outline.

OPTIMIZE USING outline-name
The OPTIMIZE USING clause explicitly names the query outline to be used with
the select expression even if the outline ID for the select expression and for the
outline are different.

See the CREATE OUTLINE Statement for more information on creating an
outline.

OPTIMIZE WITH
Selects one of three optimization controls: DEFAULT (as used by previous
versions of Rdb), AGGRESSIVE (assumes smaller numbers of rows will be
selected), and SAMPLED (which uses literals in the query to perform preliminary
estimation on indices).

The following example shows how to use this clause.

SQL> select * from employees where employee_id > ’00200’
cont> optimize with sampled selectivity;

order-by-clause
See Section 2.8.1 for a description of the ORDER BY expression.

OVERRIDING
The OVERRIDING SYSTEM VALUE clause instructs Rdb that the GENERATED,
IDENTITY or AUTOMATIC AS columns will be inserted with user supplied
values and therefore no generated values will be created. Such a clause would
be used if a table was being reloaded after maintenance and the database
administrator wanted to retain the saved generated values.

8–36 SQL Statements

INSERT Statement

The OVERRIDING USER VALUE clause instructs Rdb that the GENERATED,
IDENTITY or AUTOMATIC AS columns will be generated by the database
system and that any user supplied values will be ignored. Such a clause would
be used when column names were wild carded by a SELECT clause and therefore
avoids enumerating all non-generated column names.

Without this clause INSERT into AUTOMATIC, GENERATED (always) and
IDENTITY (always) will result in a read-only column error.

PLACEMENT ONLY
This clause modifies the INSERT statement so that Oracle Rdb computes the
approximate location, that is placement, of the inserted data. No actual update
of the database occurs. Usually this clause is coupled with the RETURNING
DBKEY OR RETURNING ROWID clause so that the target storage area, possibly
the target page number can be collected by an application.

Use of this clause can improve bulk data loads by allowing applications to order
the rows to be inserted by storage area number and page number prior to starting
the bulk load. In this way the load program makes better use of the buffered
pages by accessing them in a well defined order. For more information, see the
Oracle Rdb Guide to Database Design and Definition.

The keyword ROWID is a synonym to the DBKEY keyword.

RETURNING value-expr
Returns the values of columns from the target table. If DBKEY is specified, this
argument returns the database key (dbkey) of the row being added. When the
DBKEY value is valid, subsequent queries can use the DBKEY value to access
the row directly. The ROWID keyword is a synonym for the DBKEY keyword.

The RETURNING DBKEY clause is not valid in an INSERT statement used to
assign values to the segments in a column of the LIST OF BYTE VARYING data
type.

select-clause
See Section 2.8.1 for a description of the SELECT expression.

select-expr
Specifies a select expression that specifies a result table. The result table can
contain zero or more rows. All the rows of the result table are added to the target
table named in the INTO clause.

INSERT is one of the few SQL statements that allows you to specify a second
database.

The number of columns in the result table must correspond to the number of
updatable columns specified in the list of column names. If you did not specify
a list of column names, the number of columns in the result table must be the
same as the number of updatable columns in the target table. For each row of
the result table, the value of the first column is assigned to the first column of the
target table, the second value to the second column, and so on.

You cannot specify a select expression in an INSERT statement used to assign
values to the segments in a column of the LIST OF BYTE VARYING data type.

For detailed information on select expressions, see Section 2.8.1.

SQL Statements 8–37

INSERT Statement

VALUES value-expr
Specifies a list of values to be added to the table as a single row. The values can
be specified through parameters, qualified parameters, column select expressions,
value expressions, or the default values.

See Chapter 2 for more information about parameters, qualified parameters,
column select expressions, value expressions, and default values.

The values listed in the VALUES argument can be selected from another table,
but both tables must reside in the same database.

The number of values in the list must correspond to the number of updatable
columns specified in the list of column names. If you did not specify a column list,
the number of values in the list must be the same as the number of updatable
columns in the table. The first value specified in the list is assigned to the first
column, the second value to the second column, and so on.

Values for IDENTITY, COMPUTED BY, and AUTOMATIC columns are not able
to be inserted so these column types are not considered for the default column
list.

See the SQL Online Help topic INSERT EXAMPLES for an example that shows
an INSERT statement with a column select expression.

Usage Notes

• You must have the INSERT privilege on the target table or view in order to
insert rows.

• The INSERT will execute BEFORE and AFTER INSERT triggers if they
exist.

• When you use the INSERT statement to add rows to a view, you are actually
adding rows to the base tables on which the view is based. In addition, SQL
restricts the types of views with which you can use the INSERT statement.
See the CREATE VIEW Statement for rules about inserting, updating, and
deleting values in views.

• You can get a confusing error message when you attempt to insert rows into a
view and both the following are true:

The view is based on a table that contains a column defined with the NOT
NULL attribute.

The view definition does not include the column defined with the NOT
NULL attribute.

For example:

SQL> -- Create a view that is not a read-only view:
SQL> CREATE VIEW TEMP AS
cont> SELECT SUPERVISOR_ID FROM JOB_HISTORY;
SQL>

8–38 SQL Statements

INSERT Statement

SQL> -- However, the JOB_HISTORY table on which the view is based
SQL> -- contains a column, EMPLOYEE_ID, that is defined with the
SQL> -- NOT NULL attribute. Because the TEMP view does not include
SQL> -- the EMPLOYEE_ID column, all attempts to store rows into
SQL> -- it will fail because no value is provided for EMPLOYEE_ID:
SQL> INSERT INTO TEMP (SUPERVISOR_ID) VALUES (’99999’);
%RDB-E-INTEG_FAIL, violation of constraint JH_EMP_ID_EXISTS caused operation to fail
-RDB-F-ON_DB, on database RDB$DEFAULT_CONNECTION
SQL> ROLLBACK;
SQL>

• To move data between databases, SQL lets you refer to a table from one
database in the INTO clause of an INSERT statement, and to tables from
another database in a select expression within that INSERT statement.

INSERT is one of the few SQL statements that allows you to specify a second
database. Example 4 illustrates this point.

• The PLACEMENT ONLY RETURNING DBKEY (or ROWID) clause of the
INSERT statement returns the dbkey of a specified row. This clause allows
an application to build a list of unordered dbkeys for all specified rows. You
can then use the Sort utility (SORT) to create a sorted list of dbkeys and
use this sorted list to insert the rows. When you store records sorted by
dbkey, you are writing rows to database pages in sequence with all rows for
a page written to the page while it is in the buffer. Because less random
I/O is involved when you store records in this way, a significant performance
improvement can occur during your load procedure. This clause can result
in significant performance improvements in database load procedures that
specify the PLACEMENT VIA INDEX clause for a hashed index. Use it only
with records for which a hashed index has been defined.

• You cannot insert a row into an insert-only table cursor by using the
RETURNING DBKEY clause.

The following example shows the invalid syntax:

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> DECLARE CURSOR1 INSERT ONLY TABLE CURSOR FOR SELECT * FROM COLLEGES;
SQL> OPEN CURSOR1;
SQL> INSERT INTO CURSOR CURSOR1 (COLLEGE_CODE, COLLEGE_NAME)
cont> VALUES (’ASU’,’Arizona State University’) RETURNING DBKEY;
%SQL-F-NORETURN, Specifying a RETURNING clause is incompatible with a
positioned insert statement
SQL> CLOSE CURSOR1;
SQL>
SQL> DECLARE CURSOR2 INSERT ONLY TABLE CURSOR FOR
cont> SELECT * FROM RESUMES;
SQL> OPEN CURSOR2;
SQL> INSERT INTO CURSOR CURSOR2 (EMPLOYEE_ID)
cont> VALUES (’00169’) RETURNING DBKEY;
%SQL-F-NORETURN, Specifying a RETURNING clause is incompatible with a
positioned insert statement
SQL> CLOSE CURSOR2;
SQL> DISCONNECT ALL;

To avoid this problem, specify the SQL INSERT statement without using
a cursor. Use the INSERT INTO table-name . . . RETURNING DBKEY
INTO . . . syntax.

• Oracle Rdb uses the outline specified in the OPTIMIZE USING clause (if
it exists) or as specified by the OPTIMIZE OUTLINE clause unless one or
more of the directives in the outline cannot be followed. For example, if the
compliance level for the outline is mandatory and one of the indexes specified

SQL Statements 8–39

INSERT Statement

in the outline directives has been deleted, the outline is not used. SQL issues
an error message if an existing outline cannot be used.

If you specify the name of an outline that does not exist, Oracle Rdb compiles
the query, ignores the outline name, and searches for an existing outline with
the same outline ID as the query. If an outline with the same outline ID is
found, Oracle Rdb attempts to execute the query using the directives in that
outline. If an outline with the same outline ID is not found, the optimizer
selects a strategy for the query for execution.

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information regarding query outlines.

• If the target table of the INSERT statement has an IDENTITY column then a
new value will be generated for the new row.

In addition the CURRVAL pseudo column can be used with the name of the
table to reference the new sequence number. For instance, this example
assumes the table ORDER has a column defined with the IDENTITY
attribute.

SQL> insert into ORDER values (...);
SQL> insert into ORDER_LINES (ORDER.CURRVAL, ...);
SQL> insert into ORDER_LINES (ORDER.CURRVAL, ...);

This example shows that the FOREIGN KEY value is selected using a
reference to the table name followed by the CURRVAL pseudo column.

However, the NEXTVAL pseudo column can not be used to fetch a new
identity value. Only an INSERT on the table can generate a new identity
value.

• If the INSERT on the table is rolled back or fails due to a constraint or
trigger error condition, then the used identity values are discarded. If a row
is deleted from the table, the identity value is not reused. For an exception to
the reuse rule, see the usage note on TRUNCATE TABLE statement.

Examples

Example 1: Adding a row with literal values

The following interactive SQL example stores a new row in the DEPARTMENTS
table of the sample personnel database. It explicitly assigns a literal value
to each column in the row. Because the statement includes the RETURNING
DBKEY clause, SQL returns the dbkey value 29:435:9.

8–40 SQL Statements

INSERT Statement

SQL> INSERT INTO DEPARTMENTS
cont> -- List of columns:
cont> (DEPARTMENT_CODE,
cont> DEPARTMENT_NAME,
cont> MANAGER_ID,
cont> BUDGET_PROJECTED,
cont> BUDGET_ACTUAL)
cont> VALUES
cont> -- List of values:
cont> (’RECR’,
cont> ’Recreation’,
cont> ’00175’,
cont> 240000,
cont> 128776)
cont> RETURNING DBKEY;

DBKEY
29:435:9

1 row inserted

Example 2: Adding a row using parameters

This example is a COBOL program fragment that adds a row to the JOB_
HISTORY table by explicitly assigning values from parameters to columns in the
table. This example:

• Prompts for the column values.

• Declares a read/write transaction. Because you are updating the JOB_
HISTORY table, you do not want to conflict with other users who may be
reading data from this table. Therefore, you use the protected share mode
and the write lock type.

• Stores the row by assigning the parameters to the columns of the table.

• Checks the value of the SQLCODE variable and repeats the INSERT
operation if the value is less than zero.

• Uses the COMMIT statement to make the update permanent.

STORE-JOB-HISTORY.

DISPLAY "Enter employee ID: " WITH NO ADVANCING.
ACCEPT EMPL-ID.
DISPLAY "Enter job code: " WITH NO ADVANCING.
ACCEPT JOB-CODE.
DISPLAY "Enter starting date: " WITH NO ADVANCING.
ACCEPT START-DATE.
DISPLAY "Enter ending date: " WITH NO ADVANCING.
ACCEPT END-DATE.
DISPLAY "Enter department code: " WITH NO ADVANCING.
ACCEPT DEPT-CODE.
DISPLAY "Enter supervisor’s ID: " WITH NO ADVANCING.
ACCEPT SUPER.

EXEC SQL
SET TRANSACTION READ WRITE

RESERVING JOB_HISTORY FOR PROTECTED WRITE
END-EXEC

SQL Statements 8–41

INSERT Statement

EXEC SQL
INSERT INTO JOB_HISTORY

(EMPLOYEE_ID,
JOB_CODE,
JOB_START,
JOB_END,
DEPARTMENT_CODE,
SUPERVISOR_ID)

VALUES (:EMPL-ID,
:JOB-CODE,
:START-DATE,
:END-DATE,
:DEPT-CODE,
:SUPER)

END-EXEC

IF SQLCODE < 0 THEN
EXEC SQL ROLLBACK END-EXEC
DISPLAY "An error has occurred. Try again."
GO TO STORE-JOB-HISTORY

END-IF

EXEC SQL COMMIT END-EXEC

Example 3: Copying from one table to another

This interactive SQL example copies a subset of data from the EMPLOYEES
table to an identical intermediate result table. To do this, it uses a select
expression that limits rows of the select expression’s result table to those with
data on employees who live in New Hampshire.

SQL> INSERT INTO TEMP
cont> (EMPLOYEE_ID,
cont> LAST_NAME,
cont> FIRST_NAME,
cont> MIDDLE_INITIAL,
cont> ADDRESS_DATA_1,
cont> ADDRESS_DATA_2,
cont> CITY,
cont> STATE,
cont> POSTAL_CODE,
cont> SEX,
cont> BIRTHDAY,
Cont> STATUS_CODE)
cont> SELECT * FROM EMPLOYEES
cont> WHERE STATE = ’NH’;
90 rows inserted
SQL>

Example 4: Copying rows between databases with the INSERT statement

This example copies the contents of the EMPLOYEES table from the personnel
database to another database, LOCALDATA.

8–42 SQL Statements

INSERT Statement

SQL> ATTACH ’ALIAS PERS FILENAME personnel’;
SQL> ATTACH ’ALIAS LOCALDB FILENAME localdata’;
SQL>
SQL> DECLARE TRANSACTION
cont> ON PERS USING (READ ONLY
cont> RESERVING PERS.EMPLOYEES FOR SHARED READ)
cont> AND
cont> ON LOCALDB USING (READ WRITE
cont> RESERVING LOCALDB.EMPLOYEES FOR SHARED WRITE);
SQL>
SQL> INSERT INTO LOCALDB.EMPLOYEES
cont> SELECT * FROM PERS.EMPLOYEES;
100 rows inserted
SQL>

Example 5: Adding data to columns of data type LIST OF BYTE VARYING

The following interactive SQL example adds a new row to the RESUMES table
of the sample personnel database. It first assigns a value to the EMPLOYEE_ID
column, then adds three lines of information to the RESUME column of the same
row. The RESUME column has the LIST OF BYTE VARYING data type. You
must specify the name of the list column (RESUME) in addition to the table
column when declaring the table cursor for a positioned insert.

SQL> DECLARE TBLCURSOR INSERT ONLY TABLE CURSOR FOR SELECT EMPLOYEE_ID, RESUME
cont> FROM RESUMES;
SQL> DECLARE LSTCURSOR INSERT ONLY LIST CURSOR FOR SELECT RESUME
cont> WHERE CURRENT OF TBLCURSOR;
SQL> OPEN TBLCURSOR;
SQL> INSERT INTO CURSOR TBLCURSOR (EMPLOYEE_ID) VALUES (’00167’);
1 row inserted
SQL> OPEN LSTCURSOR;
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’This is the resume for 00167’);
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’Boston, MA’);
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’Oracle Corporation’);
SQL> CLOSE LSTCURSOR;
SQL> CLOSE TBLCURSOR;
SQL> COMMIT;

Example 6: Using the PLACEMENT ONLY RETURNING DBKEY clause of the
INSERT statement

SQL> INSERT INTO EMPLOYEES
cont> (EMPLOYEE_ID, LAST_NAME, FIRST_NAME)
cont> VALUES
cont> (’5000’, ’Parsons’, ’Diane’)
cont> PLACEMENT ONLY RETURNING DBKEY;

DBKEY
56:34:-1

1 row allocated
SQL>

Example 7: Inserting the user name and an amount into table columns:

SQL> CREATE TABLE TABLE1
cont> (ID CHAR(15),
cont> AMOUNT INT(4));
SQL> INSERT INTO TABLE1 (ID, AMOUNT)
cont> VALUES (USER, 1000);
SQL> SELECT * FROM TABLE1;
ID AMOUNT
ELLINGSWORTH 1000.0000
1 row selected

SQL Statements 8–43

INSERT Statement

Example 8: Inserting a name and a column select expression into the same table
columns used in the previous example:

SQL> INSERT INTO TABLE1 (ID, AMOUNT)
cont> VALUES (’BROWN’,
cont> (SELECT COUNT (*) FROM TABLE1));
SQL> SELECT * FROM TABLE1;
ID AMOUNT
HALVORSON 1000.0000
BROWN 1.0000
2 rows selected

Example 9: Inserting Default Values for Selected Columns

SQL> INSERT INTO DEPARTMENTS
cont> (DEPARTMENT_CODE, DEPARTMENT_NAME, BUDGET_ACTUAL)
cont> VALUES
cont> (’RECR’,’Recreation’, DEFAULT);
1 row inserted
SQL> SELECT * FROM DEPARTMENTS WHERE DEPARTMENT_CODE=’RECR’;
DEPARTMENT_CODE DEPARTMENT_NAME MANAGER_ID
BUDGET_PROJECTED BUDGET_ACTUAL

RECR Recreation NULL
NULL NULL

1 row selected

Example 10: Inserting a Row of All Default Values into a Table

SQL> INSERT INTO CANDIDATES
cont> DEFAULT VALUES;
1 row inserted
SQL> SELECT * FROM CANDIDATES
cont> WHERE LAST_NAME IS NULL;
LAST_NAME FIRST_NAME MIDDLE_INITIAL
CANDIDATE_STATUS

RESUME
NULL NULL NULL
NULL
>>
>>
>>

NULL
1 row selected

8–44 SQL Statements

INSERT from FILENAME Statement

INSERT from FILENAME Statement

Loads a column of the LIST OF BYTE VARYING data type from a text or
binary file without needing to use special application code. The specified file
is opened and each row is read and stored in the LIST OF BYTE VARYING
column specified by the list cursor.

Environment

You can use the INSERT statement in interactive SQL only.

Format
INSERT INTO CURSOR <cursor-name>

FILENAME <file-spec>
AS BINARY

TEXT
CHARACTER VARYING

Arguments

AS BINARY
AS CHARACTER VARYING
AS TEXT
Specifies whether the file specified with the FILENAME clause contains these
types of data:

• BINARY

Used to load unformatted data such as images and audio files. The contents
are broken into 512 octet segments during INSERT.

• CHARACTER VARYING

Used to load text but with no terminator. The contents are written one line to
a segment.

• TEXT

Used to load text, a terminator is added to each segment loaded. The contents
are written one line to a segment with trailing terminators carriage return
(CR) and line feed (LF).

FILENAME filespec
The specification for the file that you want to load into the LIST OF BYTE
VARYING column.

INSERT INTO CURSOR cursor-name
The name of the target list cursor to which you want to add a list segment.

Usage Notes

• When you use an INSERT from FILENAME statement to assign values to
list segments:

The current transaction must be read/write.

SQL Statements 8–45

INSERT from FILENAME Statement

Your cursor must specify an insert-only list cursor.

• Interactive SQL also reports the number of segments inserted, and the length
of the longest segment. To disable this output use the SET DISPLAY NO
ROW COUNT statement.

• The TEXT and CHARACTER VARYING source can contain segments of up to
65500 bytes in length. In prior releases the upper limit was 512 octets.

Example

Example 1: Adding a New Row Using Data from a Text File

SQL> -- Declare a table cursor.
SQL> DECLARE TABLE_CURSOR
cont> INSERT ONLY TABLE CURSOR
cont> FOR SELECT * FROM RESUMES;
SQL> -- Open table cursor and insert values.
SQL> OPEN TABLE_CURSOR;
SQL> INSERT INTO CURSOR TABLE_CURSOR
cont> VALUES (’10065’, NULL);
1 row inserted
SQL> -- Declare a list cursor.
SQL> DECLARE LIST_CURSOR
cont> INSERT ONLY LIST CURSOR
cont> FOR SELECT RESUME WHERE CURRENT OF TABLE_CURSOR;
SQL> --Open list cursor.
SQL> OPEN LIST_CURSOR;
SQL> --Load text from file into LIST OF BYTE VARYING column.
SQL> INSERT INTO CURSOR LIST_CURSOR
cont> FILENAME ’shane_vilmer.resume’ AS character varying;
62 segments inserted (maximum length 83)
SQL> CLOSE LIST_CURSOR;
SQL> CLOSE TABLE_CURSOR;
SQL> COMMIT;

8–46 SQL Statements

INTEGRATE Statement

INTEGRATE Statement

Makes definitions in a database and in a repository correspond by changing
definitions in either the database or the repository.

The INTEGRATE statement can also create database definitions in the repository
by copying from a database file to a specified repository.

Environment

You can issue the INTEGRATE statement only in interactive SQL.

Format

INTEGRATE

DATABASE

FILENAME <file-name> CREATE PATHNAME <path-name-2>
PATHNAME <path-name-1> ALTER FILES

ALTER DICTIONARY
DOMAIN <domain-name>
TABLE <table-name>

domain-name =

<name-of-domain>
<schema-name> .
<alias>

table-name =

<name-of-table>
<schema-name> .
<alias>
" <alias.name-of-table> "

Arguments

DATABASE FILENAME file-name CREATE PATHNAME path-name-2
Stores existing database system file definitions in the repository for the first time.
See Example 8–3. Use the INTEGRATE DATABASE FILENAME clause if you
did not specify PATHNAME or the repository was not installed when you created
the database.

If you use the INTEGRATE DATABASE FILENAME clause, the repository
database node specified in the path name must not exist. If older repository
definitions do exist with the path name you are specifying, specify a different
repository path name, placing the new database definitions elsewhere.

The file-name clause is the full or partial file specification that specifies the
source of the database definitions. You do not need to specify the file extension.
The database system automatically uses the database root file ending with the
.rdb file extension.

SQL Statements 8–47

INTEGRATE Statement

Path-name-2 is the repository path name for the repository where the
INTEGRATE statement creates the database definitions (using the database
system files as the source). You can specify either a full repository path name or
a relative repository path name. This must be the path name, not the name of
the database itself.

DATABASE PATHNAME path-name-1 ALTER FILES
Alters any table and domain definitions created with the CREATE TABLE FROM
statement or the CREATE DOMAIN FROM statement so they match their
sources in the repository. The INTEGRATE . . . ALTER FILES statement has
no effect on definitions not created with the FROM clause. This is useful if the
database file definitions no longer match the definitions in the repository. See
Example 8–1.

Path-name-1 is the repository path name for the repository database that is the
source for altering the definitions in the database. You can specify either a full
repository path name or a relative repository path name.

Caution

Using the ALTER FILES clause may destroy data associated with
definitions in your database file if those definitions are not defined in your
repository. In this situation, you will lose real data. For this reason, use
the ALTER FILES clause with caution.

DATABASE PATHNAME path-name-1 ALTER DICTIONARY
Alters the database definitions in the dictionary so they are the same as those
in the database. This is useful if repository definitions no longer match the
definitions in the database file. See Example 8–2. Note, though, that altering
database definitions in the repository may affect other applications that refer to
these definitions.

The repository must already exist and may contain definitions.

Path-name-1 is the repository path name for the repository database that SQL
alters using the definitions in the database file as a source. You can specify either
a full repository path name or a relative path name.

DOMAIN domain-name ALTER FILES
Alters the domain definitions in the database to match the field definitions in the
repository. Collating sequences referenced by the domain and columns that are
based on the domain and the tables that contain them may also be altered if they
have changed in the repository.

DOMAIN domain-name ALTER DICTIONARY
Alters the field definitions in the repository to match the domain definitions in
the database. Collating sequences referenced by the domain and columns that
are based on the domain and the tables that contain them may also be altered if
they have changed in the database.

TABLE table-name ALTER FILES
Alters the table definitions in the database to match the record definitions in the
repository. Other objects referencing the table or that are referenced by it and
have changed definition in the repository may be altered. These other objects are:

• Domains

8–48 SQL Statements

INTEGRATE Statement

• Collating sequences

• Other referenced tables and columns

• Foreign key constraints and check constraints

• Indexes

• Views that reference the table

• Storage maps and storage areas referenced by an index

TABLE table-name ALTER DICTIONARY
Alters the record definitions in the repository to match the table definitions in
the database. Other objects referencing the table or that are referenced by it and
have changed definitions in the database may be altered. These other objects are:

• Fields

• Collating sequences

• Other referenced records and fields

• Foreign key constraints and check constraints

• Indexes

Usage Notes

• You must commit the transaction after entering the INTEGRATE statement.

• The INTEGRATE DATABASE statement implicitly attaches to the database.

• When using the INTEGRATE DOMAIN and INTEGRATE TABLE statements,
you must attach by path name to integrate domains and tables.

• The domain or table specified in the INTEGRATE DOMAIN or the
INTEGRATE TABLE statements must exist in both the repository and
the database before it can be integrated. An error is returned if the named
domain or table does not exist.

• The domain name or table name specified in the INTEGRATE DOMAIN
ALTER DICTIONARY or the INTEGRATE TABLE ALTER DICTIONARY
statements are not Oracle CDD/Repository path names but valid Oracle Rdb
domain and table names.

Examples

Example 8–1 shows how to use the INTEGRATE statement with the ALTER
FILES clause. In this example, fields (domains) are defined in the repository.
Then, using SQL, a table is created based on the repository definitions.
Subsequently, the repository definitions are changed so the definitions in the
database file and the repository no longer match. The INTEGRATE statement
resolves this situation by altering the database definitions using the repository
definitions as the source.

SQL Statements 8–49

INTEGRATE Statement

Example 8–1 Updating the Database File Using Repository Definitions

$!
$! Define CDD$DEFAULT
$!
$ DEFINE CDD$DEFAULT SYS$COMMON:[REPOSITORY]CATALOG
$!
$! Enter the CDO to create new field and record definitions:
$!
$ REPOSITORY
CDO> !
CDO> ! Create two field (domain) definitions in the repository:
CDO> !
CDO> DEFINE FIELD PART_NUMBER DATATYPE IS WORD.
CDO> DEFINE FIELD PRICE DATATYPE IS WORD.
CDO> !
CDO> ! Define a record called INVENTORY using the two
CDO> ! fields previously defined:
CDO> !
CDO> DEFINE RECORD INVENTORY.
CDO> PART_NUMBER.
CDO> PRICE.
CDO> END RECORD INVENTORY.
CDO> !
CDO> EXIT
$!
$! Enter SQL:
$!
$ SQL
SQL> !
SQL> ! In SQL, create the database ORDERS:
SQL> !
SQL> CREATE DATABASE ALIAS ORDERS PATHNAME ORDERS;
SQL> !
SQL> ! Create a table in the database ORDERS using the
SQL> ! INVENTORY record (table) just created in the repository:
SQL> !
SQL> CREATE TABLE FROM SYS$COMMON:[REPOSITORY]CATALOG.INVENTORY
cont> ALIAS ORDERS;
SQL> !
SQL> ! Use the SHOW TABLE statement to see information about
SQL> ! INVENTORY the table:
SQL> !
SQL> SHOW TABLE ORDERS.INVENTORY
Information for table ORDERS.INVENTORY

CDD Pathname: SYS$COMMON:[REPOSITORY]CATALOG.INVENTORY;1

Columns for table ORDERS.INVENTORY:
Column Name Data Type Domain
----------- --------- ------
PART_NUMBER SMALLINT ORDERS.PART_NUMBER
PRICE SMALLINT ORDERS.PRICE

.

.

.
SQL> COMMIT;
SQL> EXIT

(continued on next page)

8–50 SQL Statements

INTEGRATE Statement

Example 8–1 (Cont.) Updating the Database File Using Repository Definitions
$!
$! Enter CDO again:
$!
$ REPOSITORY
CDO> !
CDO> ! Verify that the fields PART_NUMBER and PRICE are
cdo> ! in the record INVENTORY:
CDO> !
CDO> SHOW RECORD INVENTORY
Definition of record INVENTORY
| Contains field PART_NUMBER
| Contains field PRICE
CDO> !
CDO> ! Define the fields VENDOR_NAME and QUANTITY. Add them to
CDO> ! the record INVENTORY using the CDO CHANGE RECORD command. Now, the
CDO> ! definitions used by the database no longer match the definitions
CDO> ! in the respository, as the CDO message indicates:
CDO> !
CDO> DEFINE FIELD VENDOR_NAME DATATYPE IS TEXT 20.
CDO> DEFINE FIELD QUANTITY DATATYPE IS WORD.
CDO> !
CDO> CHANGE RECORD INVENTORY.
CDO> DEFINE VENDOR_NAME.
CDO> END.
CDO> DEFINE QUANTITY.
CDO> END.
CDO> END INVENTORY RECORD.
%CDO-I-DBMBR, database SQL_USER:[PRODUCTION]CATALOG.ORDERS(1) may need
to be INTEGRATED
CDO> !
CDO> ! Use the SHOW RECORD command to see if the fields VENDOR_NAME
CDO> ! and QUANTITY are part of the INVENTORY record:
CDO> !
CDO> SHOW RECORD INVENTORY
Definition of record INVENTORY
| Contains field PART_NUMBER
| Contains field PRICE
| Contains field VENDOR_NAME
| Contains field QUANTITY
CDO> !
CDO> EXIT
$!
$! Enter SQL again:
$!
$ SQL
SQL> !
SQL> ! Use the INTEGRATE . . . ALTER FILES statement to update
SQL> ! the definitions in the database file, using the repository definitions
SQL> ! as the source. Note the INTEGRATE statement implicitly attaches to
SQL> ! the database.
SQL> !
SQL> INTEGRATE DATABASE PATHNAME SYS$COMMON:[REPOSITORY]CATALOG.ORDERS
cont> ALTER FILES;
SQL> !
SQL> ! Use the SHOW TABLE statement to see if the table INVENTORY has
SQL> ! changed. SQL has added the VENDOR_NAME and QUANTITY domains
SQL> ! to the database file:
SQL> !

(continued on next page)

SQL Statements 8–51

INTEGRATE Statement

Example 8–1 (Cont.) Updating the Database File Using Repository Definitions
SQL> SHOW TABLE INVENTORY
Information for table INVENTORY

CDD Pathname: SYS$COMMON:[REPOSITORY]CATALOG.INVENTORY;1

Columns for table INVENTORY:
Column Name Data Type Domain
----------- --------- ------
PART_NUMBER SMALLINT PART_NUMBER
PRICE SMALLINT PRICE
VENDOR_NAME CHAR(20) VENDOR_NAME
QUANTITY SMALLINT QUANTITY

.

.

.
SQL> COMMIT;
SQL> EXIT

Example 8–2 shows how to update the repository using the database files as the
source by issuing the INTEGRATE statement with the ALTER DICTIONARY
clause. The example starts with the definitions in the repository matching the
definitions in the database file. There is a table in the database and a record in
the repository, both called CUSTOMER_ORDERS. The CUSTOMER_ORDERS
table has four columns based on four domains of the same name: FIRST_ORDER,
SECOND_ORDER, THIRD_ORDER, and FOURTH_ORDER.

This example adds to the database file a domain called FIFTH_DOM, on which
the local column called FIFTH_ORDER is based. At this point, the database file
and the repository definitions no longer match. The INTEGRATE . . . ALTER
DICTIONARY statement resolves this situation by altering the repository using
the database file definitions as the source.

Example 8–2 Modifying Repository Definitions Using the INTEGRATE
Statement with the ALTER DICTIONARY Clause

SQL> ! Create the database using the PATHNAME clause:
SQL> !
SQL> CREATE DATABASE FILENAME TEST1
cont> PATHNAME SYS$COMMON:[REPOSITORY]TEST1;
SQL> !
SQL> ! Create domains for the TEST1 database:
SQL> !
SQL> CREATE DOMAIN FIRST_ORDER CHAR(4);
SQL> CREATE DOMAIN SECOND_ORDER CHAR(4);
SQL> CREATE DOMAIN THIRD_ORDER CHAR(4);
SQL> CREATE DOMAIN FOURTH_ORDER CHAR(4);
SQL> CREATE TABLE CUSTOMER_ORDERS
cont> (FIRST_ORDER FIRST_ORDER,
cont> SECOND_ORDER SECOND_ORDER,
cont> THIRD_ORDER THIRD_ORDER,
cont> FOURTH_ORDER FOURTH_ORDER);
SQL> COMMIT;
SQL> DISCONNECT DEFAULT;

(continued on next page)

8–52 SQL Statements

INTEGRATE Statement

Example 8–2 (Cont.) Modifying Repository Definitions Using the INTEGRATE
Statement with the ALTER DICTIONARY Clause

SQL> !
SQL> ! Attach to the database with the FILENAME clause so the
SQL> ! repository is not updated:
SQL> !
SQL> ATTACH ’ALIAS TEST1 FILENAME TEST1’;
SQL> !
SQL> ! Use the SHOW TABLE statement to see what columns and domains
SQL> ! are part of the table CUSTOMER_ORDERS:
SQL> !
SQL> SHOW TABLE (COLUMNS) TEST1.CUSTOMER_ORDERS;
Information on table TEST1.CUSTOMER_ORDERS

Columns for table TEST1.CUSTOMER_ORDERS:

Column Name Data Type Domain
----------- --------- ------
FIRST_ORDER CHAR(4) FIRST_ORDER
SECOND_ORDER CHAR(4) SECOND_ORDER
THIRD_ORDER CHAR(4) THIRD_ORDER
FOURTH_ORDER CHAR(4) FOURTH_ORDER

SQL> !
SQL> ! Create a new domain called FIFTH_DOM. Add a new
SQL> ! column to the CUSTOMER_ORDERS table called FIFTH_ORDER
SQL> ! and base it on the domain FIFTH_DOM:
SQL> !
SQL> CREATE DOMAIN TEST1.FIFTH_DOM CHAR(4);
SQL> ALTER TABLE TEST1.CUSTOMER_ORDERS ADD FIFTH_ORDER TEST1.FIFTH_DOM;
SQL> !
SQL> ! Check the CUSTOMER_ORDERS table to verify that the column FIFTH_ORDER
SQL> ! was created:
SQL> !
SQL> SHOW TABLE (COLUMNS) TEST1.CUSTOMER_ORDERS;

Information on table TEST1.CUSTOMER_ORDERS

Column Name Data Type Domain
----------- --------- ------
FIRST_ORDER CHAR(4) TEST1.FIRST_ORDER
SECOND_ORDER CHAR(4) TEST1.SECOND_ORDER
THIRD_ORDER CHAR(4) TEST1.THIRD_ORDER
FOURTH_ORDER CHAR(4) TEST1.FOURTH_ORDER
FIFTH_ORDER CHAR(4) TEST1.FIFTH_DOM
SQL> COMMIT;
SQL> EXIT
$!
$! Invoke CDO:
$!
$ REPOSITORY

(continued on next page)

SQL Statements 8–53

INTEGRATE Statement

Example 8–2 (Cont.) Modifying Repository Definitions Using the INTEGRATE
Statement with the ALTER DICTIONARY Clause

CDO> !
CDO> ! Note that only the database definition for TEST1 appears in the
CDO> ! repository directory:
CDO> !
DIRECTORY

Directory SYS$COMMON:[REPOSITORY]
TEST1(1) CDD$DATABASE
CDO> !
CDO> ! Check the record CUSTOMER_ORDERS. The field FIFTH_ORDER is not part of
CDO> ! the record CUSTOMER_ORDERS. This means that the definitions in the
CDO> ! database file do not match the definitions in the repository.
CDO> !
CDO> !
CDO> SHOW RECORD CUSTOMER_ORDERS FROM DATABASE TEST1
Definition of the record CUSTOMER_ORDERS
| Contains field FIRST_ORDER
| Contains field SECOND_ORDER
| Contains field THIRD_ORDER
| Contains field FOURTH_ORDER
CDO> EXIT
$!
$! Enter SQL again:
$!
$ SQL
SQL> !
SQL> ! To make the definitions in the repository match those in the database
SQL> ! file, use the INTEGRATE statement with the ALTER DICTIONARY clause.
SQL> ! Note that the INTEGRATE statement implicitly attaches to the
SQL> ! database.
SQL> !
SQL> INTEGRATE DATABASE PATHNAME TEST1 ALTER DICTIONARY;
SQL> COMMIT;
SQL> EXIT
$!
$! Enter CDO again:
$!
$ REPOSITORY
CDO> !
CDO> ! Use the SHOW RECORD command to verify that the field FIFTH_ORDER is now
CDO> ! part of the record CUSTOMER_ORDERS. Now, the definitions in both the
CDO> ! repository and the database file are the same.
CDO> !
CDO> SHOW RECORD CUSTOMER_ORDERS FROM DATABASE TEST1
Definition of record CUSTOMER_ORDERS
| Contains field FIRST_ORDER
| Contains field SECOND_ORDER
| Contains field THIRD_ORDER
| Contains field FOURTH_ORDER
| Contains field FIFTH_ORDER
CDO> !
CDO> ! Use the ENTER command to make the record (table) CUSTOMER_ORDERS and
CDO> ! its fields (domains) appear in the repository. The ENTER command
CDO> ! assigns a repository directory name to an element.
CDO> !
CDO> ENTER FIELD FIRST_ORDER FROM DATABASE TEST1
CDO> !

(continued on next page)

8–54 SQL Statements

INTEGRATE Statement

Example 8–2 (Cont.) Modifying Repository Definitions Using the INTEGRATE
Statement with the ALTER DICTIONARY Clause

CDO> ! Verify that a repository path name was assigned to the field
CDO> ! FIRST_ORDER:
CDO> !
CDO> DIRECTORY
Directory SYS$COMMON:[REPOSITORY]
FIRST_ORDER(1) FIELD
TEST1(1) CDD$DATABASE
CDO> ENTER FIELD SECOND_ORDER FROM DATABASE TEST1

.

.

.
CDO> ENTER FIELD FIFTH_DOM FROM DATABASE TEST1
CDO> !
CDO> ! Now all the domains and tables in TEST1 have been assigned a
CDO> ! repository directory name:
CDO> DIRECTORY
Directory SYS$COMMON:[REPOSITORY]
CUSTOMER_ORDERS(1) RECORD
FIFTH_DOM(1) FIELD
FIRST_ORDER(1) FIELD
FOURTH_ORDER(1) FIELD
SECOND_ORDER(1) FIELD
TEST1(1) CDD$DATABASE
THIRD_ORDER(1) FIELD

To store existing database file definitions in the repository for the first time,
use the INTEGRATE statement with the CREATE PATHNAME clause. This
statement builds repository definitions using the database file as the source.

Example 8–3 shows how to store existing database system file definitions in
the repository for the first time. This example first creates a database only in a
database file, not in the repository. Next, the INTEGRATE statement with the
CREATE PATHNAME clause updates the repository with the data definitions
from the database system file.

Example 8–3 Storing Existing Database File Definitions in the Repository

SQL> !
SQL> ! Create a database without requiring the repository (the default)
SQL> ! or specifying a path name:
SQL> !
SQL> CREATE DATABASE ALIAS DOGS;
SQL> !
SQL> ! Now create a table for the breed of dog, poodles. The
SQL> ! columns in the table are types of poodles:
SQL> !
SQL> CREATE TABLE DOGS.POODLES
cont> (STANDARD CHAR(10),
cont> MINIATURE CHAR(10),
cont> TOY CHAR(10));

(continued on next page)

SQL Statements 8–55

INTEGRATE Statement

Example 8–3 (Cont.) Storing Existing Database File Definitions in the
Repository

SQL> !
SQL> ! Use the SHOW TABLE statement to see the table POODLES:
SQL> !
SQL> SHOW TABLE (COLUMNS) DOGS.POODLES
Information on table DOGS.POODLES

Columns for table DOGS.POODLES:
Column Name Data Type Domain
----------- --------- ------
STANDARD CHAR(10)
MINIATURE CHAR(10)
TOY CHAR(10)

SQL> COMMIT;
SQL> EXIT
$!
$! Enter CDO:
$!
$ REPOSITORY
CDO> !
CDO> ! Use the DIRECTORY command to check if the database definition DOGS is
CDO> ! in the repository:
CDO> !
CDO> DIRECTORY
Directory SYS$COMMON:[REPOSITORY]
%CDO-E-NOTFOUND, entity not found in dictionary
CDO> !
CDO> ! DOGS is not in the repository.
CDO> !
CDO> EXIT
$!
$! Enter SQL again:
$!
$ SQL
SQL> !
SQL> ! Use the INTEGRATE statement using the CREATE PATHNAME clause to
SQL> ! update the repository using the DOGS database file:
SQL> !
SQL> INTEGRATE DATABASE FILENAME SQL_USER:[PRODUCTION.ANIMALS]DOGS
cont> CREATE PATHNAME SYS$COMMON:[REPOSITORY]DOGS;
SQL> COMMIT;
SQL> EXIT
$!
$! Enter CDO again:
$!
$ REPOSITORY
CDO> !
CDO> ! Use the DIRECTORY command to check if the database definition DOGS
CDO> ! has been integrated into the repository:
CDO> !
CDO> DIRECTORY
Directory SYS$COMMON:[REPOSITORY]
DOGS(1) CDD$DATABASE
CDO> !
CDO> ! You can also use the SHOW USED_BY command to see
CDO> ! if the record (table) POODLES and the fields (columns)
CDO> ! STANDARD, MINIATURE, and TOY are part of the database
CDO> ! definition DOGS.
CDO> !

(continued on next page)

8–56 SQL Statements

INTEGRATE Statement

Example 8–3 (Cont.) Storing Existing Database File Definitions in the
Repository

CDO> SHOW USED_BY/FULL DOGS
Members of SYS$COMMON:[REPOSITORY]DOGS(1)
| DOGS (Type : CDD$RDB_DATABASE)
| | via CDD$DATABASE_SCHEMA

.

.

.
| SYS$COMMON:[REPOSITORY]CDD$RDB_SYSTEM_METADATA.RDB$CDD_NAME;1(Type : FIELD)
| | | | via CDD$DATA_AGGREGATE_CONTAINS
| | POODLES (Type : RECORD)
| | | via CDD$RDB_DATA_AGGREGATE
| | | STANDARD (Type : FIELD)
| | | | via CDD$DATA_AGGREGATE_CONTAINS
| | | | SQL$10CHR (Type : FIELD)
| | | | | via CDD$DATA_ELEMENT_BASED_ON
| | | MINIATURE (Type : FIELD)
| | | | via CDD$DATA_AGGREGATE_CONTAINS
| | | | SQL$10CHR (Type : FIELD)
| | | | | via CDD$DATA_ELEMENT_BASED_ON
| | | TOY (Type : FIELD)
| | | | via CDD$DATA_AGGREGATE_CONTAINS
| | | | SQL$10CHR (Type : FIELD)
| | | | | via CDD$DATA_ELEMENT_BASED_ON

.

.

.
CDO> EXIT

Example 8–4 shows how to update a repository field using the database files as
the source by issuing the INTEGRATE DOMAIN statement with the ALTER
DICTIONARY clause. The example starts with the definitions in the repository
matching the definitions in the database file. There is a domain in the database
and a field in the repository, both called DOMTEST.

This example alters the domain in the database file name TESTDB. At this
point, the database file and the repository definitions no longer match. The
INTEGRATE DOMAIN . . . ALTER DICTIONARY statement resolves this
situation by altering the repository using the database file definitions as the
source.

Example 8–4 Modifying Repository Field Using the INTEGRATE DOMAIN
Statement with the ALTER DICTIONARY Clause

(continued on next page)

SQL Statements 8–57

INTEGRATE Statement

Example 8–4 (Cont.) Modifying Repository Field Using the INTEGRATE
DOMAIN Statement with the ALTER DICTIONARY Clause

SQL> -- Create a database, domain, and table.
SQL> --
SQL> CREATE DATABASE FILENAME TESTDB PATHNAME TESTDB;
SQL> CREATE COLLATING SEQUENCE FRENCH FRENCH;
SQL> CREATE DOMAIN DOMTEST
cont> CHAR(5)
cont> COLLATING SEQUENCE IS FRENCH;
SQL> CREATE DOMAIN TEST_DOM_1
cont> CHAR(1);
SQL> CREATE TABLE TEMP_TAB
cont> (ROW1 CHAR(5),
cont> ROW2 DOMTEST,
cont> ROW3 TEST_DOM_1,
cont> ROW4 INT);
SQL> COMMIT;
SQL> SHOW DOMAIN DOMTEST
DOMTEST CHAR(5)
Collating sequence: FRENCH
SQL> --
SQL> -- Disconnect from the database and invoke Oracle CDD/Repository
SQL> -- user interface and show the field DOMTEST from the TESTDB
SQL> -- database.
SQL> --
SQL> DISCONNECT ALL;
SQL> EXIT
$ CDO
CDO> SHOW FIELD DOMTEST FROM DATABASE TESTDB
Definition of field DOMTEST
| Datatype text size is 5 characters
| Collating sequence ’FRENCH’

CDO> !
CDO> ! Exit from Oracle CDD/Repository and attach to the database by file name
CDO> ! only.
CDO> !
CDO> EXIT
SQL> ATTACH ’FILENAME TESTDB’;
SQL> --
SQL> -- Alter the domain DOMTEST.
SQL> --
SQL> ALTER DOMAIN DOMTEST
cont> CHAR(10)
cont> COLLATING SEQUENCE IS FRENCH;
SQL> COMMIT;
SQL> SHOW DOMAIN DOMTEST
DOMTEST CHAR(10)
Collating sequence: FRENCH

(continued on next page)

8–58 SQL Statements

INTEGRATE Statement

Example 8–4 (Cont.) Modifying Repository Field Using the INTEGRATE
DOMAIN Statement with the ALTER DICTIONARY Clause

SQL> --
SQL> -- Disconnect from the database and attach by path name only to issue
SQL> -- the INTEGRATE DOMAIN statement.
SQL> --
SQL> DISCONNECT ALL;
SQL> ATTACH ’PATHNAME TESTDB’;
SQL> INTEGRATE DOMAIN DOMTEST ALTER DICTIONARY;
SQL> COMMIT;
SQL> --
SQL> -- Disconnect from the database and invoke Oracle CDD/Repository V6.1
SQL> -- user interface and show the altered field DOMTEST from the TESTDB
SQL> -- database.
SQL> --
SQL> DISCONNECT ALL;
SQL> EXIT
$ CDO
CDO> SHOW FIELD DOMTEST FROM DATABASE TESTDB
Definition of field DOMTEST
| Datatype text size is 10 characters
| Collating sequence ’FRENCH’
| Generic CDD$DATA_ELEMENT_CHARSET is ’0’

SQL Statements 8–59

ITERATE Control Statement

ITERATE Control Statement

Causes the current iteration of the loop to abort and either the next iteration to
start or the loop to terminate; depending on the termination conditions.

Environment

You can use the ITERATE control statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

ITERATE
<statement-label>

Arguments

statement-label
Names the label assigned to a compound statement or a loop statement.

Usage Notes

• The statement label must be for an active iterative loop statement. Iterative
loop statements include LOOP, FOR cursor loop, FOR counted loop, WHILE,
and REPEAT statements. An exception is raised if the specified label is
unknown, not active, or is not a label for an iterative statement.

• If the statement label is omitted, then the innermost iterate statement is used
by default. An exception is raised if there is no active iterative statement.

Example

Example 1: Using the ITERATE Control Statement

The following example shows the ITERATE control statement being used to
prematurely complete the processing of the current row in a FOR cursor loop:

8–60 SQL Statements

ITERATE Control Statement

SQL> BEGIN
cont> FOR :ord AS TABLE CURSOR ord_cursor
cont> AS SELECT * FROM orders WHERE customer_id = :cid
cont> DO
cont> IF stock_count (:ord.product_id, :ord.quantity) IS NULL THEN
cont> ITERATE;
cont> END IF;
cont> -- transfer stock to this order
cont> UPDATE stock SET on_hand = on_hand - :ord.quantity
cont> WHERE product_id = :ord.product_id;
cont> UPDATE orders SET :ord.available = :ord.quantity
cont> WHERE CURRENT OF ord_cursor;
cont> END FOR;
cont> END;

SQL Statements 8–61

LEAVE Control Statement

LEAVE Control Statement

Unconditionally ends execution within a compound statement block or a looping
statement but resumes execution on any SQL statement that immediately follows
the exited statement.

Environment

You can use the LEAVE control statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

leave-statement =

LEAVE
<statement-label>

Arguments

statement-label
Names the label assigned to a compound statement, loop statement, or
multistatement procedure.

Usage Notes

• The LEAVE statement can specify the name of the procedure if the compound
statement it contains is not labeled. See Compound Statement for more
information.

• If the statement-label is omitted, then the LEAVE statement leaves the
currently active loop statement (WHILE, LOOP, REPEAT, FOR cursor loop,
FOR counted loop); otherwise, it leaves the current labeled statement. If
there is no active loop or labeled statement, then the current procedure is
terminated.

• Do not use the LEAVE statement to leave SQL functions. A function must
have a return result. You will receive a run-time error if you attempt
to terminate a function with the LEAVE statement. Use the RETURN
statement instead.

8–62 SQL Statements

LEAVE Control Statement

Examples

Example 1: Using the LEAVE control statement within a loop

SQL> set flags ’trace’;
SQL>
SQL> create module REPORTS
cont> /*
***> This procedure counts the employees of a given state
***> who have had a decrease in their salary during their
***> employment
***> */
cont> procedure COUNT_DECREASED
cont> (in :state CHAR(2)
cont> ,inout :n_decreased INTEGER);
cont> begin
cont> set :n_decreased = 0;
cont>
cont> EMP_LOOP:
cont> for :empfor
cont> as each row of
cont> select employee_id
cont> from EMPLOYEES where state = :state
cont> do
cont> begin
cont> declare :last_salary INTEGER (2) default 0;
cont>
cont> HISTORY_LOOP:
cont> for :salfor
cont> as each row of
cont> select salary_amount
cont> from SALARY_HISTORY
cont> where employee_id = :empfor.employee_id
cont> order by salary_start
cont> do
cont> if :salfor.salary_amount < :last_salary
cont> then
cont> set :n_decreased = :n_decreased + 1;
cont> trace :empfor.employee_id, ’: ’, :salfor.salary_amount;
cont> leave HISTORY_LOOP;
cont> end if;
cont>
cont> set :last_salary = :salfor.salary_amount;
cont> end for;
cont> end;
cont> end for;
cont> end;
cont>
cont> end module;
SQL>
SQL> declare :n integer;
SQL> call COUNT_DECREASED (’NH’, :n);
~Xt: 00200: 40789.00
~Xt: 00248: 46000.00
~Xt: 00471: 52000.00

N
3

SQL>
SQL> rollback;

SQL Statements 8–63

LEAVE Control Statement

Example 2: Ending Execution of a Compound Statement

PROCEDURE SAMPLE (IN :ID MONEY);
BEGIN
DECLARE: AMOUNT MONEY

(SELECT TOTAL_AMOUNT FROM M_TABLE);
LOOP

IF :AMOUNT IS NULL THEN
LEAVE;

END IF;
.
.
.
SET :AMOUNT =:AMOUNT-100.00;
IF :AMOUNT < 0.00 THEN

LEAVE;
END IF;

END LOOP;
END;

8–64 SQL Statements

LOCK TABLE Statement

LOCK TABLE Statement

Specifies a list of tables to be readied in a given lock mode and added to the list
of reserved tables for the current transaction. If a view is specified, then the base
tables referenced by the view are locked in the specified lock mode.

Environment

You can use the LOCK TABLE statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

LOCK TABLE <table-name> FOR lock-mode MODE
, IN

,

NOWAIT
WAIT

DEFAULT

lock-mode =

SHARED DATA DEFINITION
PROTECTED READ
EXCLUSIVE WRITE

Arguments

DATA DEFINITION
READ
WRITE
See the SET TRANSACTION statement for a description of these arguments.

IN lock-mode MODE
FOR lock-mode MODE
Specifies the lock mode to be used for the specified tables and views. The IN
and FOR keywords are synonymous. A table lock mode can be promoted, but
cannot be demoted. For example, you can promote a SHARED READ lock
to SHARED WRITE, but you cannot demote a SHARED WRITE mode to a
SHARED READ mode. See the Usage Notes for information on how the LOCK
TABLE statement interacts with the SET TRANSACTION and DECLARE
TRANSACTION statements.

SQL Statements 8–65

LOCK TABLE Statement

SHARED
PROTECTED
EXCLUSIVE
See the SET TRANSACTION statement for a description of these arguments.

table-name
The names of one or more tables or views currently existing in the database
that you want to lock and reserve. You can specify tables created as GLOBAL or
LOCAL TEMPORARY TABLES, but they will be ignored because these types of
tables do not contain shared data and so are never locked. You can specify tables
from multiple databases by using the alias name as a prefix to the table name. If
you do not specify an alias, then the default alias is used.

WAIT
NOWAIT
DEFAULT WAIT
Specifies what the LOCK TABLE statement does when it encounters a locked
table. If you specify WAIT, the statement waits for other transactions to complete
and then proceeds. If you specify NOWAIT, your transaction returns an error
message when it encounters a locked table. If you specify DEFAULT WAIT,
then the lock mode specified for the current transaction is used. If you specify a
different lock mode than was specified for the transaction, the mode you specify
with the LOCK TABLE statement takes precedence, unless the table is already
reserved.

The WAIT clause is the default.

Usage Notes

• The LOCK TABLE statement has a definite advantage over the SET
TRANSACTION RESERVING clause. It allows tables to be locked at modes
other than SHARED READ when the table access is not determined until run
time. For example, complex or dynamic applications often do not know the
names of tables that will be accessed at the time a transaction is started. The
LOCK TABLE statement allows those applications to start a transaction and
add tables later, as they become known.

• If you start a transaction with a SET TRANSACTION or DECLARE
TRANSACTION statement that includes the RESERVING clause, then
all tables referenced during that transaction must have been specified in
the reserving list of that transaction or subsequently with a LOCK TABLE
statement. Exceptions to this rule are temporary tables and tables that
are referenced by constraints and triggers. These tables are automatically
reserved according to their access characteristics. For example, constraints
require read access, triggers may require write access, and temporary tables
require no special locking.

• If you start a transaction without specifying a list of reserved tables, then
you can reference any tables during the transaction. By default, they will be
accessed for SHARED READ or SHARED WRITE depending on the type of
access statement issued. You can use the LOCK TABLE statement to adjust
the default locking behavior as needed by the transaction.

8–66 SQL Statements

LOCK TABLE Statement

• When you use multiple LOCK TABLE statements in a transaction, the
tables can be reserved in any order and at any time, as you desire. However,
this may lead to deadlocks in concurrent environments. Careful design can
eliminate or minimize this problem. (Contrast this with the behavior seen
when you use the SET TRANSACTION statement with the RESERVING
clause. In this case, the tables are reserved using the order specified by the
RDB$RELATION_ID column of the RDB$RELATION system relation so
that a consistent ordering is used across every application. This avoids or
eliminates deadlocks during table reservation.)

• If you issue a LOCK TABLE statement when no transaction is active, then a
default transaction is started implicitly.

• The locks placed on tables by the LOCK TABLE statement are released
when the transaction is terminated with a COMMIT, ROLLBACK, or
DISCONNECT statement.

Examples

Example 1: Locking a Table in READ MODE

SQL> LOCK TABLE EMPLOYEES IN PROTECTED READ MODE NOWAIT;

Example 2: Locking Two Tables in Different Modes

SQL> LOCK TABLE DB1.JOB_HISTORY IN SHARED WRITE MODE,
cont> DB2.SALARY_HISTORY IN EXCLUSIVE WRITE MODE;

SQL Statements 8–67

LOOP Control Statement

LOOP Control Statement

Allows the repetitive execution of one or more SQL statements in a compound
statement.

See also the FOR, REPEAT and WHILE statements.

Environment

You can use the LOOP control statement only within a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

loop-statement =

<beginning-label> :

LOOP compound-use-statement

END LOOP
<ending-label>

compound-use-statement =

call-statement ;
commit-statement
control-statement
delete-statement
get-diagnostics-statement
insert-statement
lock-table-statement
replace-statement
release-savepoint-statement
rollback-statement
rollback-savepoint-statement
savepoint-statement
set-transaction-statement
singleton-select-statement
start-transaction-statement
trace-statement
update-statement

Arguments

beginning-label:
Assigns a name to a control loop. A beginning label used with the LEAVE
statement lets you perform a controlled exit from a loop. A named loop is called a
labeled loop statement. If you include an ending label, it must be identical to

8–68 SQL Statements

LOOP Control Statement

its corresponding beginning label. A beginning label must be unique within the
procedure in which the label is contained.

compound-use-statement
Identifies the SQL statements allowed in a compound statement block. See the
Compound Statement for the list of valid statements.

END LOOP ending-label
Marks the end of a control loop. If you choose to include the optional ending
label, it must match exactly its corresponding beginning label. An ending label
must be unique within the procedure in which the label is contained.

The optional end-label argument makes multistatement procedures easier to
read, especially in very complex multistatement procedure blocks.

LOOP
Marks the start of a control loop. A LOOP statement enables you to execute the
associated sequence of SQL statements called a compound statement. After SQL
executes the statements within the loop, control returns to the LOOP statement
at the top of the loop for subsequent statement execution. Looping occurs until
SQL encounters an error exception or executes a LEAVE statement. In either
case, SQL passes control out of the LOOP block to the statement immediately
after the LOOP statement.

Usage Note

LOOP will iterate indefinitely unless an exit condition is included.

Examples

Example 1: Executing a loop statement

SQL> create table ENROLLMENTS
cont> (last_name char(20),
cont> first_name char(10),
cont> middle_initial char,
cont> class_name char(10));
SQL>
SQL> begin
cont> declare :n integer default 5;
cont> loop
cont> insert into ENROLLMENTS
cont> values (’Jones’, ’Robert’, ’A’,
cont> ’Class ’ || CAST(:n as char(1)));
cont> set :n = :n - 1;
cont> if :n <= 0 then
cont> leave;
cont> end if;
cont> end loop;
cont> end;
SQL>
SQL> select * from ENROLLMENTS;
LAST_NAME FIRST_NAME MIDDLE_INITIAL CLASS_NAME
Jones Robert A Class 5
Jones Robert A Class 4
Jones Robert A Class 3
Jones Robert A Class 2
Jones Robert A Class 1
5 rows selected
SQL>

SQL Statements 8–69

LOOP Control Statement

OPEN Statement

Opens a cursor so that rows of its result table can be retrieved through FETCH
statements. The OPEN statement places the cursor before the first row of its
result table.

Environment

You can use the OPEN statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format
OPEN <cursor-name>

<parameter> USING <parameter>
<qualified-parameter>

,
USING DESCRIPTOR <descriptor-name>

Arguments

cursor-name
parameter
Specifies the name of the cursor you want to open. Use a parameter if the
cursor referred to by the cursor name was declared at run time with a dynamic
DECLARE CURSOR statement. Specify the parameter used for the cursor name
in the extended dynamic DECLARE CURSOR statement.

You can use a parameter to refer to the cursor name only when the OPEN
statement refers to an extended dynamic cursor.

USING parameter
USING qualified-parameter
USING DESCRIPTOR descriptor-name
Specifies in dynamic SQL parameters (host language variables in a precompiled
OPEN statement or formal parameters in an OPEN statement that is part of
an SQL module language procedure) or qualified parameters (structures) whose
values SQL uses to replace parameter markers in a prepared SELECT statement
named in the cursor declaration. These parameters are not for use in interactive
SQL. SQL replaces the parameter markers with the values of the host language
variables when it evaluates the SELECT statement of the cursor. See Chapter 3
and Chapter 4 for more information on the SQL module language and the SQL
precompiler, respectively.

You must specify the USING clause when both of the following conditions exist:

• The declaration of the cursor you are opening specifies a prepared SELECT
statement name.

• The statement string for the prepared SELECT statement includes parameter
markers.

8–70 SQL Statements

OPEN Statement

SQL does not allow the USING clause in an OPEN statement for a cursor that is
not based on a prepared SELECT statement. For more information on parameter
markers, see the PREPARE Statement, and the chapter on dynamic SQL in the
Oracle Rdb Guide to SQL Programming.

There are two ways to specify parameters in a USING clause:

• With a list of parameters. The number of parameters in the list must be
the same as the number of parameter markers in the prepared SELECT
statement. (If any of the parameters in an OPEN statement is a host
structure, SQL counts the number of variables in that structure when it
compares the number of parameters in the USING clause with the number of
parameter markers in the prepared SELECT statement.)

• With the name of a descriptor that corresponds to an SQLDA. Specify the
name of the descriptor in the USING DESCRIPTOR clause. If you use the
INCLUDE statement to insert the SQLDA into your program, the descriptor
name is simply SQLDA.

The SQLDA is a collection of variables used only in dynamic SQL. In an
OPEN statement, the SQLDA points to a number of host language variables
with which SQL replaces the parameter markers in a prepared SELECT
statement. The number of variables must match the number of parameter
markers.

The data types of host language variables must be compatible with the values of
the corresponding column of the cursor row.

Usage Notes

• SQL does not restrict how many cursors you can have open at once. It is valid
to declare and open more than one cursor at a time.

• An open table cursor can be positioned:

Before a row of its result table. When it executes an OPEN statement,
SQL positions the cursor before the first row. When SQL executes a
DELETE statement that refers to a cursor, SQL positions the cursor
before the row immediately following the deleted row.

On a row of its result table (after a FETCH statement for any but the last
row).

After the last row of its result table. When the cursor is positioned on the
last row, any FETCH or DELETE statement from the cursor positions the
cursor after the last row.

• You cannot open a cursor until it has been declared in a DECLARE CURSOR
statement.

• If you issue an OPEN statement for a cursor that is already open, SQL
generates an error message. The OPEN statement has no effect on the cursor.

• SQL evaluates any parameters in the select expression of a DECLARE
CURSOR statement when it executes the OPEN statement for the cursor.
SQL will not evaluate the parameters again until you close and then open the
cursor again.

SQL Statements 8–71

OPEN Statement

• An open list cursor can be positioned:

Before an element of a list. When it executes an OPEN statement, SQL
positions the cursor before the first element.

On an element of the list (after a FETCH statement for any but the last
element).

After the last element of its result table. When the cursor is positioned
on the last element, any FETCH statement from the cursor positions the
cursor after the last element.

• When you open a list cursor, the table cursor that provides the row context
must be open and positioned on a row.

Examples

Example 1: Opening a cursor declared in a C or C++ program

This program fragment uses embedded DECLARE CURSOR, OPEN, and FETCH
statements to retrieve and print the name and department of managers. The
OPEN statement places the cursor at the beginning of rows to be fetched.

/* Declare the cursor */
exec sql

DECLARE MANAGER CURSOR FOR
SELECT E.FIRST_NAME, E.LAST_NAME, D.DEPARTMENT_NAME
FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.EMPLOYEE_ID = D.MANAGER_ID

AND D.DEPARTMENT_NAME CONTAINING :dept;
if (SQLCODE < 0) sql_signal ();

/* Open the cursor */
exec sql

OPEN MANAGER;
if (SQLCODE < 0) sql_signal ();

/* Start a loop to process the rows of the cursor */
while (SQLCODE == 0)
{

/* Retrieve the rows of the cursor
and put the value in host language variables */

exec sql
FETCH MANAGER INTO :fname, :lname, :dname;

if (SQLCODE == 100) break;

/* Print the values in the variables */
printf ("%s %s %s\n", fname, lname, dname);

}

/* Close the cursor */
exec sql

CLOSE MANAGER;
if (SQLCODE < 0) sql_signal ();

Example 2: Opening a cursor to insert list data

The following interactive SQL example uses cursors to add a new row to the
RESUMES table of the sample personnel database:

8–72 SQL Statements

OPEN Statement

SQL> DECLARE TBLCURSOR INSERT ONLY TABLE CURSOR FOR
cont> SELECT EMPLOYEE_ID, RESUME FROM RESUMES;
SQL> DECLARE LSTCURSOR INSERT ONLY LIST CURSOR FOR
cont> SELECT RESUME WHERE CURRENT OF TBLCURSOR;
SQL> OPEN TBLCURSOR;
SQL> INSERT INTO CURSOR TBLCURSOR (EMPLOYEE_ID)
cont> VALUES ("00167");
1 row inserted
SQL> OPEN LSTCURSOR;
SQL> INSERT INTO CURSOR LSTCURSOR
cont> VALUES ("This is the resume for 00167");
SQL> INSERT INTO CURSOR LSTCURSOR
cont> VALUES ("Boston, MA");
SQL> INSERT INTO CURSOR LSTCURSOR
cont> VALUES ("Oracle Corporation");
SQL> CLOSE LSTCURSOR;
SQL> CLOSE TBLCURSOR;
SQL> COMMIT;

SQL Statements 8–73

Operating System Invocation ($) Statement

Operating System Invocation ($) Statement

Gives access to the operating system command line environment from within
SQL.

The dollar sign ($) tells SQL to spawn a subprocess and pass the rest of the line
to the operating system for processing. You must follow the dollar sign with an
operating system command. After the operating system processes the command,
it logs out of the subprocess process and returns control to SQL.

Environment

You can invoke operating system commands only in interactive SQL.

Format

$ operating-system-command

Arguments

operating-system-command
Specifies a valid operating system command.

Usage Notes

• Because SQL spawns a subprocess to execute the operating system command,
you cannot use the dollar sign command to create logical names that affect
the current interactive session. For instance, you cannot use the dollar sign
command to change the value of the SQL$DATABASE logical.

• Interactive SQL interprets any command line that begins with a dollar sign
($) as the start of an operating system command line. This is true even if the
dollar sign is a continuation of a string literal from the previous line, which
can lead to confusing results.

SQL> INSERT INTO EMPLOYEES (CITY) VALUES("DollarSign -
cont> $City")
%DCL-W-IVVERB, unrecognized command verb - check validity and spelling
\CITY");\
cont> ;
%SQL-F-UNTSTR, Unterminated string found
SQL>

Examples

Example 1: Using the DCL DIRECTORY command from within SQL

SQL> $ DIRECTORY *.SQL

Directory DISK2:[DEPT3.ACCT]

DEFPRO.SQL;6 NOTEQUAL.SQL;1 QUERY.SQL;1 REFEXAM.SQL;12
STORE.SQL;1 UPDATE.SQL;2

8–74 SQL Statements

Operating System Invocation ($) Statement

Total of 6 files.
SQL>

SQL Statements 8–75

PREPARE Statement

PREPARE Statement

Prepares an SQL statement dynamically generated by a program for execution,
and assigns a name to that statement.

Dynamic SQL lets programs accept or generate SQL statements at run time, in
contrast to SQL module language procedures. Unlike precompiled SQL or SQL
module language statements, such dynamically executed SQL statements are
not necessarily part of a program’s source code, but can be generated while the
program is running. Dynamic SQL is useful when you cannot predict the type of
SQL statement your program will need to process.

The PREPARE . . . INTO statement stores in the SQLDA the number and data
types of any select list items of a prepared statement. The SQLDA provides
information about dynamic SQL statements to the program and information
about memory allocated by the program to SQL.

Appendix D describes in more detail the specific fields of the SQLDA, and how
programs use it to communicate about select list items in prepared statements.

Environment

You can use the PREPARE statement:

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format

PREPARE <statement-name>
<statement-id-parameter>

SELECT LIST INTO <descriptor-name>

FROM ’ <statement-string> ’
<parameter>

Arguments

descriptor-name
Specifies the name of a structure declared in the host program as an SQLDA
to which SQL writes information about select list items. Precompiled programs
can use the embedded SQL statement INCLUDE SQLDA to automatically insert
a declaration of an SQLDA structure, called SQLDA, in the program when it
precompiles the program. Programs that use the SQL module language must
explicitly declare an SQLDA. Either precompiled or SQL module language
programs can explicitly declare additional SQLDAs, but must declare them with
unique names. For sample declarations of SQLDA structures, see Appendix D.3.

FROM statement-string
FROM parameter
Specifies the SQL statement to be prepared for dynamic execution. You either
specify the statement string directly enclosed in single quotation marks, or in

8–76 SQL Statements

PREPARE Statement

a parameter (a host language variable in a precompiled PREPARE statement
or a formal parameter in a PREPARE statement that is part of an SQL module
language procedure) that contains the statement string.

Whether specified directly or by a parameter, the statement string must be a
character string that is a dynamically executable SQL statement. (See the Usage
Notes for a list of the SQL statements that can be dynamically executed.) If you
specify the statement string directly, the maximum length is 1,024 characters.
If you specify the statement string as a parameter, the maximum length of the
statement string is 65,535 characters.

The form for the statement is the same as for embedded SQL statements, except
that:

• You must not begin the string with EXEC SQL.

• In places where SQL allows host language variables in an embedded
statement, you must specify parameter markers instead.

If you try to prepare an invalid statement, you will find a value in the SQLCODE,
the SQLCODE field of the SQLCA, or the SQLSTATE status parameter indicating
an error.

The values returned to the SQLCODE field are described in Appendix C. Check
the message vector to see which error message was returned. If necessary, refer
to the error message explanations and user actions located by default in the SQL
HELP ERRORS.

Parameter markers are question marks (?) that denote parameters in the
statement string of a PREPARE statement. Parameter markers are replaced
by values in parameters or dynamic memory when the prepared statement is
executed by an EXECUTE or OPEN statement.

SELECT LIST INTO
Specifies that SQL writes information about the number and data type of select
list items in the statement string to the SQLDA. The SELECT LIST keywords
clarify the effect of the INTO clause and are optional.

Using the SELECT LIST clause in a PREPARE statement is an alternative
to issuing a separate DESCRIBE . . . INPUT statement. See the DESCRIBE
Statement for more information.

The SELECT LIST clause in a PREPARE statement is deprecated syntax. For
more information about deprecated syntax, see Appendix F.

Note

The PREPARE statement LIST keyword is not related to the LIST data
type or list cursors.

statement-name
statement-id-parameter
Identifies the prepared version of the SQL statement specified in the FROM
clause. Depending on the type of SQL statement prepared, DESCRIBE,
EXECUTE, and dynamic DECLARE CURSOR statements can refer to the
statement name assigned in a PREPARE statement.

SQL Statements 8–77

PREPARE Statement

You can supply either a parameter or a compile-time statement name. Specifying
a parameter lets SQL supply identifiers to programs at run time. Use an integer
parameter to contain the statement identifier returned by SQL, or a character
string parameter to contain the name of the statement that you pass to SQL.

A single set of dynamic SQL statements (PREPARE, DESCRIBE, EXECUTE,
Extended Dynamic DECLARE CURSOR) can handle any number of dynamically
executed statements. If you decide to use parameters, statements that refer to
the prepared statement (DESCRIBE, EXECUTE, extended dynamic DECLARE
CURSOR) must also use a parameter instead of the explicit statement name.

Refer to the DECLARE CURSOR Statement, Dynamic for an example
demonstrating the PREPARE statement used with a dynamic DECLARE
CURSOR statement.

Usage Notes

• The PREPARE statement sets values in the SQLCA to report the number of
input and number of output parameters for a statement. These values allow
memory to be allocated for input and output SQLDA structures.

Assuming that the SQLERRD array is zero based, SQL sets SQLERRD[2]
to the count of output parameters, and SQLERRD[3] to the count of input
parameters. The values might be zero; CALL parameters of INOUT type will
appear in both the input and output count. These values allow memory to be
allocated for input and output SQLDA structures.

These fields in the SQLCA were not set prior to Oracle Rdb release 7.1.3,
therefore Oracle recommends that the SQLERRD[2] and SQLERRD[3] values
be set to a known value (such as -1) prior to the PREPARE call. If the values
remain as -1, the application must estimate the counts itself.

• Some statements, such as INSERT and DELETE, return a count of the
number of rows (on which the statement operated) in the SQLERRD[2] field
of the SQLCA. To take advantage of this behavior, you must prepare the
statement using the SQLCA as the status parameter. For more information
about the SQLERRD[2] field, see Appendix C.

• You can execute the same prepared statement many times. However, if a
statement to be dynamically executed does not contain select list items or
parameter markers, and your program needs to execute it only once, you
can use the EXECUTE IMMEDIATE statement to prepare and execute the
statement in one step.

• The PREPARE . . . SELECT LIST form of the PREPARE statement, besides
preparing a statement for execution, also stores information about the
number and data type of select list items in the SQLDA. However, no form of
the PREPARE statement corresponds to a DESCRIBE . . . INPUT statement.
To store information about parameter markers in the SQLDA, you must use
the DESCRIBE . . . INPUT statement.

To use the SQLDA, host languages must support pointer variables that
provide indirect access to storage by storing the address of data instead of
directly storing data in the variable. The languages supported by the SQL
precompiler that also support pointer variables are Ada, C, and C++. Any
other language that supports pointer variables can use the SQLDA, but
must call SQL module procedures that contain SQL statements instead of
embedding the SQL statements directly in source code.

8–78 SQL Statements

PREPARE Statement

• If you use the statement-id-parameter, you will see one of the following
behaviors:

If the statement-id is non-zero and does not match any prepared
statement (the id was stale or contained a random value), then an
error is raised:

%SQL-F-BADPREPARE, Cannot use DESCRIBE or EXECUTE on a statement that is not prepared

If the statement-id is non-zero, or the statement name is one that has
previously been used and matches an existing prepared statement, then
that statement is automatically released prior to the prepare of the new
statement. Refer to the RELEASE Statement for further details.

If the statement-id is zero or was automatically released, then a new
statement-id is allocated and the statement prepared.

If you use statement-name instead of a statement-id-parameter then SQL will
implicitly declare an id for use by the application. Therefore, the semantics
described apply similarly when using the statement-name. See the RELEASE
Statement for details.

• When you issue the EXECUTE statement for a previously prepared
statement, you may be interested in obtaining information beyond the success
or failure code returned in the SQLCODE status parameter. For example,
you may want to know how many rows were affected by the execution of a
DELETE or UPDATE statement. If you use an SQLCA status parameter, you
can access this type of information.

However, if you use an SQLCA parameter when you execute a prepared
statement, you must first have used an SQLCA parameter when you prepared
that statement. For example, using SQL module language calls from C, your
code might look like the following where the SQLCA parameter is passed to
both procedures:

static struct SQLCA sqlca;
/* ... */
PREPARE_STMT(&sqlca, statement, &stmt_id);
/* ... */
EXECUTE_STMT(&sqlca, &stmt_id);

• You cannot dynamically execute all statements that SQL allows you to
embed in a precompiled program or make part of an SQL module language
procedure. Statements you cannot dynamically execute are:

CLOSE

DECLARE CURSOR

DECLARE STATEMENT

DECLARE TABLE

DESCRIBE

EXECUTE

FETCH

INCLUDE

OPEN

PREPARE

SQL Statements 8–79

PREPARE Statement

RELEASE

WHENEVER

Table 8–1 lists SQL statements that can be dynamically executed. It also shows
whether the statements can have parameter markers or select list items that may
have to be processed, and lists the associated nondynamic SQL statements used
to process the statement dynamically.

Table 8–1 SQL Statements That Can Be Dynamically Executed

Statement That Can Be
Dynamically Executed

Parameter
Markers
Allowed?

Select
List
Items?

Associated Dynamic SQL
Statements

SELECT (general form) Yes Yes PREPARE
Dynamic DECLARE CURSOR
Extended dynamic DECLARE
CURSOR
DESCRIBE (optional)
OPEN
FETCH
CLOSE
RELEASE (optional)

DELETE
INSERT
UPDATE
SET statements

Yes No PREPARE
DESCRIBE (optional)
EXECUTE
EXECUTE IMMEDIATE (if no
parameter markers)
RELEASE (optional)

Compound statement
SELECT . . . INTO
INSERT . . .
RETURNING INTO
UPDATE . . .
RETURNING INTO

Yes Yes PREPARE
DESCRIBE (optional)
EXECUTE
EXECUTE IMMEDIATE (if no
parameter markers)
RELEASE (optional)

(continued on next page)

8–80 SQL Statements

PREPARE Statement

Table 8–1 (Cont.) SQL Statements That Can Be Dynamically Executed

Statement That Can Be
Dynamically Executed

Parameter
Markers
Allowed?

Select
List
Items?

Associated Dynamic SQL
Statements

ALTER
ATTACH
DECLARE
TRANSACTION
CREATE
COMMENT ON
COMMIT
DROP
GRANT
RENAME
REVOKE
ROLLBACK
SET TRANSACTION
START TRANSACTION
TRUNCATE

No No PREPARE
EXECUTE
EXECUTE IMMEDIATE
RELEASE (optional)

Examples

Example 1: Preparing an INSERT statement with parameter markers

This C/C++ program illustrates using a PREPARE statement to prepare an
INSERT statement for dynamic execution. Because the statement string stored
in command_string has parameter markers, the program needs to assign values
to host language variables that will be substituted for the parameter markers
during dynamic execution.

In this case, a DESCRIBE statement writes information about the parameter
markers to the SQLDA and the program stores the addresses of the variables
in the SQLDA structure. The program stores values in the variables and an
EXECUTE statement substitutes the values for the parameter markers in the
INSERT statement using the addresses in the SQLDA.

To shorten the example, this program is simplified:

• The program includes the INSERT statement as part of the program source
code. A program with such coded SQL statements does not need to use
dynamic SQL at all, but can simply embed the INSERT statement directly in
the program. A program that must process SQL statements generated as it
executes is the only type of program that requires dynamic SQL.

• The program declares host language variables for the parameter markers
without first checking the SQLDA for their description. Typically, an
application needs to look in the SQLDA to determine the number and
data type of parameter markers in the statement string before allocating
memory for them.

SQL Statements 8–81

PREPARE Statement

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sql_rdb_headers.h>

#define goto {\
printf("sql error number=> %d\n", SQLCA.SQLCODE);\
CheckSqlCode ();\

}
#define nowhere

exec sql WHENEVER SQLERROR goto nowhere;
exec sql WHENEVER SQLWARNING goto nowhere;
/*
* Illustrate a dynamic INSERT statement
* with parameter markers:
*/

typedef struct emps_s {
char emp_id[5];
char fname[10];
char lname[14];
char city[20];

} emps_t;

char filespec[20],
emp_id[5],
fname[10],
lname[14],
city[20],
command_string[256];

short emp_id_ind,
fname_ind,
lname_ind,
city_ind;

/* Declare communication area (SQLCA) and descriptor area (SQLDA)
* Define SQLVAR_ELEMENTS so that the structure can handle 10 elements
*/

#define SQLVAR_ELEMENTS 10
exec sql INCLUDE SQLDA;

exec sql INCLUDE SQLCA;

/* Declare the database: */
exec sql DECLARE ALIAS RUNTIME FILENAME :filespec;

void CheckSqlCode () {
if (SQLCA.SQLCODE < 0) sql_signal ();

}

void Dump_s ()
{
exec sql DECLARE X CURSOR FOR SELECT

EMPLOYEE_ID, FIRST_NAME, LAST_NAME, CITY
FROM EMPLOYEES WHERE EMPLOYEE_ID = ’99999’;

/*
* Declare a structure to hold values of rows from the table:
*/

emps_t s_rec;

/* Declare indicator vector for the preceding structure: */

short s_ind[4];

printf ("\nDump the contents of S_REC\n");

8–82 SQL Statements

PREPARE Statement

exec sql OPEN X;
exec sql FETCH X INTO :s_rec indicator :s_ind;
while (SQLCA.SQLCODE == 0)
{

printf ("\n%5d %s\n", s_ind[0], s_rec.emp_id);
printf ("%5d %s\n", s_ind[1], s_rec.fname);
printf ("%5d %s\n", s_ind[2], s_rec.lname);
printf ("%5d %s\n", s_ind[3], s_rec.city);

exec sql FETCH X INTO :s_rec indicator :s_ind;
}

exec sql CLOSE X;
return;
}

void main ()
{

printf ("Starting...\n");

/*
* Assign values to FILESPEC and COMMAND_STRING,
* and allocate memory for the SQLDA:
*/
strcpy (filespec, "SQL$DATABASE");
strcpy (command_string, "INSERT INTO EMPLOYEES \

(EMPLOYEE_ID, FIRST_NAME, LAST_NAME, CITY) \
VALUES (?,?,?,?)");

SQLDA = (struct SQLDA_STRUCT *) calloc (sizeof(struct SQLDA_STRUCT), 1);

SQLDA->SQLN = SQLVAR_ELEMENTS;

strncpy (&SQLDA->SQLDAID[0], "SQLDA ",8);

/*
* Prepare the statement assigned to COMMAND_STRING:
*/
exec sql PREPARE STMT3 FROM :command_string;
printf ("\nPrepared with %d input markers and %d output markers\n",

SQLCA.SQLERRD[3], SQLCA.SQLERRD[2]);

/* Use a DESCRIBE statement to write information
* about the parameter markers in the statement string
* to the SQLDA:
*/
exec sql DESCRIBE STMT3 INPUT INTO SQLDA;

/* Assign values to the variables:
*/
strcpy (emp_id, "99999");
strcpy (fname, "Bob");
strcpy (lname, "Addams");
strcpy (city, "Francestown");

emp_id_ind = fname_ind = lname_ind = city_ind = 0;

/*
* Assign the addresses of the variables to the SQLDATA field
* of the SQLDA:
*/
SQLDA->SQLVAR[0].SQLDATA = (char *) &emp_id;
SQLDA->SQLVAR[1].SQLDATA = (char *) &fname;
SQLDA->SQLVAR[2].SQLDATA = (char *) &lname;
SQLDA->SQLVAR[3].SQLDATA = (char *) &city;

SQLDA->SQLVAR[0].SQLIND = &emp_id_ind;
SQLDA->SQLVAR[1].SQLIND = &fname_ind;
SQLDA->SQLVAR[2].SQLIND = &lname_ind;
SQLDA->SQLVAR[3].SQLIND = &city_ind;

SQL Statements 8–83

PREPARE Statement

/* Execute STMT3:
*/
exec sql EXECUTE STMT3 USING DESCRIPTOR SQLDA;

/*
* Display the contents of table S to make sure
* it has the proper contents and clean it up:
*/
Dump_s ();

/*
* Cleanup
*/
exec sql DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = ’99999’;
exec sql COMMIT WORK;

printf ("Done.\n");

}

Example 2: Showing the effect of the SQLCA support.

The following example program in C uses the PREPARE statement and then
displays the SQLDA fields.

#include <stdio.h>
#include <sql_rdb_headers.h>

exec sql
declare alias filename ’db$:mf_personnel’;

exec sql
include SQLCA;

char * s1 = "begin insert into work_status values (?, ?, ?);\
select count(*) into ? from work_status; end";

void main ()
{
int i;
SQLCA.SQLERRD[2] = SQLCA.SQLERRD[3] = -1;
exec sql

prepare stmt from :s1;

if (SQLCA.SQLCODE != 0) sql_signal ();

printf("SQLCA:\n SQLCODE: %9d\n", SQLCA.SQLCODE);

for (i = 0; i < 6; i++)
printf(" SQLERRD[%d]: %9d\n", i, SQLCA.SQLERRD[i]);

}

The output shown below confirm that PREPARE processed three input arguments
and one output argument.

SQLCA:
SQLCODE: 0
SQLERRD[0]: 0
SQLERRD[1]: 0
SQLERRD[2]: 1
SQLERRD[3]: 3
SQLERRD[4]: 0
SQLERRD[5]: 0

8–84 SQL Statements

PRINT Statement

PRINT Statement

Displays a message in interactive SQL.

Environment

You can use the PRINT statement in interactive SQL.

Format

PRINT <literal>
<variable> AS <name>

edit-using-clause
,

edit-using-clause =

EDIT USING edit-string
<domain-name>

Arguments

AS name
Changes the name displayed in the print statement header. By default literal
values have a blank header name and variables use their name as a header. If
the header must include spaces or lowercase characters then use SET QUOTING
RULES or SET DIALECT to enable delimited identifiers

EDIT USING edit-string
EDIT USING domain-name
Assigns an edit string for use when formatting the variable or literal value. If a
domain name is specified then the EDIT STRING from the domain is used.

This clause is only permitted for interactive SQL.

literal
Specifies the values you want displayed to the user during execution of the
command procedure. Enclose the character literals in single quotation marks.

variable
Prints the contents of the specified variable.

Usage Notes

• Use a comma to separate two or more literals. A comma used as a separator
is not displayed to the user when the command procedure executes.

• To display a comma as part of a literal, include the comma inside the single
quotation marks enclosing the literal.

• If you execute the PRINT statement within an SQL command procedure,
SQL prints the output to SYS$OUTPUT. Use the SET OUTPUT statement to
redirect the output to a file.

SQL Statements 8–85

PRINT Statement

• If the variable was declared using a domain, then any EDIT STRING defined
for the domain will be used by the PRINT statement to format the output.

Examples

Example 1: Displaying a literal from a command procedure

The following PRINT statement in a command procedure displays ’Creating
trigger definitions for the database’ during the execution of the command
procedure:

SQL> -- Trigger definition statements are next.
SQL> PRINT ’Creating trigger definitions for the database’;
SQL> CREATE TRIGGER EMPLOYEE_ID_CASCADE_DELETE

.

.

.

Example 2: Displaying a variable

The following PRINT statement displays the definition of a variable:

SQL> DECLARE :X CHAR(10);
SQL> BEGIN
cont> SET :X = ’Active’;
cont> END;
SQL> PRINT :X;
X
Active

8–86 SQL Statements

QUIT Statement

QUIT Statement

Stops an interactive SQL session, rolls back any changes you made, and returns
you to the DCL prompt.

Environment

You can issue the QUIT statement in interactive SQL only.

Format

QUIT

Usage Notes

Both the QUIT and EXIT statements end an interactive SQL session. The QUIT
statement automatically rolls back changes made during the session; the EXIT
statement, by default, commits changes made during the session. The EXIT
statement offers you a chance to roll back changes; QUIT does not offer a chance
to commit changes.

SQL Statements 8–87

RELEASE Statement

RELEASE Statement

Releases all resources used by a prepared dynamic SQL statement and prevents
the prepared statement from executing again.

The RELEASE statement is a dynamic SQL statement. Dynamic SQL lets
programs accept or generate SQL statements at run time, in contrast to SQL
statements that are part of the source code for precompiled programs or SQL
module language procedures. Unlike precompiled SQL or SQL module language
statements, such dynamically executed SQL statements are not necessarily part
of a program’s source code, but can be generated while the program is running.
Dynamic SQL is useful when you cannot predict the type of SQL statement your
program will need to process.

Environment

You can use the RELEASE statement:

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format

RELEASE <statement-name>
<statement-id-parameter>

Arguments

statement-name
statement-id-parameter
Specifies the name of a prepared statement or a statement name assigned in a
PREPARE statement.

A single set of dynamic SQL statements (PREPARE, DESCRIBE, EXECUTE,
dynamic DECLARE CURSOR) can handle any number of dynamically executed
statements.

You can supply either a parameter or a compile-time statement name to identify
the statement to be executed. Specifying a parameter lets SQL supply identifiers
to programs at run time. Use an integer parameter to contain the statement
identifier returned by SQL or a character string parameter to contain the name of
the statement that you pass to SQL. If you use parameters, statements that refer
to the prepared statement (DESCRIBE, EXECUTE, DECLARE CURSOR) must
also use those parameters instead of the explicit statement name.

Usage Notes

• When you prepare an SQL statement for dynamic execution, you cannot
delete any schema definitions (such as constraints, indexes, or tables) referred
to directly or indirectly by the statement until you release the statement.

8–88 SQL Statements

RELEASE Statement

The RELEASE statement gives you a way to explicitly release prepared
statements. SQL also implicitly releases dynamic SQL statements in the
following circumstances:

– After an EXECUTE IMMEDIATE statement

– When a PREPARE statement refers to an already-prepared statement
name

– After a DISCONNECT statement

You do not need to release statements for which the PREPARE statement
failed, to do so is a programming error.

• If you have a prepared statement that refers to a cursor that is destroyed by
a release of its own statement, executing the prepared statement produces
unpredictable results. For example:

DECLARE A CURSOR FOR A_STMT;
PREPARE A_STMT FROM ’SELECT * FROM T’;
PREPARE B_STMT FROM ’DELETE T WHERE CURRENT OF A’;

OPEN A;
FETCH A;
EXECUTE B_STMT;
CLOSE A;

RELEASE A_STMT;

EXECUTE B_STMT; <--- This produces unpredictable results.

Example

Example 1: Using the RELEASE statement

The following fragment from a COBOL program shows using a RELEASE
statement to release resources from a prepared SELECT statement:

.

.

.

FETCHES.
DISPLAY "Here’s the row we stored:"

EXEC SQL PREPARE STMT FROM
’SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID = "99999"’
END-EXEC
EXEC SQL DECLARE C CURSOR FOR STMT END-EXEC

EXEC SQL OPEN C END-EXEC
.
.
.

EXEC SQL FETCH C INTO
:EMP_ID:EMP_ID_IND,
:LNAME:LNAME_IND,
:FNAME:FNAME_IND,
:MID_INIT:MID_INIT_IND,
:ADDR_1:ADDR_1_IND,
:ADDR_2:ADDR_2_IND,

SQL Statements 8–89

RELEASE Statement

:CITY:CITY_IND,
:STATE:STATE_IND,
:P_CODE:P_CODE_IND,
:SEX:SEX_IND,
:BDATE:BDATE_IND,
:S_CODE:S_CODE_IND

END-EXEC

DISPLAY EMP_ID," ",
FNAME," ",
MID_INIT," ",
LNAME," ",
ADDR_1," ",
ADDR_2," ",
CITY," ",
STATE," ",
P_CODE," ",
SEX," ",
BDATE," ",
S_CODE.

PERFORM CHECK
EXEC SQL CLOSE C END-EXEC.
PERFORM CHECK.
EXEC SQL RELEASE STMT END-EXEC.
PERFORM CHECK.
.
.
.

8–90 SQL Statements

RELEASE SAVEPOINT Statement

RELEASE SAVEPOINT Statement

The RELEASE SAVEPOINT Statement destroys the named savepoint established
by the SAVEPOINT statement. Changes made by the transaction are unaffected
by this statement.

Environment

You can use the RELEASE SAVEPOINT statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

release-savepoint-statement =

RELEASE SAVEPOINT savepoint-name
alias-name .

Arguments

alias-name
This optional alias name can be used to target a specific database alias. If no
alias-name is provided, then the current default database will be used.

savepoint-name
Name of a unique identifier for this savepoint. This name is declared using the
SAVEPOINT statement.

Usage Notes

• If no established savepoint exists with this name, then the error RDB$_
BAD_SVPT_HANDLE will be raised. SQLCODE will be returned as -882 and
SQLSTATE will be returned as 3B001.

%RDB-E-BAD_SVPT_HANDLE, invalid savepoint handle - "BOOKMARK2" is unknown

• The RELEASE SAVEPOINT statement may not be used in a SQL function
definition, nor can it be called indirectly from a function.

• The RELEASE SAVEPOINT statement may not be called indirectly from a
trigger action.

SQL Statements 8–91

RELEASE SAVEPOINT Statement

Examples

Example 1

The following example shows the use of the RELEASE SAVEPOINT statement.

SQL> set transaction read write;
SQL>
SQL> insert into module.SAMPLE values (1);
1 row inserted
SQL>
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (2);
1 row inserted
SQL> insert into module.SAMPLE values (3);
1 row inserted
SQL>
SQL> table module.SAMPLE;

A
1
2
3

3 rows selected
SQL>
SQL> release savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (4);
1 row inserted
SQL>
SQL> table module.SAMPLE;

A
1
2
3
4

4 rows selected
SQL>
SQL> commit;
SQL>

8–92 SQL Statements

RENAME Statement

RENAME Statement

Allows the database administrator to change the name of a database object. This
new name is then available for reference in other data definition statements, as
well as from queries and routines.

Note

The RENAME statement may require that synonyms are enabled for
the database. Reference the SYNONYMS ARE ENABLED clause of the
ALTER, CREATE and IMPORT DATABASE statements.

Environment

You can use the RENAME statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

RENAME oldname TO newname
CONSTRAINT
DOMAIN
FUNCTION
INDEX
MODULE
OUTLINE
PROCEDURE
PROFILE
ROLE
SEQUENCE
STORAGE MAP
TABLE
TRIGGER
USER
VIEW

Arguments

newname
The new name for this object. This name must not already exist in the database
for this object type, nor be the name of a synonym. The one exception is when
the synonym references the oldname object. See the Usage Notes for further
discussion.

If this is a RENAME TABLE, RENAME VIEW or RENAME SEQUENCE then
the newname cannot be the name of an existing table, sequence or view.

SQL Statements 8–93

RENAME Statement

oldname
The name of an existing object in the database. If the object type keyword
is specified then an object must exist of that type. The name may also be a
synonym for an object of the specified type.

Usage Notes

• You must have ALTER privilege on the database to rename a DOMAIN or
OUTLINE.

You must have ALTER privilege on the table, view, sequence, module, function
or procedure to alter its name. If the procedure or function is part of a module
then you will require only ALTER privilege on the containing module.

You must have SECURITY privilege on the database to alter the name of a
USER, ROLE or PROFILE.

You must have ALTER privilege on the referencing table to rename a
CONSTRAINT, or TRIGGER.

• The names of the database objects are stored in the Rdb system tables
as both column values (for instance RDB$SEQUENCE_NAME) as well as
encoded in binary definitions (such as RDB$VIEW_RSE) and original source
(RDB$VIEW_SOURCE).

The RENAME clause will modify all column values to reference the new
name. However, the encoded values and original SQL source code are not
modified by this command.

To support these encoded definitions, as well as previously compiled
applications, the old names are used to create synonyms that reference
the new name of the object.

The RENAME statement will create a synonym for the old names of domains,
functions, modules, procedures, sequences, tables and views. These synonyms
can be dropped if they are not used.

Note

It is not possible to create synonyms for OUTLINES, CONSTRAINTS,
OUTLINES, PROFILES, ROLES, TRIGGERS, or USERS. Therefore,
RENAME does not create synonyms for these objects. Care should be
taken if the old names appear in module definitions, or application code.

• If a synonym already exists, and references the same object then it will be
removed as part of the RENAME statement. For example, if you rename a
table and wish to return to the previous oldname there will be an existing
synonym with this name. Rdb will implicitly remove this synonym during the
rename operation.

• The object type is optional. If no object type keyword is provided then Rdb
will search for a matching name in this order:

1. table or view

2. domain

3. function or procedure

4. module

8–94 SQL Statements

RENAME Statement

5. sequence

6. trigger

7. constraint

8. outline

9. user

10. role

11. profile

12. index

13. storage map

• When an IDENTITY column is created for a table, a sequence with the
same name as the table is implicitly created. You may not use RENAME
SEQUENCE on the identity sequence, use RENAME TABLE instead to alter
the name of the table and its identity sequence.

• You may not RENAME an Rdb system table, index, storage map, view or
sequence.

• RENAME INDEX changes the name of the index in all system tables.

A synonym is created using the old index name to reference the new name of
the index. This synonym will be used by any query outline that previously
referenced the index using the old name. Note that only a single synonym
name may exist. Therefore, if you have indices with the same name as
another object, then the RENAME INDEX command may fail if creating the
synonym detects a duplicate name.

The command ALTER INDEX ... RENAME TO ... is synonymous with the
RENAME INDEX command.

• RENAME STORAGE MAP changes the name of the storage map in all system
tables.

If the storage map has a companion function in the RDB$STORAGE_MAPS
system module, then that function will also be renamed. A synonym is
created using the old function name to reference the new name of the
function. This synonym will be used by any other routine, computed by
column, automatic column, and so on that referenced the old storage mapping
function.

The command ALTER STORAGE MAP ... RENAME TO ... is synonymous
with the RENAME STORAGE MAP command.

• The following table compares the RENAME statements with the equivalent
ALTER statements.

SQL Statements 8–95

RENAME Statement

Table 8–2 Comparison between RENAME and ALTER Statements

RENAME statement Equivalent ALTER statement
Is a synonym
created?

RENAME CONSTRAINT ALTER CONSTRAINT ...
RENAME TO

No

RENAME DOMAIN ALTER DOMAIN ...
RENAME TO

Yes

RENAME FUNCTION ALTER FUNCTION ...
RENAME TO

Yes

RENAME INDEX ALTER INDEX ... RENAME
AS

Yes

RENAME MODULE ALTER MODULE ...
RENAME TO

Yes

RENAME OUTLINE ALTER OUTLINE ...
RENAME TO

No

RENAME PROCEDURE ALTER PROCEDURE ...
RENAME TO

Yes

RENAME PROFILE ALTER PROFILE ...
RENAME TO

No

RENAME ROLE ALTER ROLE ... RENAME
TO

No

RENAME SEQUENCE ALTER SEQUENCE ...
RENAME TO

Yes

RENAME STORAGE MAP ALTER STORAGE MAP ...
RENAME AS

Yes

RENAME TABLE ALTER TABLE ... RENAME
TO

Yes

RENAME TRIGGER ALTER TRIGGER ...
RENAME TO

No

RENAME USER ALTER USER ... RENAME
TO

No

RENAME VIEW ALTER VIEW ... RENAME
AS

Yes

Examples

Example 1: Preparing a database for RENAME statement

The RENAME statement for most objects requires that synonyms be enabled.
This example shows the reported error if a RENAME is attempted for an object
that requires synonyms.

8–96 SQL Statements

RENAME Statement

SQL> attach ’filename personnel_sql’;
SQL> show table
User tables in database with filename personnel_sql

CANDIDATES
COLLEGES
CURRENT_INFO A view.
CURRENT_JOB A view.
CURRENT_SALARY A view.
DEGREES
DEPARTMENTS
EMPLOYEES
JOBS
JOB_HISTORY
RESUMES
SALARY_HISTORY
WORK_STATUS

SQL> rename table EMPLOYEES to COMPANY_STAFF;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-UNSSYNONYM, this database does not have synonyms enabled
SQL> disconnect all;
SQL> alter database filename personnel_sql synonyms are enabled;

Example 2: Renaming a table in the PERSONNEL database

This example renames the EMPLOYEES table. The SHOW TABLE statement
lists the new name as well as synonym with the old name of the table.

SQL> attach ’filename personnel_sql’;
SQL> rename table EMPLOYEES to COMPANY_STAFF;
SQL> show table
User tables in database with filename personnel_sql

CANDIDATES
COLLEGES
COMPANY_STAFF
CURRENT_INFO A view.
CURRENT_JOB A view.
CURRENT_SALARY A view.
DEGREES
DEPARTMENTS
JOBS
JOB_HISTORY
RESUMES
SALARY_HISTORY
WORK_STATUS
EMPLOYEES A synonym for table COMPANY_STAFF

SQL> select last_name from COMPANY_STAFF where employee_id = ’00164’;
LAST_NAME
Toliver
1 row selected
SQL>

Example 3: Renaming back to the original name

This example shows that the rename back to the original name will create a new
synonym and remove the old synonym which had the same name as the tables
new name.

SQL Statements 8–97

RENAME Statement

SQL> rename table COMPANY_STAFF to EMPLOYEES;
SQL> show table
User tables in database with filename personnel_sql

CANDIDATES
COLLEGES
CURRENT_INFO A view.
CURRENT_JOB A view.
CURRENT_SALARY A view.
DEGREES
DEPARTMENTS
EMPLOYEES
JOBS
JOB_HISTORY
RESUMES
SALARY_HISTORY
WORK_STATUS
COMPANY_STAFF A synonym for table EMPLOYEES

SQL>

Example 4: Can not rename to a name used by the same object class or a
synonym

The RENAME command does not allow the new name to be in use by the same
class of objects, or by a synonym. In particular tables, views and sequences share
the same name space.

SQL> rename view CURRENT_INFO to CURRENT_SALARY;
%SQL-F-REL_EXISTS, Table CURRENT_SALARY already exists in this database or
schema
SQL> create sequence CURRENT_INFORMATION;
SQL> rename view CURRENT_INFO to CURRENT_INFORMATION;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-SEQEXTS, there is another sequence named "CURRENT_INFORMATION" in
this database
-RDMS-F-RELNOTCHG, relation CURRENT_INFO has not been changed

Example 5: Using the RENAME INDEX and RENAME STORAGE MAP
commands

SQL> show table (storage maps,index) employees
Information for table EMPLOYEES

Indexes on table EMPLOYEES:
EMPLOYEES_HASH with column EMPLOYEE_ID
No Duplicates allowed
Type is Hashed Scattered
Key suffix compression is DISABLED

EMP_EMPLOYEE_ID with column EMPLOYEE_ID
No Duplicates allowed
Type is Sorted
Key suffix compression is DISABLED
Node size 430

EMP_LAST_NAME with column LAST_NAME
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

Storage Map for table EMPLOYEES:
EMPLOYEES_MAP

SQL> rename storage map EMPLOYEES_MAP to EMP_STORAGE_MAP;
SQL> rename index EMPLOYEES_HASH to EMP_ID_HASH;
SQL> show table (storage maps,index) employees
Information for table EMPLOYEES

8–98 SQL Statements

RENAME Statement

Indexes on table EMPLOYEES:
EMP_EMPLOYEE_ID with column EMPLOYEE_ID
No Duplicates allowed
Type is Sorted
Key suffix compression is DISABLED
Node size 430

EMP_ID_HASH with column EMPLOYEE_ID
No Duplicates allowed
Type is Hashed Scattered
Key suffix compression is DISABLED

EMP_LAST_NAME with column LAST_NAME
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

Storage Map for table EMPLOYEES:
EMP_STORAGE_MAP

SQL> show storage map
User Storage Maps in database with filename mf_personnel_sql

CANDIDATES_MAP
COLLEGES_MAP
DEGREES_MAP
DEPARTMENTS_MAP
EMP_STORAGE_MAP
JOBS_MAP
JOB_HISTORY_MAP
SALARY_HISTORY_MAP
WORK_STATUS_MAP

SQL> show index
User indexes in database with filename mf_personnel_sql

COLL_COLLEGE_CODE
DEG_COLLEGE_CODE
DEG_EMP_ID
DEPARTMENTS_INDEX
EMP_EMPLOYEE_ID
EMP_ID_HASH
EMP_LAST_NAME
JH_EMPLOYEE_ID
JOB_HISTORY_HASH
SH_EMPLOYEE_ID
EMPLOYEES_HASH A synonym for index EMP_ID_HASH

SQL> show system function
Functions in database with filename mf_personnel_sql

CANDIDATES_MAP
COLLEGES_MAP
DEGREES_MAP
DEPARTMENTS_MAP
EMP_STORAGE_MAP
JOBS_MAP
JOB_HISTORY_MAP
SALARY_HISTORY_MAP
WORK_STATUS_MAP
EMPLOYEES_MAP A synonym for function EMP_STORAGE_MAP

SQL>

SQL Statements 8–99

REPEAT Control Statement

REPEAT Control Statement

Repetitively executes one or more SQL statements in a compound loop until an
end condition is met.

Environment

You can use the REPEAT control statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

repeat-statement=

REPEAT
<beginning-label>:

compound-use-statement UNTIL predicate

END REPEAT
<ending-label>

Arguments

beginning-label:
Assigns a name to the REPEAT statement. A beginning label used with the
LEAVE statement lets you perform a controlled exit from a repeat loop. A named
repeat loop is called a labeled repeat loop statement. A beginning label must
be unique within the procedure in which the label is contained.

END REPEAT ending-label
Marks the end of a control loop. If you choose to include the optional ending
label, it must match exactly its corresponding beginning label. An ending label
must be unique within the procedure in which the label is contained.

The optional ending-label argument makes multistatement procedures easier to
read, especially in complex multistatement procedure blocks.

REPEAT compound-use-statement
Repeatedly executes a block of SQL statements until an end condition is met, as
specified by the UNTIL predicate clause.

UNTIL predicate
Specifies a condition that controls how many times SQL can execute the
statements embedded within its REPEAT . . . UNTIL block (collectively referred
to as its compound statement). SQL executes the compound statement once and
then evaluates the UNTIL condition. If it evaluates to false or NULL (unknown)
and does not encounter an error exception, SQL executes the compound statement

8–100 SQL Statements

REPEAT Control Statement

again. Each time the search condition evaluates to false or NULL, the REPEAT
statement executes the compound statement. If the UNTIL condition evaluates to
true, SQL bypasses the compound statement and passes control to the statement
after the END REPEAT statement.

Usage Notes

The loop body is executed at least once for a REPEAT statement.

Example

Example 1: Using a REPEAT Statement to List Files in the Current Directory

SQL> SET VERIFY;
SQL> ATTACH ’FILE SCRATCH’;
SQL> CREATE DOMAIN file_name VARCHAR(255);
SQL> CREATE PROCEDURE find_file
cont> (IN :FILESPEC file_name BY DESCRIPTOR,
cont> INOUT :RESULTANT_FILESPEC file_name BY DESCRIPTOR,
cont> INOUT :CONTEXT INTEGER BY REFERENCE);
cont> EXTERNAL NAME LIB$FIND_FILE
cont> LOCATION ’SYS$LIBRARY:LIBRTL.EXE’
cont> LANGUAGE GENERAL
cont> PARAMETER STYLE GENERAL
cont> COMMENT IS
cont> ’DCL HELP: LIB$FIND_FILE ’
cont> / ’The Find File routine is called with a wildcard file’
cont> / ’specification for which it searches. LIB$FIND_FILE ’
SQL> CREATE PROCEDURE Find_file_end
cont> (IN :CONTEXT INTEGER BY REFERENCE);
cont> EXTERNAL
cont> NAME LIB$FIND_FILE_END
cont> LOCATION ’SYS$LIBRARY:LIBRTL.EXE’
cont> LANGUAGE GENERAL
cont> PARAMETER STYLE GENERAL
cont> COMMENT IS
cont> ’DCL HELP: LIB$FIND_FILE_END ’
cont> / ’The End of Find File routine is called once’
cont> / ’after each sequence of ’
cont> / ’calls to LIB$FIND_FILE. LIB$FIND_FILE_END deallocates’
cont> / ’any saved Record Management Service (RMS) context and’
cont> / ’deallocates the virtual memory used to hold the’
cont> / ’allocated context block.’;

SQL Statements 8–101

REPEAT Control Statement

SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont> -- This procedure performs a call to an external
cont> -- routine to list files located in the current
cont> -- default directory
cont> DECLARE :done, :context integer = 0;
cont> DECLARE :search_string FILE_NAME = ’*.SQL’;
cont> DECLARE :file_spec FILE_NAME;
cont> REPEAT
cont> -- Ask the OpenVMS routine for the next name
cont> CALL find_file (:search_string, :file_spec, :context);
cont> IF POSITION (’*’ in :file_spec) = 0
cont> AND POSITION (’%’ in :file_spec) = 0
cont> AND POSITION (’...’ in :file_spec) = 0
cont> THEN
cont> -- Display the name (there are no wildcards)
cont> TRACE :file_spec;
cont> ELSE
cont> SET :done = 1;
cont> END IF;
cont> -- Exit when we have no more file names
cont> UNTIL :done = 1
cont> END REPEAT;
cont> -- Clean up search context
cont> CALL find_file_end (:context);
cont> END;
~Xt: RDBVMS:[USER.V71]CREATE_ROLES.SQL;1
~Xt: RDBVMS:[USER.V71]TEST.SQL;1
SQL>

8–102 SQL Statements

REPLACE Statement

REPLACE Statement

Replaces or adds a new row to a table or view. When a table includes a PRIMARY
KEY definition, the REPLACE statement uses the key information to remove the
existing matching row prior to inserting the replacement data.

Environment

You can use the REPLACE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

REPLACE INTO <table-name>
<view-name> AS <correlation-name>
CURSOR <cursor-name>

DEFAULT VALUES
returning-clause

(<column-name>)
,

OVERRIDING SYSTEM VALUE
OVERRIDING USER VALUE

value-clause
select-expr

optimize-clause

value-clause =

VALUES (<parameter>)
<qualified-parameter>
value-expr
DEFAULT

,

returning-clause=

RETURNING value-expr
, INTO <parameter>

,

SQL Statements 8–103

REPLACE Statement

value-expr =

numeric-value-expr
binary-value-expr
char-value-expr
date-time-value-expr
interval-value-expr
date-vms-value-expr
DBKEY
NULL
ROWID

select-expr =

select-clause
with-clause

(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause offset-clause limit-to-clause

optimize-clause =

OPTIMIZE AS <query-name>
FOR BITMAPPED SCAN

FAST FIRST
SEQUENTIAL ACCESS
TOTAL TIME

OUTLINE outline-definition
USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

outline-definition =

MODE mode AS (query-list)
USING

COMPLIANCE MANDATORY
OPTIONAL

EXECUTION OPTIONS (execution-options)

COMMENT IS ’string’
/

8–104 SQL Statements

REPLACE Statement

select-merge-clause =

EXCEPT
DISTINCT CORRESPONDING

INTERSECT NATURAL
DISTINCT

MINUS
UNION

ALL
DISTINCT

Arguments

column-name
Specifies a list of names of columns in the table or view. You can list the columns
in any order, but the names must correspond to those of the table or view.

If you do not include all the column names in the list, SQL assigns a null value
to those not specified, unless columns were:

• Defined with a default

• Based on a domain that has a default

• Defined as an AUTOMATIC INSERT AS column

• Defined with the IDENTITY attribute

• Defined with the NOT NULL clause or is part of a PRIMARY KEY clause of
the CREATE TABLE statement

You cannot omit from a REPLACE statement the names of columns defined with
the NOT NULL clause or PRIMARY KEY clause. If you do, the statement fails.

Omitting the list of column names altogether is the same as listing all the
columns of the table or view in the same order as they were defined.

DEFAULT
Forces the named column to assume the default value defined for that column (or
NULL if none is defined).

If the DEFAULT clause is used in an REPLACE statement then one of the
following will be applied:

• If a DEFAULT attribute is present for the column then that value will be
applied during REPLACE.

• If an AUTOMATIC INSERT clause is present for the column then that value
will be applied during REPLACE. This can only happen if the SET FLAGS
’AUTO_OVERRIDE’ is used since during normal processing these columns
are read-only.

• Otherwise a NULL will be applied during REPLACE.

DEFAULT VALUES
Specifies that every column in the table be assigned a default value. Generated
columns (such as AUTOMATIC INSERT AS, GENERATED, or IDENTITY)
will be assigned the result of the value expression used to define the column.
Otherwise NULL will be assigned for non-generated columns, or columns without
a DEFAULT.

SQL Statements 8–105

REPLACE Statement

INTO parameter
Returns the values from the RETURNING clause into the specified list of
parameters. There must exist one parameter for each value expression listed by
the RETURNING clause.

This clause may be omitted for Interactive SQL which will then print the
returned values.

INTO table-name
INTO view-name
The name of the target cursor, table or view to which you want to add a row.

limit-to-clause
See Section 2.8.1 for a description of the LIMIT TO expression.

OPTIMIZE AS query-name
The OPTIMIZE AS clause assigns a name to the query. Use the SET FLAGS
’STRATEGY’ to see this name displayed.

OPTIMIZE FOR
The OPTIMIZE FOR clause specifies the preferred optimizer strategy for
statements that specify a select expression. The following options are available:

• BITMAPPED SCAN

Requests the Rdb query optimizer attempt to use BITMAPPED SCAN if
there exists multiple supporting indices. This option is not compatible with
SEQUENTIAL ACCESS.

• FAST FIRST

A query optimized for FAST FIRST returns data to the user as quickly as
possible, even at the expense of total throughput.

If a query can be canceled prematurely, you should specify FAST FIRST
optimization. A good candidate for FAST FIRST optimization is an interactive
application that displays groups of records to the user, where the user has
the option of aborting the query after the first few screens. For example,
singleton SELECT statements default to FAST FIRST optimization.

Choose either FAST FIRST or TOTAL TIME. If optimization strategy is not
explicitly set, FAST FIRST is the default.

• SEQUENTIAL ACCESS

Forces the use of sequential access. This is particularly valuable for tables
that use the strict partitioning functionality. This option is not compatible
with BITMAPPED SCAN.

• TOTAL TIME

If your application runs in batch, accesses all the records in the query,
and performs updates or writes a report, you should specify TOTAL TIME
optimization. Most queries benefit from TOTAL TIME optimization.

Choose either FAST FIRST or TOTAL TIME. Queries inside compound
statements default to TOTAL TIME.

OPTIMIZE OUTLINE outline-definition
The OPTIMIZE OUTLINE clause declares a temporary query outline to be used
with the select expression.

8–106 SQL Statements

REPLACE Statement

See the CREATE OUTLINE Statement for more information on defining an
outline.

OPTIMIZE USING outline-name
The OPTIMIZE USING clause explicitly names the query outline to be used with
the select expression even if the outline ID for the select expression and for the
outline are different.

See the CREATE OUTLINE Statement for more information on creating an
outline.

OPTIMIZE WITH
Selects one of three optimization controls: DEFAULT (as used by previous
versions of Rdb), AGGRESSIVE (assumes smaller numbers of rows will be
selected), and SAMPLED (which uses literals in the query to perform preliminary
estimation on indices).

The following example shows how to use this clause.

SQL> select * from employees where employee_id > ’00200’
cont> optimize with sampled selectivity;

order-by-clause
See Section 2.8.1 for a description of the ORDER BY expression.

OVERRIDING clause
The OVERRIDING SYSTEM VALUE clause instructs Rdb that the GENERATED,
IDENTITY or AUTOMATIC AS columns will be replaced with user supplied
values and therefore no generated values will be created. Such a clause would
be used if a table was being reloaded after maintenance and the database
administrator wanted to retain the saved generated values.

The OVERRIDING USER VALUE clause instructs Rdb that the GENERATED,
IDENTITY or AUTOMATIC AS columns will be generated by the database
system and that any user supplied values will be ignored. Such a clause would
be used when column names were wild carded by a SELECT clause and therefore
avoids enumerating all non-generated column names.

Without this clause REPLACE into AUTOMATIC, GENERATED (always) and
IDENTITY (always) will result in a read-only column error.

RETURNING value-expr
Returns the values of columns from the target table. If DBKEY is specified, this
argument returns the database key (dbkey) of the row being added. When the
DBKEY value is valid, subsequent queries can use the DBKEY value to access
the row directly. The ROWID keyword is a synonym for the DBKEY keyword.

select-clause
See Section 2.8.1 for a description of the SELECT expression.

select-expr
Specifies a select expression that specifies a result table. The result table can
contain zero or more rows. All the rows of the result table are added to the target
table named in the INTO clause.

This is the only situation supported in SQL that allows you to specify a second
database in a single SQL statement.

SQL Statements 8–107

REPLACE Statement

The number of columns in the result table must correspond to the number of
updatable columns specified in the list of column names. If you did not specify
a list of column names, the number of columns in the result table must be the
same as the number of updatable columns in the target table. For each row of
the result table, the value of the first column is assigned to the first column of the
target table, the second value to the second column, and so on.

For detailed information on select expressions, see Section 2.8.1.

VALUES value-expr
Specifies a list of values to be added to the table as a single row. The values can
be specified through parameters, qualified parameters, column select expressions,
value expressions, or the default values.

See Chapter 2 for more information about parameters, qualified parameters,
column select expressions, value expressions, and default values.

The values listed in the VALUES argument can be selected from another table,
but both tables must reside in the same database.

The number of values in the list must correspond to the number of updatable
columns specified in the list of column names. If you did not specify a column list,
the number of values in the list must be the same as the number of updatable
columns in the table. The first value specified in the list is assigned to the first
column, the second value to the second column, and so on.

Values for IDENTITY, COMPUTED BY, and AUTOMATIC columns are not able
to be replaced so these column types are not considered for the default column
list.

See the SQL Online Help topic REPLACE EXAMPLES for an example that shows
an REPLACE statement with a column select expression.

Usage Notes

• You must have both INSERT and DELETE privileges on the target table or
view in order to replace rows.

• The REPLACE statement uses the PRIMARY KEY defined for the target
table and erases any matching rows prior to inserting the new row contents.

• Since REPLACE can perform an implicit DELETE on the target table, Oracle
Rdb will execute BEFORE and AFTER DELETE triggers, as well as BEFORE
and AFTER INSERT triggers. There is no specific REPLACE trigger actions.

• If no PRIMARY KEY exists for the target table, or if one exists but is disabled
then REPLACE acts just like an INSERT statement. In this case DELETE
privilege is not required to insert into the table.

• When you use the REPLACE statement to replace rows from a view, you
are actually replacing rows in the base table on which the view is based.
In addition, SQL restricts the types of views with which you can use the
REPLACE statement. See the CREATE VIEW Statement for rules about
inserting, updating, and deleting values in views.

8–108 SQL Statements

REPLACE Statement

• You can get a confusing error message when you attempt to replace rows from
a view and both the following are true:

The view is based on a table that contains a column defined with the NOT
NULL attribute.

The view definition does not include the column defined with the NOT
NULL attribute.

For example:

SQL> -- Create a view that is not a read-only view:
SQL> CREATE VIEW TEMP AS
cont> SELECT SUPERVISOR_ID FROM JOB_HISTORY;
SQL>
SQL> -- However, the JOB_HISTORY table on which the view is based
SQL> -- contains a column, EMPLOYEE_ID, that is defined with the
SQL> -- NOT NULL attribute. Because the TEMP view does not include
SQL> -- the EMPLOYEE_ID column, all attempts to replace rows into
SQL> -- it will fail because no value is provided for EMPLOYEE_ID:
SQL> REPLACE INTO TEMP (SUPERVISOR_ID) VALUES (’99999’);
%RDB-E-INTEG_FAIL, violation of constraint JH_EMP_ID_EXISTS
caused operation to fail
-RDB-F-ON_DB, on database RDB$DEFAULT_CONNECTION
SQL> ROLLBACK;
SQL>

• To move data between databases, SQL lets you refer to a table from one
database in the INTO clause of an REPLACE statement, and to tables from
another database in a select expression within that REPLACE statement.

REPLACE is one of the few SQL statements that allows you to specify a
second database. Example 4 illustrates this point.

• Oracle Rdb uses the outline specified in the OPTIMIZE USING clause (if
it exists) or as specified by the OPTIMIZE OUTLINE clause unless one or
more of the directives in the outline cannot be followed. For example, if the
compliance level for the outline is mandatory and one of the indexes specified
in the outline directives has been deleted, the outline is not used. SQL issues
an error message if an existing outline cannot be used.

If you specify the name of an outline that does not exist, Oracle Rdb compiles
the query, ignores the outline name, and searches for an existing outline with
the same outline ID as the query. If an outline with the same outline ID is
found, Oracle Rdb attempts to execute the query using the directives in that
outline. If an outline with the same outline ID is not found, the optimizer
selects a strategy for the query for execution.

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information regarding query outlines.

• If the target table of the REPLACE statement has an IDENTITY column then
a new value will be generated for the replaced row.

In addition the CURRVAL pseudo column can be used with the name of
the table to reference this new sequence value. For instance, this example
assumes the table ORDER has a column defined with the IDENTITY
attribute.

SQL> replace into ORDER values (...);
SQL> replace into ORDER_LINES (ORDER.CURRVAL, ...);
SQL> replace into ORDER_LINES (ORDER.CURRVAL, ...);

SQL Statements 8–109

REPLACE Statement

This example shows that the FOREIGN KEY value is selected using a
reference to the table name followed by the CURRVAL pseudo column.

However, the NEXTVAL pseudo column can not be used to fetch a new
identity value. Only an INSERT or a REPLACE on the table can generate a
new identity value.

• If the REPLACE on the table is rolled back or fails due to a constraint or
trigger error condition, then the used identity values are discarded. If a row
is deleted from the table, the identity value is not reused. For an exception to
the reuse rule, see the usage note on TRUNCATE TABLE statement.

Examples

Example 1: Adding a row with literal values

The following interactive SQL example stores a replacement row in the
DEPARTMENTS table of the sample PERSONNEL database. It explicitly
assigns a literal value to each column in the row. Because the statement includes
the RETURNING DBKEY clause, SQL returns the dbkey value 62:765:9.

SQL> REPLACE INTO DEPARTMENTS
cont> -- List of columns:
cont> (DEPARTMENT_CODE,
cont> DEPARTMENT_NAME,
cont> MANAGER_ID,
cont> BUDGET_PROJECTED,
cont> BUDGET_ACTUAL)
cont> VALUES
cont> -- List of values:
cont> (’RECR’,
cont> ’Recreation’,
cont> ’00175’,
cont> 240000,
cont> 128776)
cont> RETURNING DBKEY;

DBKEY
62:765:9

1 row replaced
SQL>

Example 2: Adding a row using parameters

This example uses Interactive SQL to add a row to the JOB_HISTORY table
by explicitly assigning values from parameters to columns in the table. This
example:

• Prompts for the column values.

• Declares a read/write transaction. Because you are updating the JOB_
HISTORY table, you do not want to conflict with other users who may be
reading data from this table. Therefore, you use the protected share mode
and the write lock type.

• Stores the row by assigning the parameters to the columns of the table.

• Checks the value of the SQLCODE variable and repeats the REPLACE
operation if the value is less than zero.

8–110 SQL Statements

REPLACE Statement

• Uses the COMMIT statement to make the update permanent.

SQL> DECLARE :empl_id char(5);
SQL> DECLARE :job_code char(4);
SQL> DECLARE :start_date date vms;
SQL> DECLARE :end_date date vms;
SQL> DECLARE :end_date_ind integer;
SQL> DECLARE :dept_code char(4);
SQL> DECLARE :super char(5);
SQL>
SQL> ACCEPT :empl_id;
Enter value for EMPL_ID: 70001
SQL> ACCEPT :job_code UPPER;
Enter value for JOB_CODE: APGM
SQL> ACCEPT :start_date;
Enter value for START_DATE: 1-JUL-2010
SQL> ACCEPT :end_date :end_date_ind;
Enter value for END_DATE: Exit
SQL> ACCEPT :dept_code UPPER;
Enter value for DEPT_CODE: PHRN
SQL> ACCEPT :super;
Enter value for SUPER: 00201
SQL>
SQL> SET TRANSACTION READ WRITE
cont> RESERVING JOB_HISTORY FOR PROTECTED WRITE;
SQL>
SQL> REPLACE INTO JOB_HISTORY
cont> (EMPLOYEE_ID,
cont> JOB_CODE,
cont> JOB_START,
cont> JOB_END,
cont> DEPARTMENT_CODE,
cont> SUPERVISOR_ID)
cont> VALUES (:EMPL_ID,
cont> :JOB_CODE,
cont> :START_DATE,
cont> :END_DATE :END_DATE_IND,
cont> :DEPT_CODE,
cont> :SUPER)
cont> ;
1 row replaced
SQL>
SQL> select EMPLOYEE_ID, JOB_CODE, JOB_START, JOB_END, DEPARTMENT_CODE
cont> from JOB_HISTORY
cont> where EMPLOYEE_ID = :empl_id;
EMPLOYEE_ID JOB_CODE JOB_START JOB_END DEPARTMENT_CODE
70001 APGM 1-Jul-2010 NULL PHRN
1 row selected
SQL>

Example 3: Copying from one table to another

This interactive SQL example replaces data in an identical intermediate result
table. To do this, it uses a select expression that limits rows of the select
expression’s result table to those with data on employees who live in the city of
’Sanbornville’.

SQL Statements 8–111

REPLACE Statement

SQL>
SQL> REPLACE INTO TEMP
cont> (EMPLOYEE_ID,
cont> LAST_NAME,
cont> FIRST_NAME,
cont> MIDDLE_INITIAL,
cont> ADDRESS_DATA_1,
cont> ADDRESS_DATA_2,
cont> CITY,
cont> STATE,
cont> POSTAL_CODE,
cont> SEX,
cont> BIRTHDAY,
cont> STATUS_CODE)
cont> SELECT * FROM EMPLOYEES
cont> WHERE CITY = ’Sanbornville’;
1 row replaced
SQL>

Example 4: Copying rows between databases with the REPLACE statement

This example copies the contents of the EMPLOYEES table from the personnel
database to another database, LOCALDATA.

SQL> ATTACH ’ALIAS LOCALDB FILENAME localdata’;
SQL> ATTACH ’ALIAS PERS FILENAME personnel’;
SQL>
SQL> SET TRANSACTION
cont> ON PERS USING (READ ONLY
cont> RESERVING PERS.EMPLOYEES FOR SHARED READ)
cont> AND
cont> ON LOCALDB USING (READ WRITE
cont> RESERVING LOCALDB.EMPLOYEES FOR SHARED WRITE);
SQL>
SQL> REPLACE INTO LOCALDB.EMPLOYEES
cont> SELECT * FROM PERS.EMPLOYEES;
100 rows replaced
SQL>

Example 5: Using REPLACE to update changed row in a table.

SQL>
SQL> create table INVENTORY
cont> (product_code integer
cont> primary key not deferrable
cont> ,product_refresh timestamp(2)
cont> ,quantities integer
cont>);
SQL>
SQL> create table IN_SHIPMENTS
cont> like INVENTORY;
SQL>

During normal usage, the IN_SHIPMENTS table will be refreshed and applied to
the INVENTORY table to replace on-hand quantities for products.

SQL>
SQL> -- Show the size of the inventory table before and after the REPLACE
SQL> select count(product_code) from INVENTORY;

8–112 SQL Statements

REPLACE Statement

1000
1 row selected
SQL>
SQL> -- Refresh the inventory with new updates
SQL> replace into INVENTORY
cont> select product_code, current_timestamp, quantities
cont> from IN_SHIPMENTS;
44 rows replaced
SQL>
SQL> select count(product_code) from INVENTORY;

1000
1 row selected
SQL>

Example 6: Replacing the user name and an amount into table columns:

SQL> CREATE TABLE TABLE1
cont> (ID CHAR(31),
cont> AMOUNT INT(4));
SQL>
SQL> REPLACE INTO TABLE1 (ID, AMOUNT)
cont> VALUES (USER, 1000);
1 row replaced
SQL> SELECT * FROM TABLE1;
ID AMOUNT
ELLINGSWORTH 1000.0000
1 row selected
SQL>

Example 7: Replacing a name and a column select expression into the same table
columns used in the previous example:

SQL> REPLACE INTO TABLE1 (ID, AMOUNT)
cont> VALUES (’BROWN’,
cont> (SELECT COUNT (*) FROM TABLE1));
1 row replaced
SQL> SELECT * FROM TABLE1;
ID AMOUNT
ELLINGSWORTH 1000.0000
BROWN 1.0000
2 rows selected
SQL>

Example 8: Replacing Default Values for Selected Columns

SQL> REPLACE INTO DEPARTMENTS
cont> (DEPARTMENT_CODE, DEPARTMENT_NAME, BUDGET_ACTUAL)
cont> VALUES
cont> (’RECR’,’Recreation’, DEFAULT);
1 row replaced
SQL>
SQL> SELECT DEPARTMENT_CODE, DEPARTMENT_NAME,
cont> MANAGER_ID, BUDGET_PROJECTED
cont> FROM DEPARTMENTS WHERE DEPARTMENT_CODE=’RECR’;
DEPARTMENT_CODE DEPARTMENT_NAME MANAGER_ID BUDGET_PROJECTED
RECR Recreation NULL NULL
1 row selected
SQL>

Example 9: Replacing a Row of All Default Values into a Table

This statement fails due to a PRIMARY KEY defined on the LAST_NAME
column.

SQL Statements 8–113

REPLACE Statement

SQL> REPLACE INTO CANDIDATES
cont> DEFAULT VALUES
cont> ;
%RDB-E-INTEG_FAIL, violation of constraint MUST_HAVE_NAME
caused operation to fail
-RDB-F-ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> SELECT LAST_NAME, FIRST_NAME FROM CANDIDATES
cont> WHERE LAST_NAME IS NULL;
0 rows selected
SQL>

8–114 SQL Statements

RETURN Control Statement

RETURN Control Statement

Returns the value of the stored function.

Environment

You can use the RETURN statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

RETURN value-expr

Arguments

value-expr
The value expression to be returned as the result of this function call. The value-
expr must be assignment-compatible with the data type defined by the stored
function RETURNS clause.

See Section 2.6 for more information on value expressions.

Usage Notes

• The RETURN statement is required syntax when defining a stored function.

• If the RETURN statement is never executed, because of a conditional
expression, then an exception is raised at run time.

• The RETURN statement is permitted only within stored functions.

• The RETURN statement should not be confused with the RETURNS clause of
the stored function definition. The RETURNS clause defines the data type of
the function, and the RETURN clause is executed to result the result.

Examples

Example 1: Specifying the RETURN statement in a stored function

SQL Statements 8–115

RETURN Control Statement

SQL> CREATE MODULE utility_functions
cont> LANGUAGE SQL
cont> FUNCTION abs (IN :arg INTEGER) RETURNS INTEGER
cont> COMMENT ’Returns the absolute value of an integer’;
cont> BEGIN
cont> RETURN CASE
cont> WHEN :arg < 0 THEN - :arg
cont> ELSE :arg
cont> END;
cont> END;

.

.

.
cont> END MODULE;

8–116 SQL Statements

REVOKE Statements

REVOKE Statements

Deletes privileges or roles from object access control.

Usage Notes

The following notes apply to all REVOKE statements.

• For the SELECT, INSERT, UPDATE and DELETE data manipulation
privileges, SQL checks the access privilege set for the database and for the
individual table before allowing access to a specific table. For example, if
your SELECT privilege for a database that contains the EMPLOYEES table
is revoked, you will not be able to read rows from the table even though you
may have SELECT privilege to the EMPLOYEES table itself.

• You cannot execute the REVOKE statement when any of the LIST, DEFAULT
or RDB$SYSTEM storage areas are set to read-only. You must first set these
storage areas to read/write. Note that in some databases RDB$SYSTEM will
also be the default and list storage area.

• Deletions and changes to ACLs do not take effect until you attach to the
database again, even though those changes are displayed by the SHOW
PROTECTION and SHOW PRIVILEGES statements.

• You must attach to all databases to which you refer in a REVOKE statement.
If you use the default database attach, you must use the default alias
(RDB$DBHANDLE in interactive and precompiled SQL; in SQL module
language files, the identifier specified in the ALIAS clause) to work with
database ACLs.

• You must execute the REVOKE statement in a read/write transaction. If
you issue this statement when there is no active transaction, SQL starts
a transaction with characteristics specified in the most recent DECLARE
TRANSACTION statement.

SQL Statements 8–117

REVOKE Statement

REVOKE Statement

Removes privileges from or entirely deletes an entry in the Oracle Rdb access
control list (ACL) for a database object. Each entry in an access control list
consists of an identifier (or role) and a list of privileges assigned to the identifier.

• Each identifier specifies a user or a set of users.

• The list of privileges specifies which operations that user or user group
can perform on the database, table, column, module, procedure, function or
sequence.

When a user tries to perform an operation on a database, SQL reads the
associated ACL from top to bottom, comparing the identifier of the user with
each entry. As soon as SQL finds the first match, it grants the rights listed in
that entry and stops the search. All identifiers that do not match a previous
entry are compared with the subsequent entry, and if no match occurs, they
receive the rights of (‘‘fall through’’ to) the entry [*,*], if it exists. If no entry has
the user identifier [*,*], then unmatched user identifiers are denied all access to
the database, table, or column. For this reason, both the entries and their order
in the list are important.

To create an entry or add privileges to an entry in the Oracle Rdb access control
list for a database object, see the GRANT Statement.

Environment

You can use the REVOKE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a nonstored procedure in a nonstored SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

8–118 SQL Statements

REVOKE Statement

REVOKE

db-privs ON DATABASE ALIAS <alias>
,
*

table-privs ON <table-name>
TABLE <view-name>

,
*

column-privs ON COLUMN <column-name>
,

module-privs ON MODULE <module-name>
,
*

ext-routine-privs ON FUNCTION <ext-rout-name>
ON PROCEDURE ,

*
sequence-privs ON SEQUENCE <sequence-name>

,
*

revoke-from

db-privs=

SELECT
INSERT
OPERATOR
DELETE
CREATE
ALTER
DROP
DBCTRL
DBADM
SHOW
REFERENCES
UPDATE
SECURITY
DISTRIBTRAN

,
ALL PRIVILEGES
ENTRY

SQL Statements 8–119

REVOKE Statement

table-privs=

SELECT
INSERT
DELETE
CREATE
ALTER
DROP
DBCTRL
SHOW
REFERENCES

(<column-name>)
,

UPDATE
(<column-name>)

,
,

ALL PRIVILEGES
ENTRY

column-privs =

UPDATE
REFERENCES

,
ALL PRIVILEGES
ENTRY

module-privs =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES
ENTRY

ext-routine-privs =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES
ENTRY

8–120 SQL Statements

REVOKE Statement

sequence-privs =

ALTER
DBCTRL
DROP
REFERENCES
SELECT
SHOW

,
ALL PRIVILEGES
ENTRY

revoke-from =

FROM identifier
PUBLIC AFTER identifier

PUBLIC
POSITION <n>

,

identifier =

user-identifier
general-identifier
system-identifier
role-name

+

Arguments

AFTER identifier
AFTER PUBLIC
POSITION n
Specifies the position of the entry within the ACL. If you omit the AFTER or
POSITION argument, SQL searches the entire ACL for an identifier list that
matches the one specified in the FROM clause of the REVOKE statement. If it
finds a match, it modifies the ACL entry by deleting the privileges specified in
the privilege list. If there is no match, SQL generates an error and the REVOKE
statement has no effect on the ACL.

With the AFTER or POSITION argument, you can specify the position in the list
from which SQL searches for an ACL entry with an identifier that matches the
one specified in the FROM clause of the REVOKE statement.

• In the AFTER argument, the identifier specifies the entry in the ACL after
which SQL begins its search for the entry to be modified or deleted. If none of
the entries in the ACL has an identifier that matches the identifier specified
in the AFTER argument, SQL generates an error and the statement fails.

Starting after the entry specified by the identifier in the AFTER argument,
SQL searches entries in the ACL. If an entry has an identifier that matches
the identifier specified by the FROM clause of the REVOKE statement, SQL
modifies or deletes that ACL entry.

If none of the entries has an identifier that matches the identifier specified by
the FROM clause of the REVOKE statement, SQL generates an error and the
statement fails (even if an entry before the position at which SQL began its
search had an identifier that matched).

SQL Statements 8–121

REVOKE Statement

Specifying PUBLIC is equivalent to a wildcard specification of all user
identifiers.

• In the POSITION argument, the integer specifies the earliest relative position
in the ACL of the entry to be modified or deleted. If the integer is larger than
the number of entries in the ACL, SQL generates an error and the statement
fails.

Starting with the position specified by the POSITION argument, SQL
searches entries in the ACL. If an entry has an identifier that matches the
identifier specified by the FROM clause of the REVOKE statement, SQL
modifies or deletes that ACL entry.

If none of the entries has an identifier that matches the identifier specified by
the FROM clause of the REVOKE statement, SQL generates an error and the
statement fails (even if an entry before the position at which SQL began its
search had an identifier that matched).

ALL PRIVILEGES
Specifies that SQL should revoke all privileges in the ACL entry. The REVOKE
ALL PRIVILEGES statement differs from the REVOKE ENTRY statement in
that it does not delete the entire entry from the ACL. The identifier remains, but
without any privileges. An empty ACL entry denies all access to users matching
the identifier, even if an entry later in the ACL grants PUBLIC access.

ENTRY
Deletes the entire entry in the ACL, including the identifier.

FROM identifier
FROM PUBLIC
Specifies the identifiers for the ACL entry to be modified or deleted. Specifying
PUBLIC is equivalent to a wildcard specification of all user identifiers.

You can specify foyr types of identifiers:

• User identifiers

• General identifiers

• System-defined identifiers

• Role names

You can specify more than one identifier by combining them with plus signs (+).
Such identifiers are called multiple identifiers. They identify only those users
who are common to all the groups defined by the individual identifiers. Users
who do not match all the identifiers are not controlled by that entry.

For instance, the multiple identifier SECRETARIES + INTERACTIVE specifies
only members of the group defined by the general identifier SECRETARIES that
are interactive processes. It does not identify members of the SECRETARIES
group that are not interactive processes.

For more information about identifiers, see your operating system documentation.

ON DATABASE ALIAS alias
ON TABLE table-name
ON COLUMN column-name
ON MODULE module-name
ON FUNCTION ext-routine-name
ON PROCEDURE ext-routine-name

8–122 SQL Statements

REVOKE Statement

ON SEQUENCE sequence-name
Specifies whether the REVOKE statement applies to ACLs for database objects.
You can specify a list of names for any form of the ON clause. You must qualify a
column name with at least the associated table name.

ON DATABASE ALIAS *
ON TABLE *
ON MODULE *
ON FUNCTION *
ON PROCEDURE *
ON SEQUENCE *
Specifies whether the REVOKE statement applies to ACLs for all objects of the
specified types.

db-privs
table-privs
column-privs
module-privs
ext-routine-privs
sequence-privs
Specifies the list of privileges you want to remove from an existing ACL entry.
The operations permitted by a given privilege keyword differ, depending on
whether it was granted for a database, table, column, module, external routine,
or sequence. Table 7-5 in the GRANT Statement lists the privilege keywords and
their meanings for databases, tables, modules, columns, external routines, and
sequences.

general-identifier
Identifies groups of users on the system and are defined by the OpenVMS system
manager in the system privileges database. The following are possible general
identifiers:

• DATAENTRY

• SECRETARIES

• MANAGERS

role-name
The name of a role, such as one created with the CREATE ROLE statement. If
the role name exists as an operating system group or rights identifier, then Oracle
Rdb will create the role automatically when you issue the GRANT statement.
A role that is created automatically always has the attribute of IDENTIFIED
EXTERNALLY.

system-identifier
Automatically defined by the OpenVMS system when the rights database is
created at system installation time. System-defined identifiers are assigned
depending on the type of login you execute. The following are all valid system-
defined identifiers:

• BATCH

• NETWORK

• INTERACTIVE

• LOCAL

SQL Statements 8–123

REVOKE Statement

• DIALUP

• REMOTE

user-identifier
Uniquely identifies each user on the system.

The user identifier consists of the standard OpenVMS user identification code
(UIC), a group name, and a member name (user name). The group name is
optional. The user identifier can be in either numeric or alphanumeric format.
The following are all valid user identifiers that could identify the same user:

K_JONES
[SYSTEM3, K_JONES]
[341,311]

You can use the asterisk (*) wildcard character as part of a user identifier. For
example, if you want to specify all users in a group on an OpenVMS system, you
can enter [341,*] as the identifier.

When Oracle Rdb creates a database, it automatically creates an ACL entry with
the identifier [*,*], which grants all privileges except DBCTRL to any user.

You cannot use more than one user identifier in a multiple identifier.

Usage Notes

• You cannot REVOKE privileges on routines in a stored module; use REVOKE
on the module instead.

• You can only revoke column-level privileges that have been specifically
granted at the column level.

• For the SELECT, INSERT, and DELETE data manipulation privileges,
SQL checks the ACL for the database and for the individual table before
allowing access to a specific table. For example, if your SELECT privilege for
a database that contains the EMPLOYEES table is revoked, you will not be
able to read rows from the table even though you may have SELECT privilege
to the EMPLOYEES table itself.

• To revoke the data manipulation privileges UPDATE and REFERENCES, you
must have at least read access to the database and the appropriate column
privilege.

• You cannot deny yourself the DBCTRL privilege for a database, table, module,
external routine, or sequence that you create.

• The SELECT privilege is a prerequisite for all other privileges. If you revoke
the SELECT privilege, you effectively deny all privileges, even if they are
specified in the privilege list. This restriction may cause REVOKE statements
to fail when you might expect them to work. For instance, the following
REVOKE statement fails because it tries to revoke the SELECT privilege
from the ACL entry for the owner. Because that implicitly denies DBCTRL
on the table to the owner, the statement fails.

SQL> REVOKE SELECT ON EMPLOYEES FROM serle;
%RDB-E-NO_PRIV, privilege denied by database facility

8–124 SQL Statements

REVOKE Statement

For more information on protection for an Oracle Rdb database, see the chapter
on defining database privileges in the Oracle Rdb Guide to Database Design and
Definition.

Example

Example 1: Using REVOKE to manage user access to the database and tables

SQL> attach ’filename DB$:MF_PERSONNEL’;
SQL>
SQL> -- examine current privileges
SQL> show protection on database RDB$DBHANDLE;
Protection on Alias RDB$DBHANDLE

(IDENTIFIER=SQLNET4RDB,ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+
DROP+DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

(IDENTIFIER=[DOC,DOC_READER],ACCESS=SELECT+CREATE)
(IDENTIFIER=[DOC,DOC_WRITER],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES)

(IDENTIFIER=[*,*],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+DROP+
OPERATOR+DBADM+REFERENCES)

SQL>
SQL> -- revoke selected privileges
SQL> revoke CREATE on database alias RDB$DBHANDLE from DOC_WRITER;
SQL> revoke DISTRIBTRAN on database alias RDB$DBHANDLE from DOC_REVIEWER;
SQL> show protection on database RDB$DBHANDLE;
Protection on Alias RDB$DBHANDLE

(IDENTIFIER=SQLNET4RDB,ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+
DROP+DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

(IDENTIFIER=[DOC,DOC_READER],ACCESS=SELECT)
(IDENTIFIER=[DOC,DOC_WRITER],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+ALTER+
DROP+DBCTRL+OPERATOR+DBADM+REFERENCES)

(IDENTIFIER=[*,*],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+DROP+
OPERATOR+DBADM+REFERENCES)

SQL>
SQL> -- No longer all access to DOC_REVIEWER, use wildcard for all tables
SQL> revoke ALL PRIVILEGES on table * from DOC_REVIEWER;
SQL> commit;

Example 2: Revoking DROP Sequence Privileges from a User

SQL> CREATE SEQUENCE EMPID;
SQL> SHOW PROTECTION ON SEQUENCE EMPID
Protection on Sequence EMPID

(IDENTIFIER=[RDB,STUART],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL)
(IDENTIFIER=[*,*],ACCESS=NONE)

SQL> GRANT SELECT ON SEQUENCE EMPID TO PUBLIC;
SQL> SHOW PROTECTION ON SEQUENCE EMPID;
Protection on Sequence EMPID

(IDENTIFIER=[RDB,STUART],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL)
(IDENTIFIER=[*,*],ACCESS=SELECT)

SQL> REVOKE DROP ON SEQUENCE EMPID FROM STUART;
SQL> SHOW PROTECTION ON SEQUENCE EMPID;
Protection on Sequence EMPID

(IDENTIFIER=[RDB,STUART],ACCESS=SELECT+SHOW+ALTER+DBCTRL)
(IDENTIFIER=[*,*],ACCESS=SELECT)

Example 3: REVOKE ALL versus REVOKE ENTRY

This example show the difference between the REVOKE ALL PRIVILEGES
clause, which leaves the entry in tact but with no access, and the REVOKE
ENTRY clause which removes the entire matching entry from the ACL (access
control list).

SQL Statements 8–125

REVOKE Statement

SQL> create sequence next_dept;
SQL> grant all privileges on sequence next_dept to j_jones;
SQL> show prot on sequence next_dept;
Protection on Sequence NEXT_DEPT

(IDENTIFIER=[RDB,J_JONES],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL+REFERENCES)
(IDENTIFIER=[RDB,K_SMITH],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL+REFERENCES)
(IDENTIFIER=[*,*],ACCESS=NONE)

SQL>
SQL> ! Deny J_JONES all access to this sequence
SQL> revoke all privileges on sequence next_dept from j_jones;
SQL> show prot on sequence next_dept;
Protection on Sequence NEXT_DEPT

(IDENTIFIER=[RDB,J_JONES],ACCESS=NONE)
(IDENTIFIER=[RDB,K_SMITH],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL+REFERENCES)
(IDENTIFIER=[*,*],ACCESS=NONE)

SQL>
SQL> ! Remove the entry, J_JONES will now match only PUBLIC (aka [*,*])
SQL> revoke entry on sequence next_dept from j_jones;
SQL> show prot on sequence next_dept;
Protection on Sequence NEXT_DEPT

(IDENTIFIER=[RDB,K_SMITH],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL+REFERENCES)
(IDENTIFIER=[*,*],ACCESS=NONE)

SQL>

8–126 SQL Statements

REVOKE Statement: ANSI/ISO-Style

REVOKE Statement: ANSI/ISO-Style

Removes privileges from the Oracle Rdb access control list granted to a specific
user or role for a database object. Each entry in an ANSI/ISO-style access
privilege set consists of an identifier and a list of privileges assigned to the
identifier.

• Each identifier specifies a user, a role (role rights identifier) or the PUBLIC
keyword.

• The set of privileges specifies what operations that user can perform on the
database, table, column, module, procedure, function or sequence.

For ANSI/ISO-style databases, the access privilege set is not order-dependent.
The user matches the entry in the access privilege set, receives whatever
privileges have been granted on the database object and receives the privileges
defined for PUBLIC. All privileges granted to held roles (role rights identifiers)
are also merged with the access for the current user. A user without an entry
in the access privilege set and who holds no matching roles receives only the
privileges defined for PUBLIC. The PUBLIC identifier always has an entry in the
access control list, even if PUBLIC has no access to the database object.

To create an entry or add privileges to an entry in the Oracle Rdb access control
list for a a database object, see the GRANT Statement: ANSI/ISO-Style.

Environment

You can use the REVOKE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a nonstored procedure in a nonstored SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SQL Statements 8–127

REVOKE Statement: ANSI/ISO-Style

REVOKE

db-privs-ansi ON DATABASE ALIAS <alias>
,
*

table-privs-ansi ON <table-name>
TABLE <view-name>

,
*

column-privs-ansi ON COLUMN <column-name>
,

module-privs-ansi ON MODULE <module-name>
,
*

ext-routine-privs-ansi ON FUNCTION <ext-routine-name>
ON PROCEDURE ,

*
sequence-privs-ansi ON SEQUENCE > <sequence-name>

,
*

revoke-ansi-from

db-privs-ansi =

SELECT
INSERT
OPERATOR
DELETE
CREATE
ALTER
DROP
DBCTRL
DBADM
SHOW
REFERENCES
UPDATE
SECURITY
DISTRIBTRAN

,
ALL PRIVILEGES

table-privs-ansi =

SELECT
INSERT
DELETE
CREATE
ALTER
DROP
DBCTRL
SHOW
REFERENCES

(<column-name>)
,

UPDATE
(<column-name>)

,
,

ALL PRIVILEGES

8–128 SQL Statements

REVOKE Statement: ANSI/ISO-Style

column-privs-ansi =

UPDATE
REFERENCES

,
ALL PRIVILEGES

module-privs-ansi =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

ext-routine-privs-ansi =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

sequence-privs-ansi =

ALTER
DBCTRL
DROP
REFERENCES
SELECT
SHOW

,
ALL PRIVILEGES

revoke-ansi-from =

FROM identifier-ansi-style
PUBLIC

,

identifier-ansi-style =

uic-identifier
user-identifier
role-name

SQL Statements 8–129

REVOKE Statement: ANSI/ISO-Style

Arguments

ALL PRIVILEGES
Specifies that SQL should revoke all privileges in the access privilege set entry.

FROM identifier-ansi-style
FROM PUBLIC
Specifies the identifiers for the access privilege set entry to be modified or deleted.
Specifying PUBLIC is equivalent to a wildcard specification of all user identifiers.

The only identifiers are ones that translate to an OpenVMS user identification
code (UIC).

For more information about user identifiers, see the operating system
documentation.

ON DATABASE ALIAS alias
ON TABLE table-name
ON COLUMN column-name
ON MODULE module-name
ON FUNCTION ext-routine-name
ON PROCEDURE ext-routine-name
ON SEQUENCE sequence-name
Specifies whether the REVOKE statement applies to ACLs for database objects.
You can specify a list of names for any form of the ON clause. You must qualify a
column name with at least the associated table name.

ON DATABASE ALIAS *
ON TABLE *
ON MODULE *
ON FUNCTION *
ON PROCEDURE *
ON SEQUENCE *
Specifies whether the REVOKE statement applies to ACLs for all objects of the
specified types. If privileges are denied for the operation on some objects, then
the REVOKE is aborted.

db-privs-ansi
table-privs-ansi
column-privs-ansi
module-privs-ansi
ext-routine-privs-ansi
sequence-privs-ansi
Specifies the list of privileges you want to remove from an existing access
privilege set entry. The operations permitted by a given privilege keyword differ,
depending on whether it was granted for a database, table, column, module,
routine, or sequence. Table 7-5 in the GRANT Statement lists the privilege
keywords and their meanings for databases, tables, modules, external routines
and sequences.

TO identifier-ansi-style
Specifies the identifiers for the access privilege set entry. Specifying PUBLIC is
equivalent to a wildcard specification of all user identifiers.

In ANSI/ISO-style databases, you are allowed to specify single-user identifiers,
roles (role rights identifiers), system and process rights; but no wildcard groups
or members are allowed.

8–130 SQL Statements

REVOKE Statement: ANSI/ISO-Style

role-name
The name of a role, such as one created with the CREATE ROLE statement, or
role rights identifier.

If the role name exists as an operating system group or rights identifier, then
Oracle Rdb will create the role automatically when you issue the GRANT
statement when SECURITY CHECKING IS INTERNAL. A role that is created
automatically always has the attribute of IDENTIFIED EXTERNALLY.

user-identifier
Uniquely identifies each user on the system.

The user identifier consists of the standard OpenVMS user identification code
(UIC), a group name, and a member name (user name). The group name is
optional. The user identifier can be in either numeric or alphanumeric format.
The following are all valid user identifiers that could identify the same user:

K_JONES
[SYSTEM3, K_JONES]
[341,311]

When Oracle Rdb creates a database, it automatically creates an access privilege
set entry with the PUBLIC identifier, which grants all privileges except DBCTRL
to any user. In access privilege set databases, the only wildcard allowed is the
PUBLIC identifier.

You cannot use more than one user identifier in a multiple identifier.

Usage Notes

• You can revoke only column-level privileges that have been specifically
granted at the column level.

• To revoke the data manipulation privileges UPDATE and REFERENCES,
you need to have been granted at least select access to the database and the
appropriate column privilege.

• When a privilege is revoked from the grantee who received the privilege with
the WITH GRANT OPTION clause, the privilege is also revoked from all
users who received the privilege from that grantee (unless these users have
received the privilege from yet another user who still has the privilege).

• You cannot REVOKE privileges on routines in a stored module; use REVOKE
on the module instead.

For more information on protection for an Oracle Rdb database, see the chapter
on defining database privileges in the Oracle Rdb Guide to Database Design and
Definition.

Examples

Example 1: Managing User Access with the REVOKE statement

SQL> attach ’filename DB$:ANSI_PERSONNEL’;
SQL>
SQL> -- examine current privileges
SQL> show protection on database RDB$DBHANDLE;

SQL Statements 8–131

REVOKE Statement: ANSI/ISO-Style

Protection on Alias RDB$DBHANDLE
[DOC,DOC_WRITER]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY,DISTRIBTRAN
Without Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY,DISTRIBTRAN
[DOC,DOC_READER]:
With Grant Option: NONE
Without Grant Option: SELECT,CREATE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

SQL>
SQL> -- revoke selected privileges
SQL> revoke CREATE on database alias RDB$DBHANDLE from DOC_READER;
SQL> revoke DISTRIBTRAN on database alias RDB$DBHANDLE from DOC_WRITER;
SQL> show protection on database RDB$DBHANDLE;
Protection on Alias RDB$DBHANDLE
[DOC,DOC_WRITER]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY
Without Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY
[DOC,DOC_READER]:
With Grant Option: NONE
Without Grant Option: SELECT

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

SQL>
SQL> -- prevent drop by revoking the privilege
SQL> revoke DROP on table * from DOC_READER;
SQL> commit;

Example 2: Revoking a privilege granted with the WITH GRANT OPTION clause

When the privilege is revoked from the grantee, rdb_doc, who received the
privilege with the WITH GRANT OPTION clause, the privilege is also revoked
from all users who received the privilege from that grantee.

SQL> SHOW PROTECTION ON TABLE EMPLOYEES;
[*,*]:
With Grant Option: NONE
Without Grant Option: SELECT

[SQL,WARRING]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,

DROP,DBCTRL,OPERATOR,DBADM,REFERENCES
Without Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,

DROP,DBCTRL,DBADM,REFERENCES
[RDB,RDB_DOC]:
With Grant Option: SHOW
Without Grant Option: NONE

SQL>
SQL> REVOKE SHOW ON EMPLOYEES FROM [rdb,rdb_doc];
SQL> SHOW PROTECTION ON EMPLOYEES;
Protection on Table EMPLOYEES
[*,*]:
With Grant Option: NONE
Without Grant Option: SELECT

[RDB,RDB_DOC]:
With Grant Option: NONE
Without Grant Option: NONE

Example 3: Revoking column privileges

8–132 SQL Statements

REVOKE Statement: ANSI/ISO-Style

This example shows how to restrict privileges on a specific column by revoking
the UPDATE privilege that has been granted for that column.

SQL> SHOW PROTECTION ON COLUMN EMPLOYEES.EMPLOYEE_ID;
[RDB,RDB_DOC]:
With Grant Option: NONE
Without Grant Option: UPDATE

SQL> REVOKE UPDATE ON COLUMN EMPLOYEES.EMPLOYEE_ID FROM [rdb,rdb_doc];
SQL> SHOW PROTECTION ON COLUMN EMPLOYEES.EMPLOYEE_ID;
[RDB,RDB_DOC]:
With Grant Option: NONE
Without Grant Option: NONE

Example 4: Revoking DROP Privilege from a Sequence for a User

This example shows the action of REVOKE for a SEQUENCE in an ANSI style
database.

SQL> create sequence EMPLOYEE_ID_GEN;
SQL> grant select on sequence EMPLOYEE_ID_GEN to public;
SQL> grant all privileges on sequence EMPLOYEE_ID_GEN to stuart;
SQL> show protection on sequence EMPLOYEE_ID_GEN;
Protection on Sequence EMPLOYEE_ID_GEN
[DOCS,STUART]:
With Grant Option: NONE
Without Grant Option: SELECT,SHOW,ALTER,DROP,DBCTRL,REFERENCES

[DOCS,FREEMAN]:
With Grant Option: SELECT,SHOW,ALTER,DROP,DBCTRL,REFERENCES
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: SELECT

SQL> revoke drop on sequence EMPLOYEE_ID_GEN from stuart;
SQL> show protection on sequence EMPLOYEE_ID_GEN;
Protection on Sequence EMPLOYEE_ID_GEN
[DOCS,STUART]:
With Grant Option: NONE
Without Grant Option: SELECT,SHOW,ALTER,DBCTRL,REFERENCES

[DOCS,FREEMAN]:
With Grant Option: SELECT,SHOW,ALTER,DROP,DBCTRL,REFERENCES
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: SELECT

SQL>

SQL Statements 8–133

REVOKE Statement: Database System Privileges

REVOKE Statement: Database System Privileges

Revoke a Database system privilege from a user or role.

Environment

You can use the REVOKE statement for database system privileges:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a nonstored procedure in a nonstored SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

REVOKE ALL PRIVILEGES FROM
<system-privilege>

,

<username>
<role-name>
PUBLIC

,

Arguments

ALL PRIVILEGES
Revokes all system privileges assigned to the users and roles listed.

FROM username
FROM role-name
FROM PUBLIC
Specifies the user, role, or the PUBLIC user from which the specified system
privilege is to be revoked.

system-privilege
The database system privileges to be revoked. Refer to the System Privileges
table in the GRANT Statement: Database System Privileges for a list of supported
system privileges.

Usage Notes

• You must have the SECURITY privilege on the database to revoke a role from
a user or a role.

8–134 SQL Statements

REVOKE Statement: Database System Privileges

Example 8–5 Example 1: Revoking Database System Roles

SQL> show user J_JONES;
J_JONES
Identified externally
Account is unlocked
Granted Create Any

VIEW
Granted Alter Any

VIEW
Granted Drop Any

VIEW
No roles have been granted to this user

SQL>
SQL> -- This user is no longer responsible for managing views
SQL> revoke create any view, alter any view, drop any view from J_JONES;
SQL>
SQL> show user J_JONES;

J_JONES
Identified externally
Account is unlocked
No roles have been granted to this user

SQL>

Note that the REVOKE will take effect only for new sessions (after an ATTACH,
CONNECT, etc).

Example

This example uses the REVOKE statement to remove those granted system
privileges. If all the database system privileges are to be removed, then the ALL
PRIVILEGES clause could have been used.

SQL Statements 8–135

REVOKE Statement: Roles

REVOKE Statement: Roles

Revoke a role from another user or role.

Environment

You can use the REVOKE statement for roles:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a nonstored procedure in a nonstored SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

REVOKE ALL ROLES FROM <username>
<role-name> <role-name>

, PUBLIC
,

Arguments

ALL ROLES
Revokes all roles assigned to the users listed.

FROM username
FROM role-name
FROM PUBLIC
Specifies the user, role, or the PUBLIC user from which the specified role is to be
revoked.

role-name
The name of an existing role created with the CREATE ROLE statement or
created automatically by the GRANT statement.

Usage Notes

• You must have the SECURITY privilege on the database to revoke a role from
a user or another role.

Example

Example 1: Granting and Revoking Roles

8–136 SQL Statements

REVOKE Statement: Roles

SQL> -- Optionally, create three users and two roles.
SQL> -- Oracle Rdb automatically generates users and
SQL> -- roles if they are identified externally.
SQL> CREATE USER ABLOWNEY IDENTIFIED EXTERNALLY;
SQL> CREATE USER BGREMBO IDENTIFIED EXTERNALLY;
SQL> CREATE USER LWARD IDENTIFIED EXTERNALLY;
SQL> CREATE ROLE SALES_MANAGER IDENTIFIED EXTERNALLY;
SQL> CREATE ROLE DIVISION_MANAGER IDENTIFIED EXTERNALLY;
SQL> -- Grant the SALES_MANAGER role to users ABLOWNEY and
SQL> -- BGREMBO. Also grant the SALES_MANAGER role to the
SQL> -- DIVISION MANAGER ROLE.
SQL> GRANT SALES_MANAGER TO ABLOWNEY, BGREMBO, DIVISION_MANAGER;
SQL> -- Grant the DIVISION_MANAGER role to LWARD. LWARD now
SQL> -- has both the SALES_MANAGER and DIVISION_MANAGER roles.
SQL> GRANT DIVISION_MANAGER TO LWARD;
SQL> -- Revoke the DIVISION_MANAGER role from LWARD. He has
SQL> -- left the company.
SQL> REVOKE DIVISION_MANAGER FROM LWARD;
SQL> -- Grant the DIVISION_MANAGER role to BGREMBO. She
SQL> -- has been promoted to division manager.
SQL> GRANT DIVISION_MANAGER TO BGREMBO;

SQL Statements 8–137

ROLLBACK Statement

ROLLBACK Statement

Ends a transaction and undoes all changes you made since that transaction
began. The ROLLBACK statement also:

• Closes all open cursors (with the exception of WITH HOLD cursors)

• Releases all row locks

• Performs a checkpoint operation if fast commit processing is enabled

The ROLLBACK statement affects:

• All open databases included in the current transaction

• All changes to data made with SQL data manipulation statements (DELETE,
UPDATE, and INSERT)

• All changes to data definitions made with SQL data definition statements
(ALTER, CREATE, DROP, RENAME, GRANT, and REVOKE)

Environment

You can use the ROLLBACK statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

Rollback-statement =

ROLLBACK WORK
AND CHAIN

Arguments

AND CHAIN
Starts a new transaction implicitly using the same attributes as this rolled back
transaction.

WORK
Specifies an optional keyword that has no effect on the ROLLBACK statement. It
is provided for compatibility with the ANSI/ISO SQL standard.

Usage Notes

• You cannot use the ROLLBACK statement in an ATOMIC compound
statement.

• The ROLLBACK statement may not be executed from a SQL function or
trigger or any stored procedure called from a SQL function or trigger.

8–138 SQL Statements

ROLLBACK Statement

• The AND CHAIN clause is only permitted in a compound statement (i.e. in a
BEGIN . . . END block), or as the body of a stored procedure.

• When AND CHAIN is used a new transaction is implicitly started using the
same attributes as the rolled back transaction. Attributes such as READ
WRITE, READ ONLY, RESERVING, EVALUATING, WAIT, and ISOLATION
LEVEL are retained for the new transaction.

• Applications can use the AND CHAIN clause to simplify applications, since
the complex transaction attributes need only be specified once.

• When the SET FLAGS option TRANSACTION_PARAMETERS is specified a
line of output is written to identify the rolled-back and chained transaction.
Each SET TRANSACTION assigns a unique sequence number which is
displayed after each transaction action line.

• When the ROLLBACK statement is executed within a compound statement
and no transaction is active, a success status (SQLSTATE or SQLCODE) is
the result.

However, if the ROLLBACK statement is executed in a single statement, it
will result in an error. This behavior can be modified by setting the dialect to
SQL92 or SQL99, or by using the SET QUIET COMMIT statement. Refer to
the SET DIALECT and SET QUIET COMMIT statements for more details.
For SQL Module Language or SQL pre-compiler applications, refer to the
QUIET_COMMIT qualifier and the QUIET COMMIT clause in the module
header.

Examples

Example 1: Rolling back changes in a COBOL program

GET-ID-NUMBER.
DISPLAY "Enter employee ID number: "

WITH NO ADVANCING.
ACCEPT EMPLOYEE-ID.

CHANGE-SALARY.
DISPLAY "Enter new salary amount: "

WITH NO ADVANCING.
ACCEPT SALARY-AMOUNT.

EXEC SQL UPDATE SALARY_HISTORY
SET SALARY_AMOUNT = :SALARY-AMOUNT
WHERE EMPLOYEE_ID = :EMPLOYEE-ID
AND END_DATE IS NULL

END-EXEC

DISPLAY EMPLOYEE-ID, SALARY-AMOUNT.
DISPLAY "Is this figure correct? [Y or N] "

WITH NO ADVANCING.
ACCEPT ANSWER.
IF ANSWER = "Y" THEN

EXEC SQL COMMIT END-EXEC
ELSE

EXEC SQL ROLLBACK END-EXEC
DISPLAY "Please enter the new salary amount again."
GO TO CHANGE-SALARY

END-IF.

Example 2: Using COMMIT and AND CHAIN

SQL Statements 8–139

ROLLBACK Statement

The following simple example executes SET TRANSACTION once at the start
of the procedure. Then periodically the transaction is committed and restarted
using the COMMIT AND CHAIN syntax. This simplifies the application since
there is only one definition of the transaction characteristics.

SQL> -- process table in batches
SQL>
SQL> set compound transactions ’internal’;
SQL> set flags ’transaction,trace’;
SQL>
SQL> begin
cont> declare :counter integer = 0;
cont> declare :emp integer;
cont>
cont> set transaction
cont> read write
cont> reserving employees for exclusive write;
cont>
cont> for :emp in 0 to 600
cont> do
cont> begin
cont> declare :id char(5)
cont> default substring (cast (:emp+100000 as varchar(6))
cont> from 2 for 5);
cont> if exists (select * from employees where employee_id = :id)
cont> then
cont> trace ’found: ’, :id;
cont> if :counter > 20
cont> then
cont> commit and chain;
cont> set :counter = 1;
cont> else
cont> set :counter = :counter + 1;
cont> end if;
cont> end if;
cont> end;
cont> end for;
cont>
cont> commit;
cont> end;
~T Compile transaction (1) on db: 1
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
~T Start_transaction (1) on db: 1, db count=1
~T Rollback_transaction on db: 1
~T Compile transaction (3) on db: 1
~T Transaction Parameter Block: (len=14)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
0002 (00002) TPB$K_LOCK_WRITE (reserving) "EMPLOYEES" TPB$K_EXCLUSIVE
~T Start_transaction (3) on db: 1, db count=1
~Xt: found: 00164

.

.

.
~Xt: found: 00184
~Xt: found: 00185
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Restart_transaction (3) on db: 1, db count=1
~Xt: found: 00186

.

.

.

8–140 SQL Statements

ROLLBACK Statement

~Xt: found: 00205
~Xt: found: 00206
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Restart_transaction (3) on db: 1, db count=1
~Xt: found: 00207

.

.

.
~Xt: found: 00228
~Xt: found: 00229
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Restart_transaction (3) on db: 1, db count=1
~Xt: found: 00230

.

.

.
~Xt: found: 00249
~Xt: found: 00267
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
~T Restart_transaction (3) on db: 1, db count=1
~Xt: found: 00276

.

.

.
~Xt: found: 00435
~Xt: found: 00471
~T Commit_transaction on db: 1
~T Prepare_transaction on db: 1
SQL>

SQL Statements 8–141

ROLLBACK TO SAVEPOINT Statement

ROLLBACK TO SAVEPOINT Statement

The ROLLBACK TO SAVEPOINT statement destroys the named savepoint
established by the SAVEPOINT statement and removes all database changes
made from the time the SAVEPOINT statement established the named savepoint.

Environment

You can use the ROLLBACK TO SAVEPOINT statement in a compound
statement of a multistatement procedure:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

rollback-savepoint-statement =

ROLLBACK TO savepoint-name
SAVEPOINT alias-name .

Arguments

alias-name
This optional alias name can be used to target a specific database alias. If no
alias-name is provided, then the current default database will be used.

savepoint-name
Name of a unique identifier for this savepoint. This name is declared using the
SAVEPOINT statement.

Usage Notes

• If no established savepoint exists with this name, then the error RDB$_
BAD_SVPT_HANDLE will be raised. SQLCODE will be returned as -882 and
SQLSTATE will be returned as 3B001.

%RDB-E-BAD_SVPT_HANDLE, invalid savepoint handle - "BOOKMARK2" is unknown

• The ROLLBACK TO SAVEPOINT statement may not be used in a SQL
function definition, nor can it be called indirectly from a function.

• The ROLLBACK TO SAVEPOINT statement may not be called indirectly
from a trigger action.

8–142 SQL Statements

ROLLBACK TO SAVEPOINT Statement

Examples

Example 1

The following example shows the use of SAVEPOINT and ROLLBACK TO
SAVEPOINT to exclude rows inserted during the transaction. In an actual
application, the ROLLBACK TO SAVEPOINT statement would probably be
within a conditional statement such as IF-THEN-ELSE or CASE statement.

SQL> declare local temporary table module.SAMPLE
cont> (a integer)
cont> on commit preserve rows
cont> ;
SQL>
SQL> set transaction read only;
SQL>
SQL> insert into module.SAMPLE values (1);
1 row inserted
SQL>
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (2);
1 row inserted
SQL> insert into module.SAMPLE values (3);
1 row inserted
SQL>
SQL> table module.SAMPLE;

A
1
2
3

3 rows selected
SQL>
SQL> rollback to savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (4);
1 row inserted
SQL>
SQL> table module.SAMPLE;

A
1
4

2 rows selected
SQL>
SQL> commit;
SQL>

SQL Statements 8–143

SAVEPOINT Statement

SAVEPOINT Statement

The SAVEPOINT Statement establishes a marker in the current transaction that
allows the programmer to undo part of the transaction (using ROLLBACK TO
SAVEPOINT) without resorting to a full transaction ROLLBACK.

Environment

You can use the SAVEPOINT statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

savepoint-statement =

SAVEPOINT savepoint-name
alias-name .

Arguments

alias-name
This optional alias name can be used to target a specific database alias. If no
alias-name is provided, then the current default database will be used.

savepoint-name
Name of a unique identifier for this savepoint. This name will be used
with subsequent ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT
statements.

Usage Notes

• If the SAVEPOINT statement is used more than once with the same name,
then the prior SAVEPOINT is destroyed and replaced with this new location.

• Any established savepoints will be discarded by a ROLLBACK statement
(which does not use the TO SAVEPOINT clause), and by a COMMIT
statement.

• If more savepoints are created than are supported by Rdb, then the error
RDB$_EXCESS_SVPT will be raised. SQLCODE will be returned as -880 and
SQLSTATE will be returned as 3B002.

%RDB-E-EXCESS_SVPT, maximum number of savepoints are already active - "BOOK2"
failed

• The SAVEPOINT statement may not be used in a SQL function definition,
nor can it be called indirectly from a function.

8–144 SQL Statements

SAVEPOINT Statement

• The SAVEPOINT statement may not be called indirectly from a trigger action.

• A SAVEPOINT statement is only valid if a transaction is in progress. This
can be either a READ WRITE or READ ONLY transaction. Note that
temporary tables can be updated during a read only transaction.

SQL> commit;
SQL> savepoint BK;
%RDB-E-NOTXNINPRGS, no transaction is in progress
-RDB-E-SVPT_NOALLOWED, a savepoint may not be established in this context -
"BK" failed

Examples

Example 1

The following example shows the use of the SAVEPOINT statement. Note that
reusing the savepoint name will re-establish that marker and so affect different
rows in the transaction.

SQL> declare local temporary table module.SAMPLE
cont> (a integer)
cont> on commit preserve rows
cont> ;
SQL>
SQL> --
SQL>
SQL> set transaction read only;
SQL>
SQL> insert into module.SAMPLE values (1);
1 row inserted
SQL>
SQL> -- Establish the initial marker
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (2);
1 row inserted
SQL> insert into module.SAMPLE values (3);
1 row inserted
SQL>
SQL> table module.SAMPLE;

A
1
2
3

3 rows selected
SQL>
SQL> -- Move the marker
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (4);
1 row inserted
SQL>
SQL> rollback to savepoint BOOK_IT;
SQL>
SQL> table module.SAMPLE;

A
1
2
3

3 rows selected
SQL>
SQL> commit;
SQL>

SQL Statements 8–145

SELECT Statement: General Form

SELECT Statement: General Form

Specifies a result table. A result table is an intermediate table of values derived
from columns and rows of one or more tables or views that meet conditions
specified by a select expression. The tables or views that the columns and rows
come from are identified in the FROM clause of the statement.

The basic element of a SELECT statement is called a select expression. Section
2.8.1 describes select expressions in detail.

To retrieve rows of a result table in host language programs, you must use
the DECLARE CURSOR statement or a special form of SELECT statement
called a singleton select. See the SELECT Statement: Singleton Select for more
information about a singleton select.

SQL evaluates the clauses of a SELECT statement in the following order:

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. Select list

6. ORDER BY

7. OFFSET

8. LIMIT TO (or FETCH FIRST)

9. OPTIMIZE

After each of these clauses, SQL produces an intermediate result table that is
used in evaluating the next clause.

Environment

You can use the general form of the SELECT statement only in interactive and
dynamic SQL.

Format

select-statement =

select-expr
for-update-clause optimize-clause

8–146 SQL Statements

SELECT Statement: General Form

select-expr =

select-clause
with-clause

(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause offset-clause limit-to-clause

with-clause =

WITH subquery-name
(<name-of-column>)

,

AS (select-expr)
,

select-merge-clause =

EXCEPT
DISTINCT CORRESPONDING

INTERSECT NATURAL
DISTINCT

MINUS
UNION

ALL
DISTINCT

select-clause =

SELECT select-list
ALL
DISTINCT

FROM table-ref
,

WHERE predicate GROUP BY <column-name>
value-expr

,

HAVING predicate

SQL Statements 8–147

SELECT Statement: General Form

select-list =

*
value-expr

AS <name>
edit-using-clause

<table-name> . *
<view-name>
<correlation-name>

,

table-ref =

<table-name>
<view-name> correlation-name-clause
derived-table
joined-table

derived-table =

(select-expr)
joined-table

joined-table =

qualified-join
cross-join

(joined-table)

qualified-join =

table-ref JOIN table-ref
join-type

ON predicate
USING (<column-name>)

,
table-ref NATURAL JOIN table-ref

join-type

cross-join =

table-ref CROSS JOIN table-ref

join-type =

INNER
LEFT OUTER
RIGHT
FULL

8–148 SQL Statements

SELECT Statement: General Form

correlation-name-clause =

AS <correlation-name>
(<name-of-column>)

,

order-by-clause =

ORDER BY value-expr
<integer> ASC NULLS FIRST

DESC LAST
,

offset-clause =

OFFSET skip-expression ROW
ROWS

limit-to-clause =

LIMIT TO limit-expression
OFFSET skip-expression ROW
SKIP skip-expression ROWS

skip-expression , limit-expression

FETCH FIRST ONLY
NEXT limit-expression ROW

ROWS

for-update-clause =

FOR UPDATE
OF <column-name>

,

edit-using-clause =

EDIT USING edit-string
<domain-name>

optimize-clause =

OPTIMIZE AS <query-name>
FOR BITMAPPED SCAN

FAST FIRST
SEQUENTIAL ACCESS
TOTAL TIME

OUTLINE outline-definition
USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

SQL Statements 8–149

SELECT Statement: General Form

outline-definition =

MODE mode AS (query-list)
USING

COMPLIANCE MANDATORY
OPTIONAL

EXECUTION OPTIONS (execution-options)

COMMENT IS ’string’
/

Arguments

EDIT USING edit-string
EDIT USING domain-name
Associates an edit string with a value expression. This clause overrides any EDIT
STRING defined for the columns or variables in the query. This clause is only
permitted for interactive SQL.

FOR UPDATE OF column-name
Specifies the columns in a cursor that you or your program might later modify
with an UPDATE statement. The column names in the FOR UPDATE clause
must belong to a table or view named in the FROM clause.

You do not have to specify the FOR UPDATE clause of the SELECT statement to
later modify rows using the UPDATE statement:

• If you do specify a FOR UPDATE clause with column names and later specify
columns in the UPDATE statement that are not in the FOR UPDATE clause,
SQL issues a warning message and proceeds with the update modifications.

• If you do specify a FOR UPDATE clause but do not specify any column
names, you can update any column using the UPDATE statement. SQL does
not issue any messages.

• If you do not specify a FOR UPDATE clause, you can update any column
using the UPDATE statement. SQL does not issue any messages.

The FOR UPDATE OF clause in a SELECT statement provides UPDATE ONLY
CURSOR semantics by locking all the rows selected.

OPTIMIZE AS query-name
Assigns a name to the query. You can define the RDMS$DEBUG_FLAGS logical
name or use SET FLAGS with the option ’STRATEGY’ to see the access methods
used to produce the results of the query. The following example shows how to use
the OPTIMIZE AS clause:

8–150 SQL Statements

SELECT Statement: General Form

SQL> DELETE FROM EMPLOYEES E
cont> WHERE EXISTS (SELECT *
cont> FROM SALARY_HISTORY S
cont> WHERE S.EMPLOYEE_ID = E.EMPLOYEE_ID
cont> AND S.SALARY_AMOUNT > 75000)
cont> OPTIMIZE AS DEL_EMPLOYEE;
Leaf#01 FFirst RDB$RELATIONS Card=19

.

.

.
~Query Name : DEL_EMPLOYEE

.

.

.
7 rows deleted

OPTIMIZE FOR
Specifies the preferred optimizer strategy for statements that specify a select
expression. The following options are available:

• BITMAPPED SCAN

Requests the Rdb query optimizer attempt to use BITMAPPED SCAN if
there exists multiple supporting indices. This option is not compatible with
SEQUENTIAL ACCESS.

• FAST FIRST

A query optimized for FAST FIRST returns data to the user as quickly as
possible, even at the expense of total throughput.

If a query can be cancelled prematurely, you should specify FAST FIRST
optimization. A good candidate for FAST FIRST optimization is an interactive
application that displays groups of records to the user, where the user has
the option of aborting the query after the first few screens. For example,
singleton SELECT statements default to FAST FIRST optimization.

If the optimization level is not explicitly set, FAST FIRST is the default.

• SEQUENTIAL ACCESS

Forces the use of sequential access. This is particularly valuable for tables
that use the strict partitioning functionality.

When the storage map of a table has the attribute PARTITIONING IS NOT
UPDATABLE, the mapping of data to a storage area is strictly enforced.
This is known as strict partitioning. When queries on such tables use
sequential access, the optimizer can eliminate partitions which do not match
the WHERE restriction rather than scan every partition.

The following example shows a query that deletes selected rows from a
specific partition. This table also includes several indexes, which may be
chosen by the optimizer. Therefore, the OPTIMIZE clause forces sequential
access.

SQL> delete from PARTS_LOG
cont> where parts_id between 10000 and 20000
cont> and expire_date < :purge_date
cont> optimize for sequential access;

Note that all access performed by such queries will be sequential. Care
should be taken that the I/O being used is acceptable by comparing similar
queries using index access.

• TOTAL TIME

SQL Statements 8–151

SELECT Statement: General Form

If your application runs in batch, accesses all the records in the query,
and performs updates or writes a report, you should specify TOTAL TIME
optimization. Most queries benefit from TOTAL TIME optimization.

The following examples illustrate the DECLARE CURSOR syntax for setting
a preferred optimization mode:

SQL> DECLARE TEMP1 TABLE CURSOR
cont> FOR
cont> SELECT *
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID > ’00400’
cont> OPTIMIZE FOR FAST FIRST;
SQL> --
SQL> DECLARE TEMP2 TABLE CURSOR
cont> FOR
cont> SELECT LAST_NAME, FIRST_NAME
cont> FROM EMPLOYEES
cont> ORDER BY LAST_NAME
cont> OPTIMIZE FOR TOTAL TIME;

OPTIMIZE OUTLINE outline-definition
The OPTIMIZE OUTLINE clause declares a temporary query outline to be used
with the select expression.

See the CREATE OUTLINE Statement for more information on defining an
outline.

OPTIMIZE USING outline-name
Explicitly names the query outline to be used with the select expression even if
the outline ID for the select expression and for the outline are different.

The following example is the query used to create an outline named WOMENS_
DEGREES:

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE, D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D WHERE E.SEX = ’F’
cont> AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME

By using the OPTIMIZE USING clause and specifying the WOMENS_DEGREES
outline, you can ensure that Oracle Rdb attempts to use the WOMENS_
DEGREES outline to execute a query even if the query is slightly different
as shown in the following example:

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE, D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D WHERE E.SEX = ’F’
cont> AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME
cont> LIMIT TO 10 ROWS
cont> OPTIMIZE USING WOMENS_DEGREES;
~S: Outline WOMENS_DEGREES used <-- the query uses the WOMENS_DEGREES outline

.

.

.

8–152 SQL Statements

SELECT Statement: General Form

E.LAST_NAME E.EMPLOYEE_ID D.DEGREE D.DEGREE_FIELD D.YEAR_GIVEN
Boyd 00244 MA Elect. Engrg. 1982
Boyd 00244 PhD Applied Math 1979
Brown 00287 BA Arts 1982
Brown 00287 MA Applied Math 1979
Clarke 00188 BA Arts 1983
Clarke 00188 MA Applied Math 1976
Clarke 00196 BA Arts 1978
Clinton 00235 MA Applied Math 1975
Clinton 00201 BA Arts 1973
Clinton 00201 MA Applied Math 1978
10 rows selected

See the CREATE OUTLINE Statement for more information on creating an
outline.

OPTIMIZE WITH
Selects one of three optimization controls: DEFAULT (as used by previous
versions of Oracle Rdb), AGGRESSIVE (assumes smaller numbers of rows will be
selected), and SAMPLED (which uses literals in the query to perform preliminary
estimation on indices).

select-expr
See Section 2.8.1 for a detailed description of select expressions.

Usage Notes

• If an outline exists, Oracle Rdb uses the outline specified in the OPTIMIZE
USING clause unless one or more of the directives in the outline cannot be
followed. For example, if the compliance level for the outline is mandatory
and one of the indexes specified in the outline directives has been deleted, the
outline is not used. SQL issues an error message if an existing outline cannot
be used.

If you specify the name of an outline that does not exist, Oracle Rdb compiles
the query, ignores the outline name, and searches for an existing outline with
the same outline ID as the query. If an outline with the same outline ID is
found, Oracle Rdb attempts to execute the query using the directives in that
outline. If an outline with the same outline ID is not found, the optimizer
selects a strategy for the query for execution.

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information regarding query outlines.

Examples

Example 1: Using the SELECT statement

The following SELECT statement returns all rows from the EMPLOYEES table
in no specific order:

SQL Statements 8–153

SELECT Statement: General Form

SQL> SELECT LAST_NAME, FIRST_NAME, MIDDLE_INITIAL FROM EMPLOYEES;
LAST_NAME FIRST_NAME MIDDLE_INITIAL
Toliver Alvin A
Smith Terry D
Dietrich Rick NULL
Kilpatrick Janet NULL
.
.
.

100 rows selected

Example 2: Adding an ORDER BY clause to sort rows selected

An ORDER BY clause added to the same SELECT statement causes SQL to sort
the rows according to the LAST_NAME column.

SQL> SELECT LAST_NAME, FIRST_NAME, MIDDLE_INITIAL FROM
cont> EMPLOYEES ORDER BY LAST_NAME;
LAST_NAME FIRST_NAME MIDDLE_INITIAL
Ames Louie A
Andriola Leslie Q
Babbin Joseph Y
Bartlett Dean G
Bartlett Wes NULL
.
.
.

100 rows selected

Example 3: Adding a LIMIT TO clause to return a certain number of rows

The same SELECT statement with both an ORDER BY clause and a LIMIT TO
clause causes SQL to:

1. Sort all the rows of the EMPLOYEES table according to the LAST_NAME
column

2. Return the first five rows in the ordered set

SQL> SELECT LAST_NAME, FIRST_NAME, MIDDLE_INITIAL FROM
cont> EMPLOYEES ORDER BY LAST_NAME LIMIT TO 5 ROWS;
LAST_NAME FIRST_NAME MIDDLE_INITIAL
Ames Louie A
Andriola Leslie Q
Babbin Joseph Y
Bartlett Dean G
Bartlett Wes NULL
5 rows selected

Example 4: Using the optimize clause to specify an outline and a query name

The following select query uses a previously defined outline called WOMENS_
DEGREES and also names the query. The RDMS$DEBUG_FLAGS logical has
been set to ‘‘Ss’’:

8–154 SQL Statements

SELECT Statement: General Form

SQL> SELECT E.LAST_NAME, E.EMPLOYEE_ID, D.DEGREE,
cont> D.DEGREE_FIELD, D.YEAR_GIVEN
cont> FROM EMPLOYEES E, DEGREES D
cont> WHERE E.SEX = ’F’
cont> AND E.EMPLOYEE_ID = D.EMPLOYEE_ID
cont> ORDER BY LAST_NAME
cont> OPTIMIZE USING WOMENS_DEGREES
cont> AS WOMENS_DEGREES;
~Query Name : WOMENS_DEGREES
~S: Outline WOMENS_DEGREES used
Sort
Cross block of 2 entries
Cross block entry 1
Conjunct Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

Cross block entry 2
Leaf#01 BgrOnly DEGREES Card=165
BgrNdx1 DEG_EMP_ID [1:1] Fan=17

-- Rdb Generated Outline : 16-JUN-1994 11:01
create outline WOMENS_DEGREES
id ’D3A5BC351F507FED820EB704FC3F61E8’
mode 0
as (

query (
subquery (
EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
join by cross to

DEGREES 1 access path index DEG_EMP_ID
)

)
)

compliance optional ;
E.LAST_NAME E.EMPLOYEE_ID D.DEGREE D.DEGREE_FIELD D.YEAR_GIVEN
Boyd 00244 MA Elect. Engrg. 1982
Boyd 00244 PhD Applied Math 1979
Brown 00287 BA Arts 1982
Brown 00287 MA Applied Math 1979
Clarke 00188 BA Arts 1983
Clarke 00188 MA Applied Math 1976
Clarke 00196 BA Arts 1978
.
.
.

61 rows selected

Example 5: Associating an Edit String with a Value Expression

SQL Statements 8–155

SELECT Statement: General Form

SQL> CREATE DOMAIN MONEY INTEGER(2)
cont> EDIT STRING ’$$$,$$$,$$9.99’;
SQL> --Calculate the average salary for all current jobs.
SQL> SELECT EMPLOYEE_ID,
cont> AVG(SALARY_AMOUNT) AS AVERAGE EDIT USING MONEY,
cont> MAX(SALARY_AMOUNT) AS MAXIMUM EDIT USING MONEY,
cont> MAX(SALARY_START) AS START_DATE EDIT USING ’YYYBDDBMMMBWWW’
cont> FROM SALARY_HISTORY
cont> WHERE SALARY_END IS NULL
cont> GROUP BY EMPLOYEE_ID;
EMPLOYEE_ID AVERAGE MAXIMUM START_DATE
00164 $51,712.00 $51,712.00 983 14 Jan Fri
00165 $11,676.00 $11,676.00 982 1 Jul Thu
00166 $18,497.00 $18,497.00 982 7 Aug Sat
00167 $17,510.00 $17,510.00 982 21 Aug Sat
.
.
.

00435 $84,147.00 $84,147.00 982 12 Mar Fri
00471 $52,000.00 $52,000.00 982 15 Aug Sun
100 rows selected

Example 6: Using the ORDER BY Clause with a Value Expression

SQL> SELECT * FROM EMPLOYEES
cont> ORDER BY EXTRACT (YEAR FROM BIRTHDAY),
cont> TRIM(FIRST_NAME) || TRIM(LAST_NAME);
00190 O’Sullivan Rick G.
78 Mason Rd. NULL Fremont

NH 03044 M 12-Jan-1923 1 None
00231 Clairmont Rick NULL
92 Madiso7 Drive NULL Chocorua

NH 03817 M 23-Dec-1924 2 None
00183 Nash Walter V.
197 Lantern Lane NULL Fremont

NH 03044 M 19-Jan-1925 1 None
00177 Kinmonth Louis NULL
76 Maple St. NULL Etna

NH 03750 M 7-Apr-1926 1 None
00240 Johnson Bill R.
20 South St NULL Milford

NH 03055 M 13-Apr-1927 2 None
.
.
.

Example 7: Using the GROUP BY Clause with a Value Expression

SQL> SELECT COUNT (*), EXTRACT (YEAR FROM BIRTHDAY)
cont> FROM EMPLOYEES
cont> GROUP BY EXTRACT (YEAR FROM BIRTHDAY);

1 1923
1 1924
1 1925
1 1926
4 1927

2 1928
1 1930
2 1931

.

.

.

8–156 SQL Statements

SELECT Statement: General Form

Example 8: Performing an Outer Join with Oracle Database Style Syntax

SQL> SELECT EMPLOYEES.EMPLOYEE_ID, JOB_CODE
cont> FROM EMPLOYEES, CURRENT_JOB
cont> WHERE EMPLOYEES.EMPLOYEE_ID= CURRENT_JOB.EMPLOYEE_ID(+);
EMPLOYEES.EMPLOYEE_ID CURRENT_JOB.JOB_CODE
00164 DMGR
00165 ASCK
00166 DMGR
00167 APGM
00168 DMGR
00169 SPGM
00170 SCTR
00171 PRGM
.
.
.

Example 9: The following example shows a query modified with an outline.

SQL> set flags ’strategy,detail(2),request_name’;
SQL> select last_name, middle_initial, first_name
cont> from employees2
cont> where last_name = ’Toliver’ and first_name = ’Alvin’
cont> optimize
cont> as test3
cont> outline (
cont> mode 0
cont> as (
cont> query (
cont> subquery (
cont> EMPLOYEES2 0 access path index E3_INDEX
cont>)
cont>)
cont>)
cont> compliance optional
cont> execution options (total time)
cont>);
~Query Name: "TEST3"
~S: Outline "(unnamed)" used
Tables:
0 = EMPLOYEES2

Leaf#01 BgrOnly 0:EMPLOYEES2 Card=100
Bool: (0.LAST_NAME = ’Toliver’) AND (0.FIRST_NAME = ’Alvin’)
BgrNdx1 E3_INDEX [1:1] Fan=14
Keys: 0.LAST_NAME = ’Toliver’

LAST_NAME MIDDLE_INITIAL FIRST_NAME
Toliver A. Alvin
1 row selected
SQL>

SQL Statements 8–157

SELECT Statement: Singleton Select

SELECT Statement: Singleton Select

Specifies a result table. A result table is an intermediate table of values derived
from columns and rows of one or more tables or views that meet conditions
specified by a select expression. The tables or views that the columns and rows
come from are identified in the FROM clause of the statement.

The basic element of a SELECT statement is called a select expression. Section
2.8.1 describes select expressions in detail.

To retrieve rows of a result table in host language programs, you must use the
DECLARE CURSOR statement or a special form of SELECT statement called a
singleton select. A singleton select statement specifies a one-row result table,
and is allowed in either precompiled programs or as part of a procedure in an
SQL module. A singleton select includes an additional clause, INTO, to assign
the values in the row to host language variables in a program.

For information on the general form of the SELECT statement, see the SELECT
Statement: General Form.

Environment

You can use a singleton select statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

singleton-select =

SELECT select-list
with-clause ALL

DISTINCT

into-target

FROM table-ref
,

WHERE predicate
GROUP BY <column-name>

,

HAVING predicate limit-to-clause

for-update-clause optimize-clause

8–158 SQL Statements

SELECT Statement: Singleton Select

with-clause =

WITH subquery-name
(<name-of-column>)

,

AS (select-expr)
,

into-target =
INTO <parameter>

<qualified-parameter>
<variable>

,

for-update-clause =

FOR UPDATE
OF <column-name>

,

optimize-clause =

OPTIMIZE AS <query-name>
FOR BITMAPPED SCAN

FAST FIRST
SEQUENTIAL ACCESS
TOTAL TIME

OUTLINE outline-definition
USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

outline-definition =

MODE mode AS (query-list)
USING

COMPLIANCE MANDATORY
OPTIONAL

EXECUTION OPTIONS (execution-options)

COMMENT IS ’string’
/

SQL Statements 8–159

SELECT Statement: Singleton Select

Arguments

INTO parameter
INTO qualified-parameter
INTO variable
Specifies a list of parameters, qualified parameters (structures), or variables to
receive values from the columns of the one-row result table. The variables named
must have been declared in the host program. If a variable named in the list is a
host structure, SQL considers the reference the same as a reference to each of the
elements of the host structure.

If the number of variables specified, either explicitly or by reference to a host
structure, does not match the number of values in the row of the result table,
SQL generates an error when it precompiles the program or compiles the SQL
module file.

If columns in the result table from a singleton select include null values, the
corresponding parameters must include indicator parameters.

select-list
For a description of select lists, see Section 2.8.1.

Usage Notes

• The following restrictions distinguish a singleton select from a SELECT
statement. A singleton select cannot:

Specify a result table that is longer than a single row (SQL generates an
error if it does)

Omit the INTO clause

• To ensure that only one row is returned with a SINGLETON SELECT
statement, use the LIMIT TO 1 ROW clause. For more information on the
LIMIT TO clause, see Section 2.8.1.

8–160 SQL Statements

SET Statement

SET Statement

Changes the characteristics of SQL terminal sessions. You can control the:

• Currency indicator to be displayed for output

• Display format for date values, time values, or both

• Default path name in the data dictionary

• Digit separator to be displayed for output

• Number of statements to be included in the editing buffer when you type
EDIT *

• Language to be used for month abbreviations, and so on, in date and time
input and display

• Length of lines to be displayed for output

• Page length for HELP display

• File in which the session is recorded

• Number of rows output, the number of seconds allowed per query compilation
and execution, or the amount of CPU time expended for each query
compilation and execution

• Character used to display the radix point in output

• Display of statements from a command file

• Display of warning messages about deprecated features

• Display of warning messages about nonstandard syntax

• Continue character

Environment

You can use these SET statements in interactive SQL only.

Format

SQL Statements 8–161

SET Statement

SET CURRENCY SIGN currency-char
set-date-format
CONTINUE CHARACTER continue-char
DICTIONARY <path-name>
DIGIT SEPARATOR digit-sep-char
set-edit
EXECUTE
NOEXECUTE
LANGUAGE language-name
LINE LENGTH <n>
set-output
PAGE LENGTH <n>
RADIX POINT radix-char
VERIFY
NOVERIFY
set-warning
set-flagger
sql-plus-options

set-date-format=

DATE FORMAT DATE <date-number>
, TIME <time-number>

TIME <time-number>
, DATE <date-number>

set-edit=

EDIT KEEP <n>
NOKEEP
PURGE

set-output=

LOGFILE
(logfile-options) quoted-filespec

OUTPUT
<file-spec>

NOLOGFILE
NOOUTPUT

logfile-options =

CACHE
NOCACHE
ECHO
NOECHO
LARGE_FILE
SHARED

set-warning=

WARNING DEPRECATE
NODEPRECATE

8–162 SQL Statements

SET Statement

set-flagger =

FLAGGER ON
SQL89
SQL92_ENTRY ON
MIA OFF
OFF

sql-plus-options =

ECHO ON
HEADING OFF
TIMING
FEEDBACK ON

OFF
numeric-literal

LINESIZE numeric-literal
PAGESIZE
NULL

literal-string

Arguments

CONTINUE CHARACTER
Defines the continuation character for interactive SQL. By selecting a seldom
used character the database administrator can avoid problems with the minus
sign to use a continuation character in scripts.

CURRENCY SIGN currency-char
Specifies the currency indicator to be displayed in output. (SQL produces
currency indicators in output when you specify the dollar sign ($) edit string for
the column. See Section 2.5.2 for more information on edit strings.)

If you do not specify an alternate character, the default is either the dollar
sign ($) or the value specified by the logical name SYS$CURRENCY.

DATE date-number
Specifies the display format for date values.

You must enter a number for the date-number argument. This number
corresponds to numbers in the date format logical names listed in tables in
the OpenVMS run-time library documentation.

For example, LIB$DATE_FORMAT_006 is one of the logical names in the table.
The logical name specifies the format in which the eighth day of May in the year
1957 would be displayed as 8 May 57. Note that the latter part of the logical
name is the number 006.

If you wanted to specify the 8 May 57 format using the SET DATE FORMAT
statement, you would use the numeric part of the LIB$DATE_FORMAT_006
logical name, 6. You do not have to enter any leading zeros that the number
might have.

If you do not specify a date format, the default is dd-mmm-yyyy.

DATE FORMAT
Specifies the display format for either date values, time values, or both.

SQL Statements 8–163

SET Statement

You must specify a numeric argument with the DATE and TIME portions of the
SET DATE FORMAT statement. This numeric argument is the same as the
numeric portion of certain OpenVMS Run-Time Library formats. The formats are
documented in the OpenVMS run-time library documentation. (This statement
only accepts numbers that reference OpenVMS format date and time logical
names; it does not support the ANSI/ISO date and time data types.)

The SET DATE FORMAT DATE and SET DATE FORMAT TIME statements
change only the output for the date or time formats. If you want to change
the input format, use the logical name LIB$DT_INPUT_FORMAT. You must
run the command procedure SYS$MANAGER:LIB$DT_STARTUP.COM before
using any of the run-time library date-time routines for input or output formats
other than the default. The LIB$DT_STARTUP.COM procedure also defines
spellings for date and time elements in languages other than English. See the
OpenVMS run-time library documentation for more information on LIB$DT_
INPUT_FORMAT.

DICTIONARY path-name
Changes your default repository path name to the path name you specify.

DIGIT SEPARATOR digit-sep-char
Changes the output displaying the digit separator to the specified character.
The digit separator is the symbol that separates groups of three digits in values
greater than 999. For example, the comma is the digit separator in the number
1,000.

(SQL produces digit separators in output when you specify the comma (,) edit
string for the column. See Section 2.5.2 for more information on edit strings.)

You must enclose the digit-sep-char argument within single quotation marks.

If you do not specify an alternate character, the default is either the comma (,) or
the value specified by the logical name SYS$DIGIT_SEP.

EDIT
Controls the size of the editing buffer that you create when you use the EDIT
statement with a wildcard as the argument.

• SET EDIT KEEP n

Tells SQL to save the previous n statements. For example, assume you have
specified SET EDIT KEEP 5. When you type EDIT *, SQL places the previous
five statements in the editing buffer. The number you specify with SET EDIT
KEEP is the maximum number of statements you can recall with the EDIT
statement. The default is 20.

• SET EDIT NOKEEP

This statement is equivalent to SET EDIT KEEP 0. If you use this form
of the statement and you type EDIT or EDIT *, your editing buffer will be
empty. This form of the statement saves system resources when you are
running command files rather than an interactive process.

• SET EDIT PURGE

This statement retains the value of the KEEP parameter but purges all
previous statements. As with SET EDIT NOKEEP, if you use the SET
EDIT PURGE statement and then EDIT or EDIT *, your editing buffer
will be empty. Unlike the SET EDIT NOKEEP statement, however, SET
EDIT PURGE causes SQL to accumulate subsequent statements to place in

8–164 SQL Statements

SET Statement

the editing buffer when you issue EDIT statements later in the interactive
session.

EXECUTE
NOEXECUTE
NO EXECUTE
Instructs SQL whether to execute the data manipulation statements you issue
in an interactive SQL session. See the Examples to see how you could use the
NOEXECUTE option to check for proper syntax before you issue a statement
against a database.

You can use the NOEXECUTE option in conjunction with the SET FLAGS to
examine the estimated cost and access strategy associated with a query. If you
specify SET NOEXECUTE, SQL displays the access strategies without executing
the query. SQL also allows you to specify NO EXECUTE (as two words); this has
the same meaning as NOEXECUTE.

If you do not specify EXECUTE or NOEXECUTE, the default is EXECUTE.

The SET TRANSACTION statement is not executed when SET NO EXECUTE is
active. Start or declare a transaction prior to using SET NO EXECUTE.

FLAGGER OFF
Disables all previously set flaggers indicating nonstandard syntax. This is the
default.

FLAGGER ON
FLAGGER SQL89
FLAGGER SQL92_ENTRY
FLAGGER MIA
Controls the output of informational messages that indicate nonstandard syntax,
that is, extensions to the ANSI/ISO standard syntax or the MIA standard syntax.

If you specify SET FLAGGER ON, which is the same as specifying SET
FLAGGER SQL92_ENTRY ON, SQL sends you an informational message if
you issue a subsequent interactive SQL statement that contains syntax that is an
extension to the ANSI/ISO standard.

If you specify SET FLAGGER MIA ON, SQL sends you an informational message
if you issue a subsequent interactive SQL statement that contains syntax that is
an extension to the MIA standard.

The flaggers are independent of each other and any combination of flaggers can
be set at one time.

The default is FLAGGER OFF if you do not explicitly set a flagger on.

FEEDBACK { ON | OFF | n }
SET FEEDBACK sets a limit value which turns on feedback only if more than
’n’ rows are displayed. SQL data manipulation statements such as SELECT,
DELETE, UPDATE, and INSERT will display the number of affected rows.

• SET FEEDBACK 0 is equivalent to SET FEEDBACK ON.

• SET FEEDBACK ON is a synonym for the SET DISPLAY ROW COUNTER
statement.

SQL Statements 8–165

SET Statement

• SET FEEDBACK OFF is a synonym for the SET DISPLAY NO ROW
COUNTER statement.

SQL> set feedback 2
SQL> select * from work_status;
STATUS_CODE STATUS_NAME STATUS_TYPE
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME
3 rows selected
SQL> set feedback 4
SQL> select * from work_status;
STATUS_CODE STATUS_NAME STATUS_TYPE
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME

LANGUAGE language-name
Specifies the language to be used for translation of month names and
abbreviations in date and time input and display. The language-name argument
also determines the translation of other language-dependent text, such as the
translation for the date literals YESTERDAY, TODAY, and TOMORROW.

If you do not specify a language, the default is the language specified
by the logical name SYS$LANGUAGE. If you require different language
spellings, you must define the logical name SYS$LANGUAGES in
addition to SYS$LANGUAGE. You must run the command procedure
SYS$MANAGER:LIB$DT_STARTUP.COM after defining SYS$LANGUAGES.
For example:

$ DEFINE SYS$LANGUAGES FRENCH, GERMAN, SPANISH
$ RUN SYS$MANAGER:LIB$DT_STARTUP.COM
$ SHOW LOGICAL SYS$LANGUAGES

"SYS$LANGUAGES" = "FRENCH" (LNM$SYSTEM_TABLE)
= "GERMAN"
= "SPANISH"

$ SHOW LOGICAL SYS$LANGUAGE
"SYS$LANGUAGE" = "ENGLISH" (LNM$SYSTEM_TABLE)

If you do not define SYS$LANGUAGES, all translation routines default to
English. See the OpenVMS run-time library documentation for more information
on LIB$DT_STARTUP.COM.

The SET LANGUAGE statement does not affect the collating sequences used for
sorting and comparing data. The CREATE COLLATING SEQUENCE statement
specifies alternate collating sequences.

LINE LENGTH n
LINESIZE n
Specifies an alternate line length for SQL output.

You must enter a number n to designate the line length. The number n can be
any number up to 65535 octets.

You can use the SET LINE LENGTH (or SET LINESIZE) statement to specify an
alternate width for output that you are sending to a file or to an alternate output
device.

LOGFILE quoted-filespec
This statement allows the executing SQL script to save output to an OpenVMS
file. Output and errors from interactive SQL, as well as those statements, will be
written to the file-spec specified.

8–166 SQL Statements

SET Statement

The SET LOGFILE is functionally equivalent to the SET OUTPUT statement.
A SET LOGFILE command that does not specify a file is equivalent to SET
NOLOGFILE.

Various keywords can be used to control the written output file.

• CACHE

This is the default. The OpenVMS file caching will be in effect for this file.

• NOCACHE

This option disables the OpenVMS file caching for this file. Use this to
prevent unnecessary caching for a temporary file.

• ECHO

This is the default. As well as writing the output to the designated file,
all commands and errors generated by interactive SQL are also written to
SYS$OUTPUT.

• NOECHO

If the option NOECHO is used, output to SYS$OUTPUT is disabled. All
commands and errors generated by interactive SQL are only written to the
output file.

• LARGE_FILE

If the output written to the LOGFILE is lengthy (such as when capturing the
output from a query), then this option will use an RMS EXTENT size of 8192.
This might improve output performance for very large files.

• SHARED

The file is created with the shared attribute which will allow other processes
to open and read that file while it is being written by SQL.

NOLOGFILE
Closes the current output file specified by a prior SET LOGFILE (or SET
OUTPUT command).

NOOUTPUT
Suspends writing to the output file.

NOVERIFY
Does not display indirect command files. The default setting is the setting
currently in effect for DCL commands. If you have not explicitly changed the
DCL setting to VERIFY, the default is NOVERIFY.

OUTPUT file-spec
Names the target file for output. The default file extension is .lis.

If you specify OUTPUT with a file name, SQL writes its output to a log file that
you specify. The log file contains both statements and results. If you issue a SET
OUTPUT statement, output is also written to standard output which is usually
the terminal.

If you specify OUTPUT without a file name, SQL suspends writing output to a log
file, if any, and writes the output to the standard output. In other words, the SET
OUTPUT statement without a file name is equivalent to the SET NOOUTPUT
statement.

SQL Statements 8–167

SET Statement

SQL displays certain items (such as the headings produced by the SHOW
statement) in boldface type on your terminal screen. In log files, however, the
boldface items are surrounded by escape characters. You can ignore these escape
characters, edit them out of your log file, or set your terminal so that SQL does
not display characters in boldface type.

If you disable boldface type using the following DCL command, your log file will
not contain escape characters:

$ SET TERM/NOANSI_CRT

PAGE LENGTH n
PAGESIZE n
Sets the size of a page in SQL help.

The following notes apply to the PAGE LENGTH (or PAGESIZE) clause:

• The integer value must be a value between 10 and 32767.

• SET PAGE LENGTH (or SET PAGESIZE) can be used to effectively disable
the paging performed by help by setting the length to a high value such as
32000.

• The page length is automatically set upon entry to interactive SQL and is
based on the OpenVMS terminal setting for this session.

• The SHOW DISPLAY command can be used to view the currently defined
page length.

RADIX POINT radix-char
Changes the output displaying the radix point to the specified character. The
radix point is the symbol that separates units from decimal fractions. For
example, in the number 98.6, the period is the radix point.

You must enclose the radix-char argument within single quotation marks.

If you do not specify an alternate character, the default is either the period (.) or
the value specified by the logical name SYS$RADIX_POINT.

sql-plus-options
These statements are provided for use with SQL*Plus scripts that are run against
Oracle Rdb.

Table 8–3 Supported SQL*Plus SET statements

SQL*Plus command Equivalent Oracle Rdb statement

SET ECHO ON SET VERIFY
SET ECHO OFF SET NOVERIFY
SET HEADING ON SET DISPLAY QUERY HEADER
SET HEADING OFF SET DISPLAY NO QUERY HEADER
SET FEEDBACK ON SET DISPLAY ROW COUNTER
SET FEEDBACK OFF SET DISPLAY NO ROW COUNTER
SET NULL SET DISPLAY DEFAULT NULL STRING
SET NULL ’literal’ SET DISPLAY NULL STRING ’literal’

TIME time-number
Specifies the display format for time values.

8–168 SQL Statements

SET Statement

You must enter a number for the time-number argument. This number
corresponds to numbers in the time-format logical names listed in tables in
the OpenVMS run-time library documentation.

For example, the table contains the logical name LIB$TIME_FORMAT_020. The
logical name specifies the format in which the eighth hour, fourth minute, and
thirty-second second of a day would be displayed as 8 h 4 min 32 s. Note that the
latter part of the logical name is the number 020.

If you wanted to specify the 8 h 4 min 32 s format for the SQL SET DATE
FORMAT TIME statement, you would use the numeric part of the LIB$TIME_
FORMAT_020 logical name, 20. You do not have to enter any leading zeros that
the number might have.

If you do not specify a time format, the default is hh:mm:ss.cc.

TIMING { ON | OFF }
The SET TIMING statement enables a single line report of used CPU and
Elapsed time for each successful SQL statement or command.

SQL> start transaction;
SQL> set timing on;
SQL> select count(*)
cont> from employees
cont> inner join job_history using (employee_id)
cont> inner join salary_history using (employee_id)
cont> inner join departments using (department_code)
cont> inner join jobs using (job_code)
cont> left outer join resumes using (employee_id)
cont> left outer join degrees using (employee_id)
cont> left outer join colleges using (college_code)
cont>
cont> ;

3871
1 row selected
Timing: Elapsed: 0 00:00:00.82 Cpu: 0 00:00:00.16
SQL> set timing off;
SQL> commit;

VERIFY
Displays indirect command files at your terminal as you run them.

WARNING DEPRECATE
WARNING NODEPRECATE
Specifies whether or not interactive SQL displays diagnostic messages when you
issue statements containing obsolete SQL syntax. Deprecated or obsolete syntax
is syntax that was allowed in previous versions of SQL but has been changed.
Oracle Rdb recommends that you avoid using such syntax because it may not be
supported in future versions. By default, SQL displays a warning message after
any statement containing obsolete syntax (SET WARNING DEPRECATE).

If you specify SET WARNING NODEPRECATE, SQL does not display any
messages about obsolete syntax.

SQL Statements 8–169

SET Statement

Usage Notes

• The SET LANGUAGE statement does not affect the collating sequences used
for sorting and comparing data. The CREATE COLLATING SEQUENCE
statement specifies alternate collating sequences.

• You cannot use the SET LANGUAGE statement in dynamic SQL; instead, you
should use the logical name SYS$LANGUAGE as documented in Table 8–4.

• The SET RADIX POINT statement changes the radix point only in the output
display. It does not change the input character; the input character must
always be a period.

• The SET DIGIT SEPARATOR statement changes the digit separator only in
the output display. You cannot use a digit separator when inserting data.

• The alternate date and time formats allowed by the SET DATE FORMAT
statement affect only date string text literals and their conversion to and
from binary dates.

• The SET DATE FORMAT statement will not override input and output
formats that you specified using an edit string.

• To produce the default currency indicator or digit separator, you must specify
an edit string for that column or use the EDIT USING clause on SELECT.

• Table 8–4 lists the logical names you can use to internationalize the SET
statement. You can specify the currency sign, date and time output format,
digit separator, language, and radix point.

Table 8–4 Logical Names for Internationalization of SET Statements

SQL SET Statement
Related System
Logical Name

CURRENCY SIGN SYS$CURRENCY

DATE FORMAT DATE date-number LIB$DT_FORMAT
DATE FORMAT TIME time-number LIB$DT_FORMAT
DIGIT SEPARATOR SYS$DIGIT_SEP

LANGUAGE SYS$LANGUAGE

RADIX POINT SYS$RADIX_POINT

If you want to change the input format for dates and time, you must use
the logical name LIB$DT_INPUT_FORMAT documented in the OpenVMS
run-time library documentation. The SET DATE FORMAT DATE and SET
DATE FORMAT TIME statements in SQL change only the date and time
formats for output displays.

• The SET FLAGGER ON statement is equivalent to the SET FLAGGER
SQL92_ENTRY ON statement.

8–170 SQL Statements

SET Statement

• You can set flaggers on and off independent of each other. For example:

SQL> SHOW FLAGGER
The flagger mode is OFF
SQL> --
SQL> SET FLAGGER SQL89 ON;
SQL> SHOW FLAGGER
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
The SQL89 flagger mode is ON
SQL> --
SQL> SET FLAGGER MIA ON;
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
SQL> SHOW FLAGGER
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
The SQL89 flagger mode is ON
The MIA flagger mode is ON
SQL> --
SQL> SET FLAGGER SQL92_ENTRY ON;
%SQL-I-NONSTASYN, Nonstandard syntax
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
SQL> SHOW FLAGGER
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
%SQL-I-NONSTASYN92E, Nonstandard SQL92 Entry-level syntax
The SQL89 flagger mode is ON
The SQL92 Entry-level flagger mode is ON
The MIA flagger mode is ON
SQL> --
SQL> SET FLAGGER SQL89 OFF;
%SQL-I-NONSTASYN, Nonstandard syntax
%SQL-I-NONSTASYN89, Nonstandard SQL89 syntax
%SQL-I-NONSTASYN92E, Nonstandard SQL92 Entry-level syntax
SQL> SHOW FLAGGER;
%SQL-I-NONSTASYN92E, Nonstandard SQL92 Entry-level syntax
The SQL92 Entry-level flagger mode is ON
The MIA flagger mode is ON

• You cannot redefine standard output to redirect output to a file. Use the SET
OUTPUT statement to redirect the output to a file.

• The continuation character must be a valid SQL language terminator. These
characters are: ’#’, ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’, ’:’, ’;’, ’?’, ’[’, ’\ ’, ’]’, ’{’, ’ | ’, and ’}’.

• Currently only single octet values are supported by Interactive SQL.

• Use the SHOW CONTINUE CHARACTER to display the current continuation
character.

Examples

Example 1: Using the SET statement to set up terminal session characteristics

Using the SET statement as follows, you can set up the characteristics of your
terminal session:

SQL> --
SQL> -- You can put the SET statements in your sqlini file, which sets up
SQL> -- your SQL session.
SQL> --
SQL> SET OUTPUT ’LOG.LIS’
SQL> SET DICTIONARY ’CDD$TOP.DEPT3’
SQL> SET EDIT KEEP 10
SQL> --

SQL Statements 8–171

SET Statement

SQL> ATTACH ’ALIAS PERS FILENAME personnel’;
SQL> SHOW ALIAS
Alias PERS:

Rdb database in file personnel
SQL> EXIT

In the preceding example, the statements set up the characteristics, as follows:

• The SET OUTPUT statement opens a file called LOG.LIS in the current
default path name. From this point on, all the input and output, including
error messages, appear in this file. The following example shows what is
written to the log file LOG.LIS:

SET DICTIONARY ’CDD$TOP.DEPT3’
SET EDIT KEEP 10
--
ATTACH ’ALIAS PERS FILENAME personnel’;
SHOW ALIAS
Alias PERS:

Rdb database in file personnel
EXIT

• The SET DICTIONARY statement changes the default repository path name.

• The SET EDIT KEEP statement specifies that you get the 10 previous
statements in the editing buffer when you type EDIT *.

• The ATTACH statement attaches to the personnel database and declares the
alias PERS for that database.

• The SHOW ALIAS statements tell the user which alias is declared.

Example 2: SET CURRENCY SIGN and SET DIGIT SEPARATOR statements

The following example uses the SET DIGIT SEPARATOR statement to show the
behavior of the SET CURRENCY SIGN and SET DIGIT SEPARATOR statements
when used with edit strings:

SQL> --
SQL> -- This example shows the edit string ’ZZZ,ZZZ’,
SQL> -- which specifies the comma as the default digit separator.
SQL> --
SQL> ALTER TABLE SALARY_HISTORY -
cont> ALTER SALARY_AMOUNT EDIT STRING ’ZZZ,ZZZ’;
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT

26,291
51,712
26,291
50,000
.
.
.

8–172 SQL Statements

SET Statement

SQL> --
SQL> -- Now use the SET DIGIT SEPARATOR statement to specify that
SQL> -- the period will be the digit separator instead of
SQL> -- the comma.
SQL> --
SQL> SET DIGIT SEPARATOR ’.’
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT

26.291
51.712
26.291
50.000

.

.

.

Example 3: Using the internationalization features of the SET statement

The following example shows how to use the various SET statements to
internationalize your applications:

SQL> --
SQL> -- This first statement specifies the dollar sign
SQL> -- as the currency indicator. It does this by using
SQL> -- the edit string ’$(9).99’.
SQL> --
SQL> ALTER TABLE SALARY_HISTORY -
cont> ALTER SALARY_AMOUNT EDIT STRING ’$(9).99’;
cont> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT

$26291.00
$51712.00
$26291.00
$50000.00

.

.

.
SQL> --
SQL> -- The SET CURRENCY statement now changes the currency
SQL> -- indicator to the British pound sign, £. Notice
SQL> -- the changed output.
SQL> --
SQL> SET CURRENCY SIGN ’£’
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT

£26291.00
£51712.00
£26291.00
£50000.00
£11676.00

.

.

.

SQL Statements 8–173

SET Statement

SQL> --
SQL> -- The next examples show the SET DATE FORMAT statement.
SQL> --
SQL> -- The SET DATE FORMAT statement will not override input
SQL> -- and output formats that you have specified with an edit
SQL> -- string. The following SET DATE FORMAT examples use the
SQL> -- SALARY_START and SALARY_END columns. The SALARY_START
SQL> -- and SALARY_END columns are defined by the domain
SQL> -- DATE_DOM, which uses the edit string ’DD-MMM-YYY’.
SQL> -- Thus, to test the SET DATE FORMAT statement, you must
SQL> -- first remove the edit string from the DATE_DOM domain
SQL> -- using the following ALTER DOMAIN statement:
SQL> --
SQL> ALTER DOMAIN DATE_DOM NO EDIT STRING;
SQL> --
SQL> -- The next statement inserts a row with time information.
SQL> -- The subsequent SET DATE FORMAT statements will use this row:
SQL> --
SQL> INSERT INTO SALARY_HISTORY
cont> -- list of columns:
cont> (EMPLOYEE_ID,
cont> SALARY_AMOUNT,
cont> SALARY_START,
cont> SALARY_END)
cont> VALUES
cont> -- list of values:
cont> (’88339’,
cont> ’22550’,
cont> ’14-NOV-1967 08:30:00.00’,
cont> ’25-NOV-1988 16:30:00.00’)
cont> ;
1 row inserted
SQL> --
SQL> -- Using the row that was just inserted, the following statement
SQL> -- shows the default date and time output:
SQL> --
SQL> SELECT SALARY_START, SALARY_END FROM SALARY_HISTORY-
cont> WHERE EMPLOYEE_ID = ’88339’;
SALARY_START SALARY_END

14-NOV-1967 08:30:00.00 25-NOV-1988 16:30:00.00
1 row selected
SQL> --
SQL> -- The SET DATE FORMAT DATE statement customizes the
SQL> -- output of the date format.
SQL> --
SQL> -- The output will appear in the form
SQL> -- 14 NOV 67, as specified by the date-number argument 6.
SQL> --
SQL> SET DATE FORMAT DATE 6;
SQL> SELECT SALARY_START, SALARY_END FROM SALARY_HISTORY-
cont> WHERE EMPLOYEE_ID = ’88339’;
SALARY_START SALARY_END
14 NOV 67 25 NOV 88
1 row selected

8–174 SQL Statements

SET Statement

SQL> --
SQL> -- The SET DATE FORMAT TIME statement customizes
SQL> -- the output of the time format. The output will appear
SQL> -- in the form 16 h 30 min 0 s, as specified by the
SQL> -- time-number argument 20.
SQL> --
SQL> SET DATE FORMAT TIME 20;
SQL> SELECT SALARY_START, SALARY_END FROM SALARY_HISTORY-
cont> WHERE EMPLOYEE_ID = ’88339’;
SALARY_START SALARY_END
8 h 30 min 0 s 16 h 30 min 0 s
1 row selected
SQL> --
SQL> -- Note that the previous date example has deleted
SQL> -- the time output, and the previous time example has
SQL> -- deleted the date output.
SQL> --
SQL> -- If you want the display to continue to show
SQL> -- BOTH date and time, you must specify
SQL> -- both arguments with the SET DATE statement.
SQL> --
SQL> SET DATE FORMAT DATE 6, TIME 20;
SQL> SELECT SALARY_START, SALARY_END FROM SALARY_HISTORY-
cont> WHERE EMPLOYEE_ID = ’88339’;
SALARY_START SALARY_END
14 NOV 67 8 h 30 min 0 s 25 NOV 88 16 h 30 min 0 s
1 row selected
SQL> --
SQL> -- The next example changes the digit separator to a period and
SQL> -- the radix point to a comma:
SQL> --
SQL> ALTER TABLE SALARY_HISTORY -
cont> ALTER SALARY_AMOUNT EDIT STRING ’ZZZ,ZZZ.ZZ’;
SQL> --
SQL> SET RADIX POINT ’,’
SQL> SET DIGIT SEPARATOR ’.’
SQL> SELECT SALARY_AMOUNT FROM SALARY_HISTORY;
SALARY_AMOUNT

26.291,00
51.712,00
26.291,00
50.000,00

.

.

.
SQL> --
SQL> -- This example shows how you can use the SET LANGUAGE
SQL> -- statement to change the output of dates to a particular
SQL> -- language. This example shows the default English first,
SQL> -- followed by French.
SQL> --

SQL Statements 8–175

SET Statement

SQL> -- Note that the time format is still based on
SQL> -- the SET DATE FORMAT TIME statement
SQL> -- previously executed in this example.
SQL> --
SQL> SELECT SALARY_START FROM SALARY_HISTORY;
SALARY_START
5 JUL 80 0 h 0 min 0 s

14 JAN 83 0 h 0 min 0 s
2 MAR 81 0 h 0 min 0 s

21 SEP 81 0 h 0 min 0 s
3 NOV 81 0 h 0 min 0 s
1 JUL 82 0 h 0 min 0 s

27 JAN 81 0 h 0 min 0 s
1 JUL 75 0 h 0 min 0 s

29 DEC 78 0 h 0 min 0 s
2 FEB 80 0 h 0 min 0 s
8 APR 79 0 h 0 min 0 s

19 AUG 77 0 h 0 min 0 s
.
.
.

SQL> --
SQL> SET LANGUAGE FRENCH
SQL> SELECT SALARY_START FROM SALARY_HISTORY;
SALARY_START
5 jul 80 0 h 0 min 0 s

14 jan 83 0 h 0 min 0 s
2 mar 81 0 h 0 min 0 s

21 sep 81 0 h 0 min 0 s
3 nov 81 0 h 0 min 0 s
1 jul 82 0 h 0 min 0 s

27 jan 81 0 h 0 min 0 s
1 jul 75 0 h 0 min 0 s

29 déc 78 0 h 0 min 0 s
2 fév 80 0 h 0 min 0 s
8 avr 79 0 h 0 min 0 s

19 aoû 77 0 h 0 min 0 s
.
.
.

SQL> --

Example 4: Using the SET statement to receive messages about syntax that
contains extensions to the ANSI/ISO SQL or MIA standards

This example shows the output when flagging is turned on, first for SQL92_
ENTRY and then for MIA.

SQL> -- Flagging is off by default. When you enter a statement that
SQL> -- uses the data type VARCHAR, SQL does not issue a message.
SQL> --
SQL> SHOW FLAGGER MODE;
The flagger mode is OFF
SQL> CREATE TABLE TEST1 (TEXT_COL VARCHAR (100));
SQL> --
SQL> -- When you set the flagger to SQL92_ENTRY, SQL generates an
SQL> -- error message because VARCHAR is an extension to the standard.
SQL> --
SQL> SET FLAGGER SQL92_ENTRY ON
SQL> CREATE TABLE TEST2 (TEXT_COL VARCHAR (100));
%SQL-I-NONSTADTP, Nonstandard data type

8–176 SQL Statements

SET Statement

SQL> --
SQL> -- With the flagger set to SQL92_ENTRY, SQL does not generate an
SQL> -- error message for the data type CHAR because it is an ANSI/ISO
SQL> -- standard data type.
SQL> --
SQL> CREATE TABLE TEST3 (TEXT_COL CHAR);
SQL> --
SQL> -- However, when you set the flagger to MIA, SQL generates two
SQL> -- error messages because data definition is not part of the MIA
SQL> -- standard. The first error message is caused by the CREATE
SQL> -- keyword; the second is caused by trying to create a table.
SQL> --
SQL> -- (Note that the SET FLAGGER statement itself is nonstandard.)
SQL> --
SQL> SET FLAGGER MIA ON
%SQL-I-NONSTASYN, Nonstandard syntax
SQL> CREATE TABLE TEST3 (TEXT_COL CHAR);
%SQL-I-NONSTASYN, Nonstandard syntax
%SQL-I-NONSTASYN, Nonstandard syntax
SQL>

Example 5: Using the SET statement to check for obsolete syntax

This example shows the output from an obsolete SQL statement when the user
specifies WARNING DEPRECATE, and the output from the same statement when
the user specifies WARNING NODEPRECATE.

SQL> --
SQL> -- By default, SQL sends warning messages when you use obsolete syntax.
SQL> --
SQL> DECLARE SCHEMA FILENAME personnel;
%SQL-I-DEPR_FEATURE, Deprecated Feature: SCHEMA (meaning ALIAS)
SQL> DISCONNECT ALL;
SQL> --
SQL> -- When you specify SET WARNING NODEPRECATE, SQL does not display warning
SQL> -- messages.
SQL> --
SQL> SET WARNING NODEPRECATE;
SQL> DECLARE SCHEMA FILENAME personnel;
SQL> DISCONNECT ALL;

Example 6: Setting page length

The following example uses the SET PAGE LENGTH command to change the
pagination length of HELP.

SQL> set page length 40;
SQL> show display
Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 40 lines
Line length is set to 80 bytes
Display NULL values using "NULL"

Example 7: Saving the output from a script

The following example shows the use of SET LOGFILE to save the output from a
script without echoing the results.

1. The script being executed.

SQL Statements 8–177

SET Statement

set verify;
start transaction read only;
set logfile (noecho) ’saved_date.log’;
select rdb$flags from rdb$database;
set nologfile;
show alias;
rollback;

2. The output as seen during the Interactive SQL session.

SQL> start transaction read only;
SQL>
SQL> set logfile (noecho) ’saved_date.log’;
SQL>
SQL> show alias;
Default alias:

Oracle Rdb database in file SQL$DATABASE
SQL> rollback;

3. The output saved in the log file.

SQL>
SQL> select rdb$flags from rdb$database;

RDB$FLAGS
0

1 row selected
SQL>
SQL> set nologfile;

8–178 SQL Statements

SET ALIAS Statement

SET ALIAS Statement

Specifies the default alias for an SQL user session in dynamically prepared and
executed or interactive SQL until another SET ALIAS statement is issued. If you
do not specify an alias, the default is RDB$DBHANDLE.

Environment

You can use the SET ALIAS statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET ALIAS <alias-string-literal>
<alias-parameter>
<alias-parameter-marker>

Arguments

alias-parameter
Specifies a host language variable in precompiled SQL or a formal parameter in
an SQL module language procedure that specifies the default alias.

alias-parameter-marker
Specifies a parameter marker (?) in a dynamic SQL statement. The alias
parameter marker refers to a parameter that specifies the default alias.

alias-string-literal
Specifies a character string literal that specifies the default alias. The alias string
literal must be enclosed in single quotation marks.

Usage Notes

• SQL interprets a two-level name in the following way:

1. SQL checks the name to the left of the period (.) to determine if it is an
alias. If it is, SQL interprets the name as:

alias-name.table-name

2. If there is no alias for this name, then SQL interprets the two-level name
as:

schema-name.table-name

SQL Statements 8–179

SET ALIAS Statement

Examples

Example 1: Setting a default alias to avoid qualifying object names

SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> SET CATALOG ’ADMINISTRATION’;
SQL> SET SCHEMA ’PERSONNEL’;
SQL> SELECT LAST_NAME FROM EMPLOYEES;
%SQL-F-NODEFDB, There is no default database
SQL> --
SQL> -- You must qualify the table name because you attached with an alias.
SQL> --
SQL> SELECT LAST_NAME FROM CORP.EMPLOYEES;
LAST_NAME
Ames
Andriola
Babbin
.
.
.

100 rows selected
SQL> SET ALIAS ’CORP’;
SQL> --
SQL> -- Now you do not need to qualify the table name EMPLOYEES.
SQL> --
SQL> SELECT LAST_NAME FROM EMPLOYEES;
LAST_NAME
Ames
Andriola
Babbin
.
.
.

100 rows selected

Example 2: Changing the default alias

Use the SHOW DATABASE statement to see the database settings.

SQL> ATTACH ’FILENAME personnel’;
SQL> ATTACH ’ALIAS corp FILENAME corporate_data’;
SQL> --
SQL> -- The default alias, RDB$DBHANDLE, refers to PERSONNEL
SQL> -- to simplify references to CORPORATE_DATA make this
SQL> -- database the default alias
SQL> --
SQL> SET ALIAS ’CORP’;

.

.

.

8–180 SQL Statements

SET ANSI Statement

SET ANSI Statement

Specifies whether or not SQL behavior in certain instances complies with the
ANSI/ISO SQL standard. The current default behavior in these instances is
noncompliant.

Note

SQL provides the following new statements to replace the SET ANSI
statement:

• SET DEFAULT DATE FORMAT replaces SET ANSI DATE; see the
SET DEFAULT DATE FORMAT Statement.

• SET KEYWORD RULES replaces SET ANSI IDENTIFIERS; see the
SET KEYWORD RULES Statement.

• SET QUOTING RULES replaces SET ANSI QUOTING; see the SET
QUOTING RULES Statement.

• SET VIEW UPDATE RULES is new; see the SET VIEW UPDATE
RULES Statement.

In addition, SQL provides the SET DIALECT statement to let you specify,
with one statement, settings for all of these statements. See the SET
DIALECT Statement for more information.

SQL does not return a deprecated feature message if you use the SET
ANSI statement.

Environment

You can use the SET ANSI statement only in interactive SQL.

Format

SET ANSI DATE ON
IDENTIFIERS OFF
QUOTING

Arguments

DATE ON
DATE OFF
Specifies the default interpretation for columns with the DATE data type, and the
data type of the CURRENT_TIMESTAMP function.

The DATE and CURRENT_TIMESTAMP data types, can be either VMS ADT
or ANSI. By default, both data types are interpreted as DATE VMS. The VMS
format contains YEAR TO SECOND fields, just as a TIMESTAMP does.

You can change DATE and CURRENT_TIMESTAMP to ANSI format with the
SET DEFAULT DATE FORMAT statement, the precompiler DEFAULT DATE
FORMAT clause in a DECLARE MODULE statement embedded in a program,
or the module language DEFAULT DATE FORMAT clause in a module file. The
ANSI format DATE contains only the YEAR TO DAY fields.

SQL Statements 8–181

SET ANSI Statement

You must use the SET DEFAULT DATE FORMAT statement before creating
domains or tables. You cannot use this statement to modify the data type once
you have created a column or table.

IDENTIFIERS ON
IDENTIFIERS OFF
Specifies whether or not SQL checks statements that use reserved words as
identifiers. If you specify SET ANSI IDENTIFIERS ON, SQL checks statements
for reserved words from the ANSI/ISO standard. You must enclose reserved
words in double quotation marks to supply them as identifiers in SQL statements.
If you do not, SQL issues an informational message after such statements when
you enable reserved-word checking. For a list of the reserved words deprecated
as identifiers, see Appendix F.4.

When you specify SET ANSI IDENTIFIERS OFF, SQL does not check identifiers.
By default, SQL does not check identifiers.

QUOTING ON
QUOTING OFF
Allows you to use double quotation marks to delimit the alias and catalog
name pair in subsequent statements. By default, SQL syntax allows only
single quotation marks. To comply with ANSI/ISO SQL standard naming
conventions, ANSI QUOTING must be on. You must set ANSI QUOTING on to
use multischema database naming.

Example

Example 1: Setting CURRENT_TIMESTAMP to ANSI format

In the following example, SQL issues an error message because CURRENT_
TIMESTAMP is an ADT data type by default, and TIMESTAMP is an ANSI
data type. The SET ANSI DATE ON statement changes the default CURRENT_
TIMESTAMP to ANSI format.

SQL> begin
cont> declare :logging_date timestamp;
cont> set :logging_date = current_timestamp;
cont> trace :logging_date;
cont> end;
%SQL-F-UNSDATASS, Unsupported date/time assignment from <Source> to LOGGING_DATE
SQL> SET ANSI DATE ON;
SQL> begin
cont> declare :logging_date timestamp;
cont> set :logging_date = current_timestamp;
cont> trace :logging_date;
cont> end;

Example 2: Using the SET ANSI IDENTIFIERS statement to check for reserved
words

This example shows the output from an SQL statement that creates a domain
and specifies the ANSI89 reserved word CONTINUE as the user-supplied name
for that domain. The SET ANSI IDENTIFIERS ON statement requires that you
use uppercase characters for the name and enclose it in double quotation marks.

SQL> set ansi identifiers on;
SQL> create domain continue char(5);
%SQL-F-RES_WORD_AS_IDE, Keyword CONTINUE used as an identifier
SQL> create domain "CONTINUE" char(5);
SQL>

8–182 SQL Statements

SET AUTOMATIC TRANSLATION Statement

SET AUTOMATIC TRANSLATION Statement

Enables or disables automatic translation to and from the display character set.

Environment

You can use the SET AUTOMATIC TRANSLATION statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET AUTOMATIC TRANSLATION
runtime-options

NOAUTOMATIC TRANSLATION
NO AUTOMATIC

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of runtime-options, which must be one of the following:

• ON

• OFF

ON enables automatic character set translation and OFF disables it. If no
runtime-options are specified, then the default behavior is to enable automatic
translation.

Usage Notes

• Enables the automatic translation of character data between client
applications and the Oracle Rdb server. This means that column data is
translated to the display character set during retrieval, and database object
names in queries are converted to the identifier character set during query
processing. See SET DISPLAY CHARACTER SET Statement for more
information.

SQL Statements 8–183

SET AUTOMATIC TRANSLATION Statement

• SET AUTOMATIC TRANSLATION will affect all databases in the current
environment. If no databases are attached then this setting will be applied as
databases are attached.

• The SET NO AUTOMATIC TRANSLATION and SET NOAUTOMATIC
TRANSLATION statements may only be used in Interactive SQL. They are
equivalent to SET AUTOMATIC TRANSLATION OFF.

• If AUTOMATIC TRANSLATION is enabled then translation is attempted
between different versions of the table row. For instance, after an ALTER
TABLE command where a new character set is specified for existing data.
This is demonstrated in the following example.

SQL> create table SAMPLE (description char(20));
SQL> insert into SAMPLE (description) values (’Sample text’);
1 row inserted
SQL> select description from SAMPLE;
DESCRIPTION
Sample text
1 row selected
SQL> alter table SAMPLE modify (description char(20) character set utf8);
SQL> select description from SAMPLE;
%RDB-E-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-CSETBADASSIGN, incompatible character sets prohibit the requested
assignment
SQL> set automatic translation;
SQL> select description from SAMPLE;
DESCRIPTION
Sample text
1 row selected
SQL>

Note that once the restructuring from an old version is created in the current
session, it is not undone by disabling AUTOMATIC TRANSLATION.

Examples

Example 1: Using SET AUTOMATIC TRANSLATION command from a SQL
Module Language procedure

procedure SET_AUTO_TRANS (sqlcode);
SET AUTOMATIC TRANSLATION ON;

Or if a parameter is passed:

procedure SET_AUTO_TRANS
(sqlcode,
:on_off char(3)
);
SET AUTOMATIC TRANSLATION :on_off;

Example 2: Using SET AUTOMATIC TRANSLATION at runtime

SQL> declare :auto_trans char(10);
SQL> accept :auto_trans;
Enter value for AUTO_TRANS: off
SQL> set automatic translation :auto_trans;
SQL> show automatic translation;
Automatic translation: OFF
SQL>

8–184 SQL Statements

SET CATALOG Statement

SET CATALOG Statement

Specifies the default catalog name for an SQL user session in dynamically
prepared and executed or interactive SQL until another SET CATALOG
statement is issued.

Within one multischema database, tables in different catalogs can be used in a
single SQL statement; tables in catalogs in different databases cannot. If you
omit the catalog name when you specify an object in a multischema database,
SQL uses the default catalog name.

Environment

You can use the SET CATALOG statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET CATALOG <catalog-string-literal>
<catalog-parameter>
<catalog-parameter-marker>

catalog-string-literal =

’ catalog-expression ’

catalog-expression =

<name-of-catalog>

" <alias>.<name-of-catalog> "

Arguments

catalog-expression
Specifies the name of the default catalog for a multischema database. If you omit
the catalog name when you specify an object in a multischema database, SQL
uses the default catalog name. If you do not specify a default catalog name, the
default is RDB$CATALOG.

If you qualify the catalog name with an alias, the alias and catalog name pair
must be in uppercase characters and you must enclose the alias and catalog name
pair within double quotation marks.

See Section 2.2.3 for more information on catalogs.

SQL Statements 8–185

SET CATALOG Statement

catalog-parameter
Specifies a host language variable in precompiled SQL or a formal parameter in
an SQL module language procedure that specifies the default catalog. The catalog
parameter must contain a catalog expression.

catalog-parameter-marker
Specifies a parameter marker (?) in a dynamic SQL statement. The catalog
parameter marker refers to a parameter that specifies the default catalog. The
catalog parameter marker must specify a parameter that contains a catalog
expression.

catalog-string-literal
Specifies a character string literal that specifies the default catalog. The catalog
string literal must contain a catalog expression enclosed in single quotation
marks.

Usage Notes

• SQL does not issue an error message when you use SET CATALOG to set
default to a catalog that does not exist. However, when you refer to that
catalog by specifying an unqualified name, SQL issues the error message
shown in the following example:

SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> SHOW CATALOGS
Catalogs in database CORP

"CORP.ADMINISTRATION"
"CORP.RDB$CATALOG"

SQL> SET CATALOG ’"CORP.NONEXISTENT"’;
SQL> SET SCHEMA ’PERSONNEL’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
%SQL-F-CATNOTDEF, Catalog NONEXISTENT is not defined

• Remember that the double-quoted leftmost pair (the delimited identifier)
in a multischema object name requires uppercase characters. For other
multischema naming rules, see Section 2.2.11. You will receive the following
error message if you specify a delimited identifier in lowercase characters:

SQL> SET SCHEMA ’"corp.administration".accounting’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
%SQL-F-NODEFDB, There is no default database
SQL> SET SCHEMA ’"CORP.ADMINISTRATION".accounting’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
SQL>

Examples

Example 1: Setting schema and catalog defaults for the default database

In this example, the user attaches to the multischema corporate_data database,
uses SET SCHEMA and SET CATALOG statements to change the defaults to
catalog ADMINISTRATION and schema ACCOUNTING of the corporate_data
database, and creates the table BUDGET in the schema ACCOUNTING.

8–186 SQL Statements

SET CATALOG Statement

SQL> ATTACH ’FILENAME corporate_data’;
SQL> SHOW CATALOGS;
Catalogs in database with filename corporate_data

ADMINISTRATION
RDB$CATALOG

SQL> SHOW SCHEMAS;
Schemas in database with filename corporate_data

ADMINISTRATION.ACCOUNTING
ADMINISTRATION.PERSONNEL
ADMINISTRATION.RECRUITING
RDB$SCHEMA

SQL> SET CATALOG ’ADMINISTRATION’;
SQL> SET SCHEMA ’ACCOUNTING’;
SQL> CREATE TABLE BUDGET (COL1 REAL);
SQL> SHOW TABLES;

BUDGET
DAILY_HOURS
DEPARTMENTS
.
.
.

SQL> --
SQL> -- To see the qualified table names, set default
SQL> -- to another schema and catalog.
SQL> --
SQL> SET CATALOG ’RDB$CATALOG’;
SQL> SET SCHEMA ’RDB$SCHEMA’;
SQL> SHOW TABLES
User tables in database with filename corporate_data

ADMINISTRATION.ACCOUNTING.BUDGET
ADMINISTRATION.ACCOUNTING.DAILY_HOURS
ADMINISTRATION.ACCOUNTING.DEPARTMENTS
.
.
.

Example 2: Setting a default catalog for a database with an alias

In this example, the user attaches to the multischema corporate_data database
using the alias CORP. Setting the default catalog allows you to shorten the table
name because you can qualify it with just the schema.

SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> CREATE TABLE ACCOUNTING.PROJECT_7 (STATUS REAL);
%SQL-F-DBHANDUNK, ACCOUNTING is not the alias of a known database
SQL> --
SQL> -- You cannot qualify the table name without the alias,
SQL> -- so SQL assumes ACCOUNTING is the alias, not the schema.
SQL> -- Unless you want to qualify the table name with
SQL> -- both alias and catalog names, you must set the
SQL> -- default catalog to ADMINISTRATION, which
SQL> -- contains ACCOUNTING. You must enable ANSI/ISO quoting to do this.
SQL> --

SQL Statements 8–187

SET CATALOG Statement

SQL> SET QUOTING RULES ’SQL92’;
SQL> SET CATALOG ’"CORP.ADMINISTRATION"’;
SQL> CREATE TABLE ACCOUNTING.PROJECT_7 (STATUS REAL);
SQL> SHOW TABLES;
User tables in database with filename corporate_data

ACCOUNTING.BUDGET
.
.
.
ACCOUNTING.PROJECT_7
ACCOUNTING.WORK_STATUS

.

.

.

8–188 SQL Statements

SET CHARACTER LENGTH Statement

SET CHARACTER LENGTH Statement

Specifies whether the length of character string parameters, columns, domains,
and offsets are interpreted as characters or octets. (An octet is a group of 8 bits.)

Environment

You can use the SET CHARACTER LENGTH statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET CHARACTER LENGTH runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of runtime-options, which must be one of the following:

• OCTETS

• CHARACTERS

CHARACTERS specifies the length of character string parameters, columns,
domains, and offsets, which are interpreted as characters.

OCTETS specifies the length of character string parameters, columns, domains,
and offsets, which are interpreted as octets.

The default is octets.

Usage Notes

• If the SET DIALECT statement is processed after the SET CHARACTER
LENGTH statement, it can override the setting of the SET CHARACTER
LENGTH statement.

• If the CHARACTER LENGTH is set to OCTETS and you use a multi-octet
character set, you must specify an appropriate size for parameters, columns,
and domains.

SQL Statements 8–189

SET CHARACTER LENGTH Statement

• Use the SHOW CONNECTIONS CURRENT statement to see the current
setting of character length for the session.

Examples

Example 1: Setting the character length to octets

SQL> set character length ’octets’;
SQL> show connection current;
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias RDB$DBHANDLE:
Identifier character set is DEC_MCS
Default character set is DEC_MCS
National character set is DEC_MCS

SQL> /*
***> Create two domains: one uses LATIN9, a single-octet character
***> set, and one uses KANJI a fixed multi-octet character set.
***> */
SQL> create domain LATIN9_DOM char(8) character set ISOLATIN9;
SQL> create domain KANJI_DOM char(5) character set KANJI;
%SQL-F-CHRUNIBAD, Number of octets is not an integral number of characters
SQL> /*
***> Because KANJI is a fixed multi-octet character set, using two
***> octets for each character, you must specify the size as a
***> multiple of two.
***> */
SQL> create domain KANJI_DOM char(8) character set KANJI;
SQL> show domains;
User domains in database with filename MIA_CHAR_SET
KANJI_DOM CHAR(8)

KANJI 4 Characters, 8 Octets
LATIN9_DOM CHAR(8)

ISOLATIN9 8 Characters, 8 Octets
SQL>

Example 2: Setting the character length to characters

8–190 SQL Statements

SET CHARACTER LENGTH Statement

SQL> set character length ’characters’;
SQL> show connection current;
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: CHARACTERS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias RDB$DBHANDLE:
Identifier character set is DEC_MCS
Default character set is DEC_MCS
National character set is DEC_MCS

SQL> /*
***> Create two domains: one uses LATIN9, a single-octet character
***> set, and one uses KANJI a fixed multi-octet character set.
***> */
SQL> create domain LATIN9_DOM char(8) character set ISOLATIN9;
SQL> create domain KANJI_DOM char(5) character set KANJI;
SQL> show domains;
User domains in database with filename MIA_CHAR_SET
KANJI_DOM CHAR(5)

KANJI 5 Characters, 10 Octets
LATIN9_DOM CHAR(8)

ISOLATIN9 8 Characters, 8 Octets
SQL>

SQL Statements 8–191

SET COMPOUND TRANSACTIONS Statement

SET COMPOUND TRANSACTIONS Statement

Allows you to control the SQL behavior for starting a default transaction for a
compound statement.

By default, if there is no current transaction, SQL starts a transaction before
executing a compound statement or stored procedure. However, this might
conflict with the actions within the procedure, or it might start a transaction
for no reason if the procedure body does not perform any database access. This
default is retained for backward compatibility for applications which may expect
a transaction to be started for the procedure.

Environment

You can use the SET COMPOUND TRANSACTIONS statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

Format

SET COMPOUND TRANSACTION int-ext-val

Argument

int-ext-value
A string literal or host variable containing the keyword ’INTERNAL’ or
’EXTERNAL’. These keywords can be in any case (uppercase, lowercase, or mixed
case). If the value is set to EXTERNAL, then SQL starts a transaction before
executing the procedure. If the value is set to INTERNAL, then SQL allows the
procedure to start a transaction as required by the procedure execution.

Usage Notes

• In the SQL module language or precompiler header, the COMPOUND
TRANSACTIONS option can be used to disable or enable starting a
transaction for procedures. The keyword INTERNAL or EXTERNAL must be
used to enable or disable this feature.

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
COMPOUND TRANSACTIONS INTERNAL

PROCEDURE S_TXN (SQLCODE);
BEGIN
SET TRANSACTION READ WRITE;
END;

PROCEDURE C_TXN (SQLCODE);
BEGIN
COMMIT;
END;

8–192 SQL Statements

SET COMPOUND TRANSACTIONS Statement

Example

Example 1: Enabling and Disabling Transaction Starting

In interactive or dynamic SQL, the following SET command can be used to
disable or enable transactions starting by the SQL interface. The parameter to
the SET command is a string literal or host variable containing the keyword
’INTERNAL’ or ’EXTERNAL’.

SQL> SET COMPOUND TRANSACTIONS ’internal’;
SQL> CALL START_TXN_AND_COMMIT ();
SQL> SET COMPOUND TRANSACTIONS ’external’;
SQL> CALL UPDATE_EMPLOYEES (...);

SQL Statements 8–193

SET CONNECT Statement

SET CONNECT Statement

Selects the named connection from the available connections, suspends any
current connection and saves its context, and uses the named connection in
subsequent procedures in the application after the SET CONNECT statement
executes.

For information about creating and naming connections, see the CONNECT
Statement.

Environment

You can use the SET CONNECT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET CONNECT <connection-name>
DEFAULT

Arguments

connection-name
Specifies a name for the association between the group of databases being
attached (the environment) and the database and request handles that reference
them (the connection).

You can specify the connection name as the following:

• String literal enclosed within single quotation marks

• Parameter (in module language)

• Variable (in precompiled SQL)

DEFAULT
Specifies one or more databases to be attached as a unit.

Use the DEFAULT keyword to specify the default connection. The default
connection is all the databases that were attached interactively, or all those made
known to the module at compile time through DECLARE ALIAS statements.

Usage Note

If you specify a connection name unknown to SQL, SQL returns an error message
and does not change the connection state.

8–194 SQL Statements

SET CONNECT Statement

Examples

Example 1: Creating a default connection and two other connections

The following log file from an interactive SQL connection shows three databases
attachments: personnel_northwest, personnel_northeast, and personnel_
southeast. (By not specifying an alias for personnel_northwest, the default
alias is assigned.) Several connections are established, including EAST_COAST,
which includes both personnel_northeast and personnel_southeast.

Use the SHOW DATABASE statement to see the database settings.

SQL> --
SQL> -- Attach to the personnel_northwest and personnel_northeast databases.
SQL> -- personnel_northwest has the default alias, so personnel_northeast
SQL> -- requires an alias.
SQL> -- All the attached databases comprise the default connection.
SQL> --
SQL> ATTACH ’FILENAME personnel_northwest’;
SQL> ATTACH ’ALIAS NORTHEAST FILENAME personnel_northeast’;
SQL> --
SQL> -- Add the personnel_southeast database.
SQL> --
SQL> ATTACH ’ALIAS SOUTHEAST FILENAME personnel_southeast’;
SQL> --
SQL> -- Connect to personnel_southeast. CONNECT does an
SQL> -- implicit SET CONNECT to the newly created connection.
SQL> --
SQL> CONNECT TO ’ALIAS SOUTHEAST FILENAME personnel_southeast’
cont> AS ’SOUTHEAST_CONNECTION’;
SQL> --
SQL> -- Connect to both personnel_southeast and personnel_northeast as
SQL> -- EAST_COAST connection. SQL replaces the current connection to
SQL> -- the personnel_southeast database with the EAST_COAST connection
SQL> -- when you issue the CONNECT statement. You now have two different
SQL> -- connections that include personnel_southeast.
SQL> --
SQL> CONNECT TO ’ALIAS NORTHEAST FILENAME personnel_northeast,
cont> ALIAS SOUTHEAST FILENAME personnel_southeast’
cont> AS ’EAST_COAST’;
SQL> --
SQL> -- The DEFAULT connection still includes all the attached databases.
SQL> --
SQL> SET CONNECT DEFAULT;
SQL> --
SQL> -- DISCONNECT releases the connection name EAST_COAST, but
SQL> -- does not detach from the EAST_COAST databases because
SQL> -- they are also part of the default connection.
SQL> --
SQL> DISCONNECT ’EAST_COAST’;
SQL> --
SQL> SET CONNECT ’EAST_COAST’;
%SQL-F-NOSUCHCON, There is not an active connection by that name
SQL> --
SQL> -- If you disconnect from the default connection, and have no other
SQL> -- current connections, you are no longer attached to any databases.
SQL> --
SQL> DISCONNECT DEFAULT;
SQL> SHOW DATABASES;
%SQL-F-ERRATTDEF, Could not use database file specified by SQL$DATABASE
-RDB-E-BAD_DB_FORMAT, SQL$DATABASE does not reference a database known to Rdb
-RMS-E-FNF, file not found

Example 2: Disconnecting a connection and starting a new connection with the
same database

SQL Statements 8–195

SET CONNECT Statement

In this example, there are two connections: the default connection and a current
connection, CA. Both connections use the personnel_ca database. Use the SHOW
DATABASE statement to see the database settings.

SQL> --
SQL> -- Establish a default connection by attaching to the personnel_ca
SQL> -- database.
SQL> --
SQL> ATTACH ’FILENAME personnel_ca’;
SQL> SHOW CONNECTIONS;
-> RDB$DEFAULT_CONNECTION
SQL> --
SQL> -- Start a new connection called CA.
SQL> --
SQL> CONNECT TO ’FILENAME personnel_ca’
cont> AS ’CA’;
SQL> SHOW CONNECTIONS;

RDB$DEFAULT_CONNECTION
-> CA
SQL> --
SQL> -- The DISCONNECT CURRENT statement releases the connection name CA,
SQL> -- although the database personnel_ca still belongs to the default
SQL> -- connection.
SQL> --
SQL> DISCONNECT CURRENT;
SQL> SHOW CONNECTIONS;
-> RDB$DEFAULT_CONNECTION
SQL> --
SQL> -- Even though the database personnel_ca is still attached, CA
SQL> -- is no longer an active connection.
SQL> --
SQL> SET CONNECT ’CA’;
%SQL-F-NOSUCHCON, There is not an active connection by that name
SQL> --
SQL> -- The original ATTACH statement comprises the default connection.
SQL> -- The DISCONNECT DEFAULT statement detaches the default connection.
SQL> --
SQL> DISCONNECT DEFAULT;
SQL> SHOW DATABASES;
%SQL-F-ERRATTDEF, Could not use database file specified by SQL$DATABASE
-RDB-E-BAD_DB_FORMAT, SQL$DATABASE does not reference a database known to Rdb
-RMS-E-FNF, file not found

8–196 SQL Statements

SET CONSTRAINTS Statement

SET CONSTRAINTS Statement

Controls checking for constraints that are evaluated at commit time. (This
statement has no effect on constraints that are evaluated at verb time. For verb-
time evaluation information, see the SET TRANSACTION Statement.) The SET
CONSTRAINTS statement is used to evaluate deferrable constraints at intervals
before the transaction is committed.

Environment

You can use the SET CONSTRAINTS statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET ALL CONSTRAINTS DEFERRED
CONSTRAINT ALL IMMEDIATE
CONSTRAINTS DEFAULT

ON
OFF

Arguments

DEFAULT
The default constraint mode setting for a session is DEFERRED unless you have
used one of the following to specify otherwise:

• SET DEFAULT CONSTRAINT MODE IMMEDIATE statement

• SQLOPTIONS=(CONSTRAINTS=IMMEDIATE) qualifier on the SQL
precompiler command line

• CONSTRAINTS=IMMEDIATE qualifier on the SQL module language
command line

DEFERRED
OFF
This option causes constraint evaluation to be deferred until commit time, when
the transaction completes. OFF is synonymous with DEFERRED.

IMMEDIATE
ON
This option causes constraint evaluation to be executed immediately, when the
statement completes. ON is synonymous with IMMEDIATE.

When you issue a SET CONSTRAINTS IMMEDIATE statement, SQL:

• Evaluates all previously deferred constraints (those that would otherwise be
evaluated at a COMMIT statement)

SQL Statements 8–197

SET CONSTRAINTS Statement

• Sets a mode in which SQL evaluates any constraints selected for deferred
evaluation by the execution of an SQL statement at the end of that SQL
statement (instead of waiting for a COMMIT statement)

Once the transaction completes, the constraint mode is set back to the default
constraint mode for subsequent statements.

Usage Notes

• If a transaction was declared but is not active when the SET CONSTRAINTS
statement is executed, SQL starts the declared transaction.

• See the description of the SQLOPTIONS=(CONSTRAINTS=ON | OFF)
qualifiers for the SQL precompiler command line in Chapter 4 and the
CONSTRAINTS qualifier for the SQL module language command line in
Chapter 3.

• If you require verb-time constraint evaluation, you must use the
EVALUATING clause on the SQL SET TRANSACTION statement. The
SET CONSTRAINTS statement only affects when deferrable (commit time)
constraints get evaluated. For information about the VERB TIME clause, see
the SET TRANSACTION Statement.

• This statement does not affect NOT DEFERRABLE constraints.

• See the Oracle Rdb Guide to SQL Programming for information on guidelines
for controlling constraint evaluation time.

• The SET CONSTRAINTS ALL ON statement is equivalent to SET
CONSTRAINTS ALL IMMEDIATE, and SET CONSTRAINTS ALL OFF
is equivalent to SET CONSTRAINTS ALL DEFERRED. The ON and OFF
keywords comply with the ANSI/ISO 1989 SQL standard; IMMEDIATE and
DEFERRED comply with later ANSI/ISO SQL standards.

Example

Example 1: Using the SET CONSTRAINTS statement in interactive SQL

SQL> att ’file mf_personnel_sql’;
SQL> set all constraints immediate;
SQL> show constraint;

Statement constraint evaluation default is DEFERRED (off)
Statement constraint evaluation is IMMEDIATE (on)

SQL> /*
***> Show the constraints
***> */
SQL> show tables (constraints) job_history;
Information for table JOB_HISTORY

Table constraints for JOB_HISTORY:
JOB_HISTORY_FOREIGN1
Foreign Key constraint
Column constraint for JOB_HISTORY.EMPLOYEE_ID
Evaluated on COMMIT
Source:
JOB_HISTORY.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

8–198 SQL Statements

SET CONSTRAINTS Statement

JOB_HISTORY_FOREIGN2
Foreign Key constraint
Column constraint for JOB_HISTORY.JOB_CODE
Evaluated on COMMIT
Source:
JOB_HISTORY.JOB_CODE REFERENCES JOBS (JOB_CODE)

JOB_HISTORY_FOREIGN3
Foreign Key constraint
Column constraint for JOB_HISTORY.DEPARTMENT_CODE
Evaluated on COMMIT
Source:
JOB_HISTORY.DEPARTMENT_CODE REFERENCES DEPARTMENTS (DEPARTMENT_CODE)

Constraints referencing table JOB_HISTORY:
No constraints found

SQL> set all constraints deferred;
SQL> show constraint;
Statement constraint evaluation default is DEFERRED (off)
Statement constraint evaluation is DEFERRED (off)
SQL>

SQL Statements 8–199

SET Control Statement

SET Control Statement

Assigns a value to a target parameter or a variable name.

Environment

You can use the SET assignment control statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

set-assignment-statement =

SET <parameter> = value-expr
<variable-name> NULL

Arguments

parameter
variable-name
Specifies the target where SQL stores a value expression or the NULL value.

value-expr
NULL
Assigns the value of a value expression or the NULL value to a target parameter
or variable name.

Usage Notes

• The data type of a value expression must be compatible with the data type of
its target parameter or variable name.

• If you attempt to assign a value into a target specification that is shorter than
the value, Oracle Rdb truncates the value and SQLSTATE returns a warning.

• When assigning a value to a parameter without an indicator parameter
to identify NULL values and if the value expression is NULL, Oracle Rdb
returns an error.

Examples

Example 1: Assigning a value expression to a target parameter

BEGIN
SET :y = (SELECT COUNT (*) FROM employees);
END;

8–200 SQL Statements

SET Control Statement

Example 2: Assigning the NULL value expression to a target parameter

BEGIN
SET :z = NULL;
END;

SQL Statements 8–201

SET DEFAULT CHARACTER SET Statement

SET DEFAULT CHARACTER SET Statement

Specifies the default character set for the SQL session.

Environment

You can use the SET DEFAULT CHARACTER SET statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET DEFAULT CHARACTER SET runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the default character set for your session. The value of runtime-options
must be a valid character set. For a list of allowable character set names and
option values, see the Section 2.1.

Usage Notes

• The SET DEFAULT CHARACTER SET statement sets the default character
set for the session.

• If you have set the dialect to SQL99, SQL92 or MIA, and if you do not specify
the database default character set when you create the database, SQL assigns
the session’s default character set to the database default character set.
Otherwise, SQL uses DEC_MCS as the default character set for the database.

• The session default character set may be set by issuing the DEFAULT
CHARACTER SET clause within the SQL module header or by using the SET
DEFAULT CHARACTER SET statement. See Section 2.1 for a list of default
character sets.

• If the session default character set was not specified within a module header
or by using the SET DEFAULT CHARACTER SET statement and the logical
RDB$CHARACTER_SET is defined, then SQL converts the value assigned to
the logical name to a character set name. This character set is used as the

8–202 SQL Statements

SET DEFAULT CHARACTER SET Statement

module default character set. See Table E-2 for more information regarding
conversion of logical names to character set names.

The RDB$CHARACTER_SET logical name is deprecated and will not be
supported in a future release.

• Use the SHOW CHARACTER SET statement to display the current session
character sets.

For information on setting the character sets for modules in SQL module
language and precompiled SQL, see Section 3.2 and the DECLARE MODULE
Statement.

Example

Example 1: Setting the default character set of an interactive session

SQL> show character sets;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS
SQL> set default character set ’DEC_KANJI’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS

SQL Statements 8–203

SET DEFAULT CONSTRAINT MODE Statement

SET DEFAULT CONSTRAINT MODE Statement

Sets the default constraint setting for statements.

Environment

You can use the SET DEFAULT CONSTRAINT MODE statement:

• In interactive SQL

• In Dynamic SQL as a statement to be dynamically executed

Format
SET DEFAULT CONSTRAINT MODE IMMEDIATE

DEFAULT
DEFERRED
ON
OFF
runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

DEFAULT
OFF
Requests that during the next transaction, all constraints defined as
DEFERRABLE INITIALLY DEFERRED be evaluated as originally specified
in the constraint definition. OFF is synonymous with DEFAULT.

DEFERRED
Synonymous with DEFAULT. However, in a future release of Oracle Rdb this
keyword will change meaning.

IMMEDIATE
ON
This option requests that during this transaction, all constraints defined as
DEFERRABLE INITIALLY DEFERRED be evaluated as though defined as
DEFERRABLE INITIALLY IMMEDIATE. ON is synonymous with IMMEDIATE.

’string-literal’
parameter
parameter-marker
Specifies the default character set for your session. The value of runtime-options
must be a valid character set. For a list of allowable character set names and
option values, see Section 2.1.

8–204 SQL Statements

SET DEFAULT CONSTRAINT MODE Statement

Usage Notes

• Within a transaction the constraint mode can be set temporarily using the
SET ALL CONSTRAINTS statement. When a COMMIT or ROLLBACK
is executed, the mode will revert to that established by SET DEFAULT
CONSTRAINT MODE.

• This statement does not affect the execution of NOT DEFERRABLE
constraints.

Examples

Example 1: Using the SET statement to change the current setting for constraint
evaluation

The following example shows how to use the SET statement to change the
constraint evaluation mode for the current transaction. You can display both the
current setting and the default setting.

SQL> attach ’filename mf_personnel_sql’;
SQL> /*
***> Show settings before starting, set the default mode,
***> then show the settings again.
***> */
SQL> show constraint mode;

Statement constraint evaluation default is DEFERRED (off)
SQL> set default constraint mode immediate;
SQL> show constraint mode;

Statement constraint evaluation default is IMMEDIATE (on)
SQL> start transaction;
SQL> set all constraints deferred;
SQL> show constraint mode;

Statement constraint evaluation default is IMMEDIATE (on)
Statement constraint evaluation is DEFERRED (off)

SQL> commit;
SQL> show constraint mode;

Statement constraint evaluation default is IMMEDIATE (on)
SQL>

Example 2: Using runtime options

If using runtime-options the passed character value must be one of the keywords:
ON, OFF, IMMEDIATE, DEFERRED, or DEFAULT. The following example shows
how this can be done in Interactive SQL.

SQL> show constraint mode
Statement constraint evaluation default is DEFERRED (off)

SQL> declare :c_mode char(10) = ’IMMEDIATE’;
SQL> set default constraint mode :c_mode;
SQL> show constraint mode

Statement constraint evaluation default is IMMEDIATE (on)
SQL>

SQL Statements 8–205

SET DEFAULT DATE FORMAT Statement

SET DEFAULT DATE FORMAT Statement

Specifies whether columns with the DATE data type or with the built-in function
CURRENT_TIMESTAMP are interpreted as VMS or SQL99 format.

Environment

You can use the SET DEFAULT DATE FORMAT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET DEFAULT DATE FORMAT runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of runtime-options, which must be one of the following:

• SQL99

• SQL92

• VMS

SQL99 or SQL92
Specifies that the DATE data type and the CURRENT_TIMESTAMP built-in
function are interpreted as SQL standard. The SQL standard format DATE
contains only the YEAR TO DAY fields, and CURRENT_TIMESTAMP returns a
TIMESTAMP data type.

VMS
Specifies that the DATE data type and the CURRENT_TIMESTAMP built-in
function are interpreted as VMS format. The VMS format DATE and CURRENT_
TIMESTAMP contain YEAR TO SECOND fields.

8–206 SQL Statements

SET DEFAULT DATE FORMAT Statement

Usage Notes

• If the SET DIALECT statement is processed after the SET DEFAULT DATE
FORMAT statement, it can override the setting of the SET DEFAULT DATE
FORMAT statement.

• You cannot use the SET DEFAULT DATE FORMAT statement to modify the
data type of a domain or column after it is created. Use the SET DEFAULT
DATE FORMAT statement before you create a domain or column.

• Specifying the SET DEFAULT DATE FORMAT statement changes the default
date format for the current connection only. Use the SHOW CONNECTIONS
statement to display the characteristics of a connection.

Example

Example 1: Changing the DATE format to SQL99

In the following example, SQL issues an error because, by default, the DATE data
type is in OpenVMS DATE format. That is, it contains the fields YEAR through
SECOND. The SET DEFAULT DATE FORMAT statement changes the default to
ANSI/ISO format so that the CURRENT_DATE and DATE types are compatible.

SQL> set default date format ’VMS’;
SQL> --
SQL> create domain LOGGING_DATE
cont> DATE
cont> default CURRENT_DATE;
%SQL-F-DEFVALINC, You specified a default value for LOGGING_DATE
which is inconsistent with its data type
SQL> --
SQL> set default date format ’SQL99’;
SQL> --
SQL> create domain LOGGING_DATE
cont> DATE
cont> default CURRENT_DATE;
SQL> show domain LOGGING_DATE;
LOGGING_DATE DATE ANSI
Oracle Rdb default: CURRENT_DATE

SQL Statements 8–207

SET DIALECT Statement

SET DIALECT Statement

Specifies the settings of the current connection for the following characteristics:

• Whether the length of character string parameters, columns, and domains are
interpreted as characters or octets. This can also be specified by using the
SET CHARACTER LENGTH statement.

• Whether double quotation marks are interpreted as string literals or
delimited identifiers. This can also be specified by using the SET QUOTING
RULES statement.

• Whether or not identifiers can be keywords. This can also be specified by
using the SET KEYWORD RULES statement.

• Which views are read-only. This can also be specified by using the SET VIEW
UPDATE RULES statement.

• Whether columns with the DATE or CURRENT_TIMESTAMP data type are
interpreted as VMS or SQL99 format. This can also be specified by using the
SET DEFAULT DATE FORMAT statement.

• Whether character sets change. Character sets can be changed using the
SET DEFAULT CHARACTER SET, SET NATIONAL CHARACTER SET,
SET IDENTIFIER CHARACTER SET, and SET LITERAL CHARACTER SET
statements.

The SET DIALECT statement lets you specify several settings with one
command, instead of specifying each setting individually.

Table 8–5 shows the settings for each option.

Table 8–5 Dialect Settings

Characteristic SQL20111 MIA SQLV40 ORACLE Dialects2

Character length Characters Characters Octets Characters

Quoting rules Delimited
identifier

Delimited
identifier

Literal Delimited identifier

Keywords allowed as
identifiers

No No Yes Yes

View update rules ANSI/ISO SQL
rules

ANSI/ISO SQL
rules

Oracle Rdb
rules

ANSI/ISO SQL rules

Default date format DATE ANSI DATE ANSI DATE VMS DATE VMS

Default character set Not changed KATAKANA Not changed Not changed

National character set Not changed KANJI Not changed Not changed

Identifier character set Not changed DEC_KANJI Not changed Not changed

Literal character set Not changed KATAKANA Not changed Not changed

Default evaluation for
constraints

Not Deferrable Deferrable Deferrable Not Deferrable

1Also applies to SQL92 and SQL99
2Applies to ORACLE LEVEL1, ORACLE LEVEL2 and ORACLE LEVEL3

Oracle Corporation recommends that you set the dialect to SQL2011, SQL99 or
SQL92 unless you need to maintain compatibility with an earlier dialect. These

8–208 SQL Statements

SET DIALECT Statement

dialect settings provide enhanced diagnostics and performance in some cases (for
example UNIQUE constraints) due to improved SQL Standards.

Environment

You can use the SET DIALECT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled to effect the
processing of dynamic SQL statements (use the DIALECT clause to effect
dialect changes in the precompiled source)

• As part of a procedure in an SQL module (but may not be in a compound
statement)

• In dynamic SQL as a statement to be dynamically executed

However, the ORACLE dialects can be used only in the interactive SQL and
dynamic SQL environments.

Format

SET DIALECT runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

ORACLE LEVEL1
Specifies the following behavior:

• The same dialect rules as SQL92 are in effect minus reserved word checking
and the DATE ANSI format.

• The ORACLE dialects allows the use of aliases to reference (or link) to tables
in data manipulation statements like SELECT, DELETE, INSERT, and
UPDATE. For example:

SQL> ATTACH ’ALIAS pers_alias FILENAME mf_personnel’;
SQL> SET DIALECT ’ORACLE LEVEL1’;
SQL> SELECT * FROM employees@pers_alias
cont> WHERE employee_id = ’00164’;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00164 Toliver Alvin A
146 Parnell Place Chocorua

NH 03817 M 28-Mar-1947 1

1 row selected

Alias references are only allowed on the table name and not on column
names. You cannot put a space between the table name, the at (@) sign, and
the alias name.

SQL Statements 8–209

SET DIALECT Statement

If you specify a schema name when referencing an Oracle Rdb database, the
schema name is ignored unless the multischema attribute is on.

• The following basic predicate for inequality comparisons is supported:

!=

The != basic predicate requires that the ORACLE dialects be set to avoid
confusion with the interactive SQL comment character.

• When using dynamic SQL, the client application can specify a synonym for
the parameter marker (?). For example, :name, :1, :2, and so on.

• The string concatenation operator and the CONCAT function treat nulls as
zero-length strings.

• The default date format is DATE VMS which is capable of doing arithmetic
in the ORACLE dialects only. Addition and subtraction can be done with
numeric data types that are implicitly cast to the INTERVAL DAY data type.
Fractions are rounded to the nearest whole integer.

• Zero length strings are null. When using an Oracle Database, a VARCHAR of
zero length is considered null. While the Oracle Rdb ORACLE dialects does
not remove zero length strings from the database, it does make them difficult
to create. The following rules are in effect:

– Empty literal strings (for example, ’’) are considered literal nulls.

– Any function that encounters a zero length string returns a null in its
place. This includes stored and external functions returning a VARCHAR
data type regardless of the dialect under which they were compiled. It
also includes the TRIM and SUBSTRING built-in functions.

– Parameters with the VARCHAR data type and a length of zero are treated
as null.

The best way to avoid zero length strings from being seen by an Oracle
Database application is to only use views compiled under the ORACLE
dialects and to modify tables with VARCHAR columns to remove zero length
strings. The following example shows how to remove zero length strings from
a VARCHAR column in a table:

SQL> UPDATE tab1 SET col1 = NULL WHERE CHARACTER_LENGTH(col1) = 0;

If modifying the table is not possible or if a view compiled in another dialect
containing VARCHAR functions must be used, then create a new view under
the ORACLE dialect referring to that table or view to avoid the zero length
VARCHAR string. The following example shows how to avoid selecting zero
length strings from a VARCHAR column in a table or non-Oracle dialect view:

SQL> SET DIALECT ’ORACLE LEVEL1’;
SQL> CREATE VIEW view1 (col1, col2)
cont> AS SELECT SUBSTRING(col1 FROM 1 FOR 2000), col2 FROM tab1;

The Oracle Rdb optimizer is more efficient if data is selected without the use
of functions. Therefore, the previous example is best used only if you suspect
zero length strings have been inserted into the table and it is necessary to
avoid them.

8–210 SQL Statements

SET DIALECT Statement

• The ROWNUM keyword is allowed in select expressions and limits the
number of rows returned in the query. The following example limits the
number of rows returned by the SELECT statement to 9 rows:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET DIALECT ’ORACLE LEVEL1’;
SQL> SELECT last_name FROM EMPLOYEES WHERE ROWNUM < 10;
LAST_NAME
Toliver
Smith
Dietrich
Kilpatrick
Nash
Gray
Wood
D’Amico
Peters
9 rows selected

Conditions testing for ROWNUM values greater than or equal to a positive
integer are always false and, therefore, return no rows. For example:

SQL> SELECT last_name FROM EMPLOYEES WHERE ROWNUM > 10;
0 rows selected
SQL> SELECT last_name FROM EMPLOYEES WHERE ROWNUM = 10;
0 rows selected

See the Usage Notes for additional restrictions that apply to the ROWNUM
keyword.

ORACLE LEVEL2
This includes all the behavior describe for ORACLE LEVEL1 plus the following
changes:

• The same dialect rules as SQL99 are in effect minus reserved word checking
and the DATE ANSI format.

• Concatenate (| |) and the CONCAT function allow for all data types, not just
character types (CHAR, and VARCHAR). The numeric, or date/time values
are converted to VARCHAR prior to the concatenation.

• Date subtraction results in a floating result. Partial days are now represented
by a fraction portion.

• This is not an exhaustive list. Refer to Oracle Rdb Release Notes for
additional semantic changes for dialect ORACLE LEVEL2.

ORACLE LEVEL3

This includes all the behavior described for ORACLE LEVEL2 plus the following
changes:

• The same dialect rules as SQL2011 are in effect.

• The DATE data type is assumed to mean ANSI style DATE which does not
include time fields.

• The CURRENT_TIMESTAMP builtin function returns a TIMESTAMP(2)
type.

SQL Statements 8–211

SET DIALECT Statement

• This is not an exhaustive list. Refer to Oracle Rdb Release Notes for
additional semantic changes for dialect ORACLE LEVEL3.

’string-literal’
parameter
parameter-marker
Specifies the value of the runtime-options, see parameter for the list of
keywords.

SQL89
MIA
Specifies the following behavior:

• The length of character string parameters, columns, and domains is
interpreted as characters, rather than octets.

• Double quotation marks are interpreted as delimited identifiers.

• Keywords cannot be used as identifiers unless they are enclosed within double
quotation marks.

• The ANSI/ISO SQL standard for updatable views is applied to all views
created during compilation. Views that do not comply with the ANSI/ISO
SQL standard for updatable views cannot be updated.

The ANSI/ISO SQL standard for updatable views requires the following
conditions to be met in the SELECT statement:

The DISTINCT keyword is not specified.

Only column names can appear in the select list. Each column name can
appear only once. Functions and expressions such as max(column_name)
or column_name +1 cannot appear in the select list.

The FROM clause refers to only one table. This table must be either a
base table, global temporary table, local temporary table, or a derived
table that can be updated.

The WHERE clause does not contain a subquery.

The GROUP BY clause is not specified.

The HAVING clause is not specified.

If you specify MIA, SQL sets the character sets as follows:

• Default character set: KATAKANA

• National character set: KANJI

• Identifier character set: DEC_KANJI

• Literal character set: KATAKANA

• The constraint evaluation time is DEFERRABLE INITIALLY DEFERRED.

SQL92
Specifies the following behavior:

• The length of character string parameters, columns, and domains is
interpreted as characters, rather than octets.

• Double quotation marks are interpreted as delimited identifiers.

8–212 SQL Statements

SET DIALECT Statement

• Keywords cannot be used as identifiers unless they are enclosed within double
quotation marks.

• The ANSI/ISO SQL standard for updatable views is applied to all views
created during compilation. Views that do not comply with the ANSI/ISO
SQL standard for updatable views cannot be updated.

The ANSI/ISO SQL standard for updatable views requires the following
conditions to be met in the SELECT statement:

The DISTINCT keyword is not specified.

Only column names can appear in the select list. Each column name can
appear only once. Functions and expressions such as max(column_name)
or column_name +1 cannot appear in the select list.

The FROM clause refers to only one table. This table must be either a
base table, global temporary table, local temporary table, or a derived
table that can be updated.

The WHERE clause does not contain a subquery.

The GROUP BY clause is not specified.

The HAVING clause is not specified.

• The DATE and CURRENT_TIMESTAMP data types are interpreted as SQL
format. The SQL (ANSI) format DATE contains only the YEAR TO DAY
fields.

• Conversions between character data types when storing data or retrieving
data raise exceptions or warnings in certain situations. For further
explanation of these situations, see Section 2.3.8.2.

• You can specify DECIMAL or NUMERIC for formal parameters in SQL
modules and declare host language parameters with packed decimal or signed
numeric storage format. SQL generates an error message if you attempt to
exceed the precision specified.

• The USER keyword specifies the current active user name for a request.

• A warning is generated when a NULL value is eliminated from a SET
function.

• The WITH CHECK OPTION clause on views returns a discrete error code
from an integrity constraint failure.

• An exception is generated with terminated C strings that are not NULL.

• The default on constraint evaluation time is set to NOT DEFERRABLE
INITIALLY IMMEDIATE.

SQL99
Specifies that the SQL language conforms to SQL:1999 SQL Database Language
Standard.

This includes all the behavior described for SQL92 plus the following changes:

• The FOREIGN KEY constraint may list the column names in the
REFERENCES list in any order. In other dialects, the column names
must be in the same order as the referenced PRIMARY KEY or UNIQUE
constraint.

SQL Statements 8–213

SET DIALECT Statement

• For CONCAT and | | operators; any date/time or numeric value expressions
are automatically CAST as VARCHAR values.

• This is not an exhaustive list. Refer to the Oracle Rdb Release Notes for
additional semantic changes for dialect SQL99.

SQL2011

This includes all the behavior described for SQL99 plus the following changes:

• PRIMARY KEY or UNIQUE constraints must be evaluated at the same
time or sooner than the referencing FOREIGN KEY constraints. That is, a
FOREIGN KEY constraint defined as NOT DEFERRABLE may not reference
a PRIMARY KEY or UNIQUE constraint defined as DEFERRABLE.

• This is not an exhaustive list. Refer to Oracle Rdb Release Notes for
additional semantic changes for dialect SQL2011.

SQLV40
Specifies the following behavior:

• The length of character string parameters, columns, and domains is
interpreted as octets, rather than characters.

• Double quotation marks are interpreted as string literals.

• Keywords can be used as identifiers.

• The ANSI/ISO SQL standard for updatable views is not applied. Instead,
SQL considers views that meet the following conditions to be updatable:

The DISTINCT keyword is not specified.

The FROM clause refers to only one table. This table must be either a
base table, global temporary table, local temporary table, or a derived
table that can be updated.

The WHERE clause does not contain a subquery.

The GROUP BY clause is not specified.

The HAVING clause is not specified.

• The DATE and CURRENT_TIMESTAMP data types are interpreted as VMS
format. The VMS format DATE and CURRENT_TIMESTAMP contain YEAR
TO SECOND fields.

• The constraint evaluation time is DEFERRABLE INITIALLY DEFERRED.

The default is SQLV40.

See Table 8–5 for the setting values of the dialect options.

Usage Notes

• If the following statements are processed after the SET DIALECT statement,
they override the settings of the SET DIALECT statement:

– SET CHARACTER LENGTH

– SET QUOTING RULES

– SET KEYWORD RULES

8–214 SQL Statements

SET DIALECT Statement

– SET VIEW UPDATE RULES

– SET DEFAULT DATE FORMAT

– SET DEFAULT CHARACTER SET

– SET NATIONAL CHARACTER SET

– SET IDENTIFIER CHARACTER SET

– SET LITERAL CHARACTER SET

– SET NAMES

These statements change the settings of the current connection only.

• If you specify MIA and then change the dialect to another value, the MIA
character sets remain intact for the default, national, identifier, and literal
character sets. You must manually change the character set for each of
these in this situation. For more information on changing the session
character sets, see the SET DEFAULT CHARACTER SET Statement,
the SET IDENTIFIER CHARACTER SET Statement, the SET LITERAL
CHARACTER SET Statement, and the SET NATIONAL CHARACTER SET
Statement.

• Use the SHOW CONNECTIONS statement to display the characteristics of a
connection.

• If the source string is greater than the target string when converting between
character data types, the result is left-justified and truncated on the right
with no error reported for dialects MIA, SQL89, and SQLV40.

For all other dialects, an error is returned when storing data unless the
truncated characters are only space characters in which case no error is
returned. If you are retrieving data, a warning is returned if truncation
occurs. The warning is returned regardless of whether or not the truncated
characters are blank.

• If you set your dialect to SQL89, Oracle Rdb allows the translation of a
missing value (defined using the RDO interface) to process when inserting or
updating data in the database using the SQL interface. If a value is set to
the missing value using RDO, the resulting value of an insert or update using
SQL is NULL.

• Other restrictions that apply to the ROWNUM keyword are:

– Can be used only with the ORACLE dialects. All other dialects must use
the LIMIT TO clause.

– Can be used only in a comparison of select expression predicate.

– Can appear only in SELECT statements or select expressions.

– Cannot be used with a LIMIT TO clause.

– Cannot appear more than once in the predicate of a WHERE clause.

– Cannot be compared to a column.

– Cannot be used in a compound statement.

– Cannot appear on either side of an OR Boolean operator.

– Cannot be selected or used in a function call.

SQL Statements 8–215

SET DIALECT Statement

Examples

Example 1: Setting the characteristics to SQL92

SQL> ATTACH ’ALIAS MIA1 FILENAME MIA_CHAR_SET DISPLAY CHARACTER SET SHIFT_JIS’;
SQL> CONNECT TO ’ALIAS MIA1 FILENAME MIA_CHAR_SET’ AS ’TEST’;
SQL> SHOW CONNECTIONS TEST;
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS
Alias MIA1:

Identifier character set is DEC_KANJI
Default character set is KATAKANA
National character set is KANJI

SQL> --
SQL> -- Change the environment from SQLV40 to MIA. Notice that the session
SQL> -- character sets change.
SQL> --
SQL> SET DIALECT ’MIA’;
SQL> SHOW CONNECTIONS TEST;
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: MIA
Default character unit: CHARACTERS
Keyword Rules: MIA
View Rules: ANSI/ISO
Default DATE type: DATE ANSI
Quoting Rules: ANSI/ISO
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is KATAKANA
National character set is KANJI
Identifier character set is DEC_KANJI
Literal character set is KATAKANA
Display character set is SHIFT_JIS

8–216 SQL Statements

SET DIALECT Statement

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is KATAKANA
National character set is KANJI

SQL> --
SQL> -- Change the environment from MIA to SQL99. Notice that the
SQL> -- session characters DO NOT change from the MIA settings.
SQL> --
SQL> SET DIALECT ’SQL99’;
SQL> SHOW CONNECTIONS TEST;
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQL99
Default character unit: CHARACTERS
Keyword Rules: SQL99
View Rules: ANSI/ISO
Default DATE type: DATE ANSI
Quoting Rules: ANSI/ISO
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: ON
Compound transactions mode: EXTERNAL
Default character set is KATAKANA
National character set is KANJI
Identifier character set is DEC_KANJI
Literal character set is KATAKANA
Display character set is SHIFT_JIS

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is KATAKANA
National character set is KANJI

Example 2: Saving and restoring dialect in interactive SQL

This example shows the use of declared variables in interactive SQL to save
(using GET ENVIRONMENT) and restore the dialect during execution of a script
that requires an alternate dialect. This example simply displays the dialect using
the SHOW CONNECTION statement.

SQL Statements 8–217

SET DIALECT Statement

SQL> set dialect ’sql99’;
SQL> -- save current dialect
SQL> declare :dialect char(40);
SQL> get environment (session) :dialect = DIALECT;
SQL> print :dialect;
DIALECT
SQL99
SQL> set dialect ’oracle level2’;
SQL> show connection rdb$default_connection;
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQL99 (ORACLE LEVEL2)
Default character unit: CHARACTERS
Keyword Rules: SQL99
View Rules: ANSI/ISO
Default DATE type: DATE VMS
Quoting Rules: ANSI/ISO
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: ON
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED
SQL>
SQL> -- restore previous dialect
SQL> set dialect :dialect;
SQL> show connection rdb$default_connection;
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQL99
Default character unit: CHARACTERS
Keyword Rules: SQL99
View Rules: ANSI/ISO
Default DATE type: DATE ANSI
Quoting Rules: ANSI/ISO
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: ON
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED
SQL>

8–218 SQL Statements

SET DISPLAY Statement

SET DISPLAY Statement

Controls the output of header information. Use the SHOW DISPLAY statement
to view the current settings.

Environment

You can use the SET DISPLAY statement in interactive SQL only.

Format

SET DISPLAY COMMENT
NO EDIT STRING

QUERY HEADER
ROW COUNTER

DEFAULT NULL STRING
NULL STRING <literal>

<host-variable>
,

Arguments

COMMENT
NOCOMMENT
Disables or enables the display of comment text by other SHOW commands (for
example, SHOW TABLE).

DEFAULT NULL STRING
Reverts to using the text ’NULL’.

EDIT STRING
NO EDIT STRING
Enables the usage of column edit strings to format values for the SELECT
statement. Use NO EDIT STRING to disable the use of the column edit strings.

NULL STRING
Changes the way NULL values are displayed by interactive SQL.

QUERY HEADER
NO QUERY HEADER
Enables the printed header generated by the SELECT, CALL, FETCH, and
PRINT statements. Use NO QUERY HEADER to disable this header.

ROW COUNTER
NO ROW COUNTER
Enables the total count reported by SELECT, DELETE, INSERT, and UPDATE
statements. Use NO ROW COUNTER to disable the trailing count message.

SQL Statements 8–219

SET DISPLAY Statement

Usage Notes

• The width of the displayed column is calculated using the maximum of the
length of the column name, the length of the QUERY HEADER, the length of
the NULL string and the size of the formatted data.

• The statement SET DISPLAY DEFAULT NULL STRING is equivalent to
SET DISPLAY NULL STRING ’NULL’.

• SET DISPLAY NULL STRING accepts a string literal, or a declared local
variable.

• The GET ENVIRONMENT statement includes the NULL_STRING keyword
that can be used to save the currently defined text.

• The defaults are to use edit strings, display the query header, and report
a row count message. More than one option can be specified, separated by
commas. However, you cannot specify both the option and its negated form in
one statement, as demonstrated in the following example:

SQL> SET DISPLAY QUERY HEADER, NO QUERY HEADER
%SQL-F-MULTSPECATR, Multiple specified attribute.
"QUERY HEADER" was specified more than once

• The following SET statements, provided for compatibility with SQL*Plus, are
equivalent to SET DISPLAY clauses:

SET HEADING ON is a synonym for the SQL SET DISPLAY QUERY
HEADER statement. SQL output statements such as SELECT, PRINT,
and FETCH will display the name of the column, variable or its query
header.

SET HEADING OFF is a synonym for the SQL SET NO DISPLAY
QUERY HEADER statement. SQL output statements such as SELECT,
PRINT, and FETCH will no longer display the query header.

SET FEEDBACK ON is a synonym for the SQL SET DISPLAY NO
ROW COUNTER statement. SQL data manipulation statements such as
SELECT, DELETE, UPDATE, and INSERT will display the number of
affected rows.

SET FEEDBACK OFF is a synonym for the SQL SET DISPLAY ROW
COUNTER statement. SQL data manipulation statements no longer
display the count of affected rows.

SET NULL is a synonym for SET DISPLAY NULL STRING ’ ’, and
SET NULL ’literal’ is equivalent to SET DISPLAY NULL ’literal’.

Example

Example 1: Using the SET DISPLAY Statement

The following example shows the effect of the SET DISPLAY statement. It uses
the SHOW DISPLAY command to report the current settings.

8–220 SQL Statements

SET DISPLAY Statement

SQL> ATTACH ’FILENAME mf_personnel’;
SQL>
SQL> CREATE DOMAIN money INTEGER(2) EDIT STRING ’$$$,$$9.99’;
SQL> CREATE TABLE temp_emp (id INTEGER, sal money);
SQL>
SQL> SELECT * FROM work_status;
STATUS_CODE STATUS_NAME STATUS_TYPE
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME
3 rows selected
SQL>
SQL> SET DISPLAY NO ROW COUNTER;
SQL> SHOW DISPLAY
Output of the query header is enabled
Output of the row counter is disabled
Output using edit strings is enabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL> SELECT * FROM work_status;
STATUS_CODE STATUS_NAME STATUS_TYPE
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME
SQL> INSERT INTO temp_emp (id) VALUES (0);
SQL> INSERT INTO temp_emp (id, sal)
cont> SELECT employee_id, MAX(salary_amount)
cont> FROM salary_history GROUP BY employee_id;
SQL> UPDATE temp_emp SET id = NULL WHERE id <= 0;
SQL> DELETE FROM temp_emp WHERE id IS NULL;
SQL>
SQL> SET DISPLAY ROW COUNTER;
SQL> SHOW DISPLAY
Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL>
SQL> SELECT * FROM work_status;
STATUS_CODE STATUS_NAME STATUS_TYPE
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME
3 rows selected
SQL>
SQL> SET DISPLAY NO QUERY HEADER;
SQL> SHOW DISPLAY
Output of the query header is disabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL>
SQL> DECLARE :res INTEGER;
SQL>
SQL> -- This omits the query header for the SELECT statement
SQL> SELECT * FROM work_status;
0 INACTIVE RECORD EXPIRED
1 ACTIVE FULL TIME
2 ACTIVE PART TIME
3 rows selected

SQL Statements 8–221

SET DISPLAY Statement

SQL>
SQL> -- This omits the query header for the PRINT statement
SQL> PRINT :res;

0
SQL> PRINT ’This is a print line’;
This is a print line
SQL>
SQL> CREATE MODULE call_sample
cont> LANGUAGE SQL
cont> PROCEDURE add_one (IN :a INTEGER, OUT :b INTEGER);
cont> SET :b = :a + 1;
cont> END MODULE;
SQL> -- This omits the query header for the OUT/INOUT parameters for CALL
SQL> CALL add_one (100, :res);

101
SQL>
SQL> DECLARE c CURSOR FOR SELECT * FROM work_status;
SQL> OPEN c;
SQL> -- This omits the query headers for the variables fetched
SQL> FETCH c;
0 INACTIVE RECORD EXPIRED
SQL> SET DISPLAY QUERY HEADER;
SQL> SHOW DISPLAY
Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL> -- This outputs the query headers for the variables fetched
SQL> FETCH c;
STATUS_CODE STATUS_NAME STATUS_TYPE
1 ACTIVE FULL TIME
SQL> CLOSE c;
SQL>
SQL> TRUNCATE TABLE temp_emp;
SQL> INSERT INTO temp_emp (id, sal)
cont> SELECT employee_id, AVG(salary_amount)
cont> FROM salary_history
cont> WHERE salary_end IS NULL
cont> GROUP BY employee_id;
100 rows inserted
SQL>
SQL> SELECT * FROM temp_emp ORDER BY id LIMIT TO 3 ROWS;

ID SAL
164 $51,712.00
165 $11,676.00
166 $18,497.00

3 rows selected
SQL>
SQL> SET DISPLAY NO EDIT STRING;
SQL> SHOW DISPLAY
Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is disabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL>
SQL> SELECT * FROM temp_emp ORDER BY id LIMIT TO 3 ROWS;

164 51712.00
165 11676.00
166 18497.00

3 rows selected
SQL>

8–222 SQL Statements

SET DISPLAY Statement

SQL> SET DISPLAY EDIT STRING;
SQL> SHOW DISPLAY
Output of the query header is enabled
Output of the row counter is enabled
Output using edit strings is enabled
Page length is set to 24 lines
Line length is set to 132 bytes
Display NULL values using "NULL"
SQL>
SQL> SELECT * FROM temp_emp ORDER BY id LIMIT TO 3 ROWS;

ID SAL
164 $51,712.00
165 $11,676.00
166 $18,497.00

3 rows selected

Example 2: Replacing the NULL values with text to make the output easier to
read

SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = ’00164’;
JOB_START JOB_END
21-Sep-1981 NULL Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected
SQL> set display null string ’(still employeed)’
SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = ’00164’;
JOB_START JOB_END
21-Sep-1981 (still employeed) Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected

Example 3: Disabling the comment display to make the output of SHOW easier
to read

SQL> show domain id_dom
ID_DOM CHAR(5)
Comment: standard definition of employee id
SQL> set display no comment;
SQL> show domain id_dom
ID_DOM CHAR(5)
SQL>

Example 4: Save the current NULL string using GET ENVIRONMENT and
restore after executing a query.

SQL Statements 8–223

SET DISPLAY Statement

SQL> declare :ns varchar(100);
SQL> get environment (session) :ns = NULL_STRING;
SQL> set null;
SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = ’00164’;
JOB_START JOB_END
21-Sep-1981 Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected
SQL> set display null string :ns;
SQL> select job_start, job_end,
cont> (select department_name
cont> from departments d
cont> where d.department_code = jh.department_code)
cont> from job_history jh
cont> where employee_id = ’00164’;
JOB_START JOB_END
21-Sep-1981 NULL Board Manufacturing North
5-Jul-1980 20-Sep-1981 Cabinet & Frame Manufacturing

2 rows selected

8–224 SQL Statements

SET DISPLAY CHARACTER SET Statement

SET DISPLAY CHARACTER SET Statement

Specifies the display character set.

Environment

You can use the SET DISPLAY CHARACTER SET statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET DISPLAY CHARACTER SET runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the display character set used for the automatic translation of text
values before the values are returned to the user application. See Table 2-1 for a
list of allowable character sets and option values.

Usage Notes

• The SET DISPLAY CHARACTER SET statement provides a mechanism
for specifying the default display character set to be used implicitly by
subsequent attach statements if automatic translation has not been disabled.
For example the following statements are equivalent:

SQL> SET DISPLAY CHARACTER SET ‘SHIFT_JIS’;
SQL> ATTACH ‘FILENAME MF_PERSONNEL’;
SQL> --
SQL> -- is equivalent to:
SQL> --
SQL> ATTACH ‘FILENAME MF_PERSONNEL DISPLAY CHARACTER SET SHIFT_JIS’;

Both sets of statements will cause the Oracle Rdb server to automatically
translate any text information returned to SQL from that database attach
session to the SHIFT_JIS character set.

SQL Statements 8–225

SET DISPLAY CHARACTER SET Statement

• The display character set is used in conjunction with AUTOMATIC
TRANSLATION. If automatic translation is enabled then Oracle Rdb
will attempt to translate character data to and from the specified display
character set during retrieval and query of the database. See the SET
AUTOMATIC TRANSLATION statement.

The most common use for this feature is for those client applications not
running on OpenVMS. For example, the stored data might be in DEC_KANJI
and display is required on a Windows client using the SHIFT_JIS character
set.

• SET DISPLAY CHARACTER SET changes the identifier and literal character
sets, in addition to the display character set. This allows, for instance,
applications to query the database passing in literals and table names that
are encoded in the SHIFT_JIS character set. Oracle Rdb will translate
these names to the appropriate character set based on the target database
attributes.

• Use the SHOW CHARACTER SETS statement to see the current display
character set in an interactive session.

SQL> set display character set ’SHIFT_JIS’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS

• The default is the UNSPECIFIED character set which indicates to Oracle
Rdb that no translation will be attempted.

Examples

Example 1: Setting the display character set of an interactive session

SQL> show character sets;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED
SQL> set display character set ’SHIFT_JIS’;
SQL> show character sets;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS

8–226 SQL Statements

SET FLAGS Statement

SET FLAGS Statement

Allows enabling and disabling of database system debug flags for the current
session.

The literal or host variable passed to this command can contain a list of keywords,
or negated keywords, separated by commas. Spaces are ignored. The keywords
may be abbreviated to an unambiguous length.

Note

Oracle Corporation reserves the right to add new keywords to the SET
FLAGS statement in any release or update to Oracle Rdb, which may
change this unambiguous length. Therefore, it is recommended that the
full keyword be used in applications.

Environment

You can use the SET FLAGS statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

Format

SET FLAGS <literal>
(ON ALIAS alias-name) <host-variable>

NOFLAGS

Arguments

FLAGS
Specifies whether or not a database system debug flag is set.

The Usage Notes show the available keywords that can be specified.

In addition, the keywords (and negated keywords) listed can be specified as the
equivalence string for the RDMS$SET_FLAGS logical name.

NOFLAGS
The SET NOFLAGS statement disables all currently enabled flags. It is
equivalent to SET FLAGS ’NONE’. NOFLAGS is only permitted in Interactive
SQL.

ON ALIAS alias-name
Using the ON ALIAS clause allows the database administrator to set flags on
just one database alias instead of using all currently attached databases. Use the
name of an alias as declared by the ATTACH or CONNECT statement or, if none
was specified, use the default alias name RDB$DBHANDLE.

SQL Statements 8–227

SET FLAGS Statement

Usage Notes

• The specified flag is processed by each database to which you are currently
attached.

• The SET FLAGS statement overrides the RDMS$DEBUG_FLAGS logical
name or the RDMS$SET_FLAGS logical name at the command level.

• The keywords can be abbreviated to the smallest nonambiguous length. The
minimum length is 2 characters.

• Upper- and lowercase are equivalent for keywords.

• The SET FLAGS statement does not persist beyond a database attach.

• The RDMS$SET_FLAGS logical name is processed during the attach
operation. An exception is raised if an error is found in the equivalence
string, and the attach to the database fails. The SQL SHOW FLAGS
statement will display settings made with the RDMS$SET_FLAGS
and RDMS$DEBUG_FLAGS logical names. Settings made with the
RDMS$DEBUG_FLAGS logical name are superseded by keywords specified
by RDMS$SET_FLAGS.

When a generated outline is added to the database it will only be used when
the mode is set, either by the SET FLAGS statement or by using the logical
name RDMS$BIND_OUTLINE_MODE.

• To set the AUTO_OVERRIDE keyword, you must have the DBADM
(administrator) privilege on the database. The DBADM privilege can be
granted explicitly or can be inherited from the OpenVMS system privileges.

If you do not have the required privilege, then the SET FLAG statement fails
and returns the NO_PRIV error.

• The AUTO_OVERRIDE flag can be used to allow updates to selected
AUTOMATIC columns during INSERT so that rows could be reloaded, or
during UPDATE to adjust incorrectly stored values.

For the INSERT statement, ’AUTO_OVERRIDE’ allows assignment
to any AUTOMATIC column, and any AUTOMATIC INSERT column
omitted from the column list will be evaluated normally.

For the UPDATE statement, ’AUTO_OVERRIDE’ allows direct
assignment of values to any AUTOMATIC column. No AUTOMATIC
columns are evaluated.

• The EXECUTION keyword can be followed immediately by a numeric value
in parentheses. This represents the number of lines to display before stopping
the execution trace for query execution. The default is 100. For example:

SQL> SET FLAGS ’EXECUTION(1000)’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,EXECUTION(1000)

There cannot be a space between the keyword and the numeric value in
parentheses.

8–228 SQL Statements

SET FLAGS Statement

• Use VALIDATE_ROUTINE when routines, query outlines, and triggers
become invalid due to the following actions:

When a table is dropped using the CASCADE option, any procedure or
function that references the table is marked invalid.

When a table is dropped (using either the CASCADE or RESTRICT
options) any query outline that references the table is marked as invalid.

When a module is dropped using the CASCADE option, any procedure,
function, or query outline that references the module is marked invalid.
A query outline references a module when it uses a temporary table
declared at the module level.

When a routine is dropped using CASCADE, any trigger or routine that
references that routine is marked invalid.

When an index is dropped, or altered to have MAINTENANCE IS
DISABLED, any query outline that references the index is marked as
invalid.

• The DATABASE_PARAMETERS keyword generates output only during
ATTACH to the database which happens prior to the SET FLAGS statement
executing.

This option is therefore only useful when used with the RDMS$SET_FLAGS
logical name.

$ define RDMS$SET_FLAGS "database_parameters"
$ sql$
SQL> Attach ’File db$:scratch’;
ATTACH #1, Database DISK:[DOCS.V71]SCRATCH.RDB;1
~P Database Parameter Buffer (version=2, len=79)
0000 (00000) RDB$K_DPB_VERSION2
0001 (00001) RDB$K_FACILITY_ALL
0002 (00002) RDB$K_DPB2_IMAGE_NAME "NODE::DISK:[DIR]SQL$70.EXE;1"
0040 (00064) RDB$K_FACILITY_ALL
0041 (00065) RDB$K_DPB2_DBKEY_SCOPE (Transaction)
0045 (00069) RDB$K_FACILITY_ALL
0046 (00070) RDB$K_DPB2_REQUEST_SCOPE (Attach)
004A (00074) RDB$K_FACILITY_RDB_VMS
004B (00075) RDB$K_DPB2_CDD_MAINTAINED (No)
RDMS$BIND_WORK_FILE = "DISK:[DIR]RDMSTTBL$UEOU3LQ0RV2.TMP;" (Visible = 0)
SQL> Exit
DETACH #1

• DDAL (Distributed Data Access Layer) is a generic term applied to the
optional Replication Option for Rdb software, which was previously known as
DEC Data Distributor.

This special flag, supported for users of Replication Option for Rdb, allows
a knowledgable database administrator to override the normal prohibition
that system indices cannot be created or dropped. Several Replication Option
for Rdb indices can then be managed to improve performance in specific
customer environments. This includes dropping an index and recreating it
with a different PAGE SIZE, changing the type from SORTED to SORTED
RANKED, or enabling COMPRESSION.

It also emits a trace message showing that such actions have been performed.
The index RDB$TRAN_RELS_REL_NAME_NDX can be managed, and
indices can be defined and managed on the table RDB$CHANGES.

SQL Statements 8–229

SET FLAGS Statement

• When you use the INDEX_COLUMN_GROUP keyword, applications can
make better use of the index column group information specified in indexes.
When you do not use this keyword, the Oracle Rdb optimizer may estimate
much higher cardinalities for the chosen solution if the selection predicate
specifies only some of the leading segments on a multisegment index. This
happens, for instance, if you specify an equality on the first segment of a
two-segment index.

This slight overestimation is not a significant problem on relatively small
tables but becomes a more significant problem when the select operation
involves a sort (in particular, the OpenVMS SORT facility) where the sort
buffer is preallocated based on its estimated cardinality of the solution.

• There is no debug flags equivalent for the MODE(n) or NOMODE keywords.
Instead, you can use the RDMS$BIND_OUTLINE_MODE logical name.

• You might use the SEQ_CACHE keyword when you are loading many rows
with the RMU Load command. This command is most efficient when all of
the sequence values are allocated in large batches. For example:

$ DEFINE RDMS$SET_FLAGS "SEQ_CACHE(10000)"
$ RMU/LOAD/COMMIT_EVERY=50000 DATABASE TABLE FILE

In this example, it is assumed that an AUTOMATIC column is defined such
that SEQUENCE.NEXTVAL is executed.

• All indices which are created for constraints are of type SORTED. If the
database SYSTEM INDEX default is SORTED RANKED then this same
default is used by the AUTO_INDEX option.

• Use the INDEX_STATS option with AUTO_INDEX to see a description of the
indices which are created.

If a suitable index already exists then it will be used in preference to creating
a new index.

All indices are created in the DEFAULT storage area, there is no facility to
add storage maps for these indices during their creation.

The index is given the same name as the constraint for which it was created.
When the constraint is dropped the index will remain and must be dropped
manually. It is possible that the index is used by multiple constraints.

• The SELECTIVITY flag affects user SELECT, UPDATE and DELETE
statements provided that those statements do not explicitly or implicitly
specify an OPTIMIZE WITH SELECTIVITY clause.

• The TRACE statement can be used from any stored routine. However,
because stored routines (nested or otherwise) are only loaded once per
session, the TRACE flag must be enabled before invoking the routines for the
first time.

• When using interactive or dynamic SQL both WATCH_CALL and WATCH_
OPEN will generate trace lines for the queries performed by the SQL runtime
system against the Rdb system tables. There is no mechanism to disable the
trace of such information.

• The WATCH_CALL and WATCH_OPEN flags cause queries and routines
to be modified to output this information. This might add some extra CPU
overhead to the application while this information is collected. Even when
the flags are disabled there exists some overhead that is not eliminated until
the module or query is released, usually at DISCONNECT time.

8–230 SQL Statements

SET FLAGS Statement

• You cannot provide an outline name for a query in many situations, such as
when you use third party software. In these situations, Oracle Rdb tries to
locate an outline with a matching identifier. Because the optimizer generates
an identifier as a hashed value that depends on the query structure, small
changes in the query, such as different literal values, change the generated
identifier.

You can use the ALTERNATE_OUTLINE_ID(LITERALS) keyword
(abbreviated as ALT(LIT)) to control the alternate outline identifiers. Set
this keyword by using either the SET FLAGS statement or the RDMS$SET_
FLAGS logical name. If this keyword is set, the optimizer discards literal
values when producing the identifiers.

SQL> set flags ’alt(LIT), outline’;
SQL> select * from employees where employee_id = ’1’;
-- Rdb Generated Outline : 19-SEP-2001 13:52
create outline QO_847AD7287E247D37_00000000
id ’847AD7287E247D37E8E4CC8221FFC12E’
mode 0
as (

query (
-- For loop

subquery (
EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)

)
)

compliance optional ;
0 rows selected
SQL> select * from employees where employee_id = ’9999’;
-- Rdb Generated Outline : 19-SEP-2001 13:52
create outline QO_847AD7287E247D37_00000000
id ’847AD7287E247D37E8E4CC8221FFC12E’
mode 0
as (

query (
-- For loop

subquery (
EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)

)
)

compliance optional ;
0 rows selected

You can store this more generic outline to use in any similar query where
only the literal values differ, for example:

SQL> set flags ’alt(lit)’;
SQL> create outline o1 from (select * from employees where employee_id = ’1’);
SQL> set flags ’strat’;
SQL> select * from employees where employee_id = ’1’;
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> select * from employees where employee_id = ’AAAAAA’;
~S: Outline "O1" used
Conjunct Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected

SQL Statements 8–231

SET FLAGS Statement

Any outline stored for a query without the ALTERNATE_OUTLINE_ID flag
being set will be created using the full query as in previous versions and will
take precedence over any generic outline, as seen in the following example.

SQL> set noflags;
SQL> create outline o1 from (select * from employees where employee_id = ’1’);
SQL> set flags ’strat’;
SQL> select * from employees where employee_id = ’1’;
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> select * from employees where employee_id = ’9999’;
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> set noflags;
SQL> set flags ’alternate(lit),nooutline’;
SQL> create outline o2 from (select * from employees where employee_id = ’1’);
SQL>
SQL> set flags ’strat’;
SQL> select * from employees where employee_id = ’1’;
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> select * from employees where employee_id = ’9999’;
~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL>
SQL> set flags ’noalt’;
SQL> select * from employees where employee_id = ’1’;
~S: Outline "O1" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> select * from employees where employee_id = ’9999’;
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> drop outline o1;
SQL> set flags ’alt(literals)’;
SQL> select * from employees where employee_id = ’1’;
~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected
SQL> select * from employees where employee_id = ’9999’;
~S: Outline "O2" used
Get Retrieval by index of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [1:1] Direct lookup

0 rows selected

As shown in the previous example, Rdb will try to locate an outline using the
more generic identifier only if the ALTERNATE_OUTLINE_ID flag has been
set.

The ALTERNATE_OUTLINE_ID flag is not set by default and must be
explictly set using either SET FLAGS or the RDMS$SET_FLAGS logical.

Any query outline created outside the influence of ALTERNATE_OUTLINE_
ID will continue to work because Rdb will use the full signature if no
alternate is found.

8–232 SQL Statements

SET FLAGS Statement

• The following list of keywords can be specified for the SET FLAGS
statement.

* ALTERNATE_OUTLINE_ID
The optimizer discards literal values when producing an outline identifier.

* AUTO_INDEX
Allows CREATE TABLE and ALTER TABLE to create indices for any
PRIMARY KEY, FOREIGN KEY or UNIQUE constraint added to the
table.

* AUTO_OVERRIDE
Allows a user with the DBADM (administrator) privilege to insert or
update a column defined as AUTOMATIC.

* BITMAPPED_SCAN
Enables use of in-memory compressed DBKEY bitmaps for index AND
and OR operations in the dynamic optimizer.

* BLR
Displays the binary language (BLR) representation request for the query.

* CARDINALITY
Shows cardinality updates.

* CARTESIAN_LIMIT
Limits the number of small tables that are allowed to be placed anywhere
in the join order.

* CHRONO_FLAG
Display a timestamp before debug dump output. An optional value can be
enclosed in parentheses and can be 0, 1, or 2.

CHRONO_FLAG(0) and NOCHRONO_FLAG are equivalent. If you
specify CHRONO_FLAG but omit n, the default is CHRONO_FLAG(1).
CHRONO_FLAG(1) enables an additional trace message that includes
the attach number and the current time. CHRONO_FLAG(2) enables an
additional trace message that includes the attach number and the current
date and time. If you supply a value for n that is greater than 2, it is
ignored, and a value of 1 is used.

* CONTROL_BITS
Displays a decoding of the BLR$K_CONTROL_BITS semantic flags when
used with the BLR keyword.

* COSTING
Displays traces on optimizer costing.

* COUNT_SCAN
Enables count scan optimization on sorted and sorted ranked indexes,
where the optimizer will use cardinality information from the index to
efficiently determine the count of rows that satisfy the query.

* CURSOR_STATS
Displays general cursor statistics for the optimizer.

* DATABASE_PARAMETERS
Displays the database parameter buffer during ATTACH, CREATE
DATABASE, ALTER DATABASE, IMPORT DATABASE, and
DISCONNECT statements.

SQL Statements 8–233

SET FLAGS Statement

* DDAL
This flag allows a knowledgeable database administrator to override the
normal prohibition that system indices cannot be created or dropped when
creating special indices for Replication Option for Rdb.

* DDL_BLR
Displays the binary language (BLR) representation of expressions within
data definitions, such as the expression for a computed column within a
table definition.

* DETAIL_LEVEL
A debug flag used with other debug flags to enable additional detailed
information in the debug output. The DETAIL_LEVEL keyword can be
followed by a numeric value in parentheses. For those debug flags that
support it, this indicates the degree of additional detail to be shown.

* ESTIMATES
Displays the optimizer estimates.

* EXECUTION
Displays an execution trace from the dynamic optimizer. For a sequential
retrieval from a table that is strictly partitioned, this includes a count and
a list of the selected partitions each time the query executes.

The EXECUTION keyword can be followed by a numeric value in
parentheses. This represents the number of lines to display before
stopping the execution trace for the query execution. There can be no
spaces between the keyword and the parameter. The default is 100.

* HASHING
Enables all query HASHING optimizations. Use specific parameters to
control various hashing optimizations.

See also the NOHASHING keyword.

Note

Other keywords are reserved for future use by Oracle.

* HASHING (JOINS)
The keyword JOINS enables the HASHING for table joins.

* IGNORE_OUTLINE
Ignores outlines defined in the database. The IGNORE_OUTLINE
keyword has the same action as setting the RDMS$BIND_OUTLINE_
FLAGS logical name to 1.

* INDEX_COLUMN_GROUP
Enables leading index columns as workload column groups. This may
increase solution cardinality accuracy.

* INDEX_DEFER_ROOT
When this flag is set and an index is created, the index root node is
created in the database only when there is data in the table. If the
table is empty, creation of the index root node is deferred until rows are
inserted into the table.

8–234 SQL Statements

SET FLAGS Statement

* INDEX_PARTITIONS
Displays index partitioning information as part of a dynamic execution
trace.

* INDEX_SIZING (LARGE)
Enables the large node algorithm for default NODE SIZE computation.
This has the same effect as defining the logical name RDMS$DEFAULT_
INDEX_NODE_SIZE_SMALL as false (0). This is the default behavior
and is equivalent to NOINDEX_SIZING.

* INDEX_SIZING (SMALL)
Enables the small node algorithm for default NODE SIZE computation.
This has the same effect as defining the logical name RDMS$DEFAULT_
INDEX_NODE_SIZE_SMALL as true (1).

* INDEX_STATS
Enables debug flags output for the progress of an ALTER, CREATE, or
DROP INDEX statement.

* INTERNALS
Enables debug flags output for internal queries such as constraints and
triggers. It can be used in conjunction with other keywords such as
STRATEGY, BLR, and EXECUTION.

* ITEM_LIST
Displays item list information passed in for the database queries and as
compile-time query options.

* JOIN_ORDER
Displays the order of joining each join item for each query.

* LAREA_READY
This flag can be used to investigate table and index locking behavior. This
flag is disabled by default.

* MAX_RECURSION
Sets the maximum number of recursions that can be performed when
executing a match strategy. This prevents excessive recursion in the
processing of the match strategy. The default value is 100. The equivalent
logical name is RDMS$BIND_MAX_RECURSION.

* MAX_SOLUTION
Enables maximum search space for possible retrieval solutions. If
enabled, the optimizer will try more solutions based on each leading
segment of the index, and thus may create more solutions than before,
but may find more efficient solutions applying multiple segments in
index retrieval. The equivalent logical name is RDMS$DISABLE_MAX_
SOLUTION. The default is enabled.

* MAX_STABILITY
Enables maximum stability; the dynamic optimizer is not allowed. The
MAX_STABILITY keyword has the same action as the RDMS$MAX_
STABILITY logical name.

* MBLR
Displays the metadata binary language
representation request for the data definition language statement.

SQL Statements 8–235

SET FLAGS Statement

* MODE
Allows you to specify which query outline should be used by specifying
the mode value of that query outline. An optional value can be enclosed
in parentheses and can be any positive or negative integer.

If you specify MODE but omit a value, the default is MODE(1). If you
specify MODE(0) or NOMODE, it disables the display of the mode in the
SHOW FLAGS statement output. MODE(0) is the default for Oracle Rdb
generated outlines.

* NOHASHING
Disables all query HASHING optimizations. Use specific parameters to
control various hashing optimizations.

See also the HASHING keyword.

Note

Other keywords are reserved for future use by Oracle.

* NOHASHING (JOINS)
The keyword JOINS disables the HASHING for table joins.

* NOINDEX_SIZING
Enables the large node algorithm for default NODE SIZE computation.
This has the same effect as defining the logical name RDMS$DEFAULT_
INDEX_NODE_SIZE_SMALL as false (0). This is the default behavior
and is equivalent to INDEX_SIZING(LARGE).

* NONE
Used to turn off all currently defined keywords. Equivalent to SET
NOFLAGS.

* NOREWRITE
Disables all query rewrite optimizations. Use specific parameters to
control various query rewrite optimizations.

See also the REWRITE keyword.

* NOREWRITE (BOOLEANS)
Specifying the BOOLEANS keyword will disable only the BOOLEANS
predicate rewrite optimization.

* NOREWRITE (CONTAINING)
Specifying the CONTAINING keyword will disable only the
CONTAINING predicate rewrite optimization.

* NOREWRITE (IN_CLAUSE)
Specifying the IN_CLAUSE keyword will disable only the IN_CLAUSE
predicate rewrite optimization.

* NOREWRITE (IS_NULL)
Specifying the IS_NULL keyword will disable only the IS_NULL predicate
rewrite optimization.

* NOREWRITE (LIKE)
Specifying the LIKE keyword will disable only the LIKE predicate rewrite
optimization.

8–236 SQL Statements

SET FLAGS Statement

* NOREWRITE (ORDERING)
Specifying the ORDERING keyword will disable the ordering rewrite
optimization.

* NOREWRITE (STARTING_WITH)
Specifying the STARTING_WITH keyword will disable only the
STARTING WITH predicate rewrite optimization.

* NOREWRITE (UNKNOWN)
Specifying the UNKNOWN keyword will disable only the UNKNOWN
predicate rewrite optimization.

* OBLR
Displays query outline in Binary Language Representation (BLR).

* OLD_COST_MODEL
Enables the old cost model. The OLD_COST_MODEL keyword has the
same action as the RDMS$USE_OLD_COST_MODEL logical name.

* OPTIMIZATION_LEVEL
Used to change the default optimization level for a query. If the query
explicitly uses the OPTIMIZE FOR clause, or is compiled within an
environment which overrides the default using a method such as SET
OPTIMIZATION LEVEL, then no change will occur. If the query uses the
default optimization level, then the optimization will be modified by this
flag. With no option specified or an empty options list, this will default
to TOTAL TIME. The flag NOOPTIMIZATION_LEVEL will revert to the
default Oracle Rdb behavior.

* OPTIMIZATION_LEVEL (FAST_FIRST)
Sets FAST FIRST as the default optimization level for queries in all
sessions.

* OPTIMIZATION_LEVEL (TOTAL_TIME)
Sets TOTAL TIME as the default optimization level for queries in all
sessions.

* OUTLINE
Displays query outline for this query (can be used without STRATEGY
keyword).

* PREFIX
Used with BLR keyword to inhibit offset numbering and other formatting
of binary language representation display.

* QUERY_CPU_TIME_LIMIT
Defines the limit on the CPU time consumed by the query compiler.
Equivalent to logical name RDMS$BIND_QG_CPU_TIMEOUT.

* QUERY_ROWS_LIMIT
Defines the limit on the number of rows returned to an application.
Equivalent to logical name RDMS$BIND_QG_REC_LIMIT.

* QUERY_TIME_LIMIT
Defines the limit on the time consumed by the query compiler. Equivalent
to logical name RDMS$BIND_QG_TIMEOUT.

SQL Statements 8–237

SET FLAGS Statement

* REBUILD_SPAM_PAGES
The flag REBUILD_SPAM_PAGES is for use in conjunction with the
DDL commands ALTER TABLE, ALTER STORAGE MAP, and ALTER
INDEX. When changing the row length or THRESHOLDS clause for a
table or index, the corresponding SPAM pages for the logical area may
require rebuilding. By default, these DDL commands update the AIP and
set a flag to indicate that the SPAM pages should be rebuilt. However,
this flag may be set prior to executing a COMMIT for the transaction
and the rebuild will take place within this transaction. Use SET FLAGS
’NOREBUILD_SPAM_PAGES’ to negate this flag.

* REFINE_ESTIMATES
Controls index estimation in the dynamic optimizer.

* REQUEST_NAMES
Displays the names of user requests, triggers, and constraints.

* REVERSE_SCAN
Enables the reverse index scan strategy. The NOREVERSE_SCAN
keyword has the same action as the RDMS$DISABLE_REVERSE_SCAN
logical name.

* REWRITE
Enables all query rewrite optimizations. Use specific parameters to
control various query rewrite optimizations.

See also the NOREWRITE keyword.

* REWRITE (BOOLEANS)
Specifying the BOOLEANS keyword will enable only the BOOLEANS
predicate rewrite optimization. Oracle Rdb will propagate the TRUE,
FALSE and UNKNOWN boolean values through the query predicate;
removing FALSE branches from the query.

* REWRITE (CONTAINING)
Specifying the CONTAINING keyword will enable only the CONTAINING
predicate rewrite optimization.

* REWRITE (IN_CLAUSE)
Specifying the IN_CLAUSE keyword will enable only the IN_CLAUSE
predicate rewrite optimization. When there are no NULL values in the
tables, Oracle Rdb can rewrite the query replacing NOT IN with the more
efficient EXISTS clause.

* REWRITE (IS_NULL)
Specifying the IS_NULL keyword will enable only the IS_NULL predicate
rewrite optimization. Oracle Rdb will apply knowledge of the NOT NULL
and PRIMARY KEY state of the column to the IS NULL and IS NOT
NULL predicates.

* REWRITE (LIKE)
Specifying the LIKE keyword will enable only the LIKE predicate rewrite
optimization.

* REWRITE (ORDERING)
Specifying the ORDERING keyword will enable only the ordering rewrite
optimization. Oracle Rdb will apply knowledge of the constant nature of
expressions to remove them from the DISTINCT, ORDER BY, GROUP BY,
UNION and similar cases where the constant or invariant values have no

8–238 SQL Statements

SET FLAGS Statement

effect on the ordering of the results. The benefit is smaller memory used
when ordering data and possible elimination of the ORDER BY action.

* REWRITE (STARTING_WITH)
Specifying the STARTING_WITH keyword will enable only the
STARTING WITH predicate rewrite optimization.

* REWRITE (UNKNOWN)
Specifying the UNKNOWN keyword will enable only the UNKNOWN
predicate rewrite optimization. Oracle Rdb will replace predicates that
compare values with NULL with the UNKNOWN boolean value.

* SCROLL_EMULATION
Disables scrolling for old-style LIST OF BYTE VARYING (segmented
string) format. The SCROLL_EMULATION flag has the same action as
setting the RDMS$DIAG_FLAGS logical name to L.

* SELECTIVITY
Refers to the methods by which the static optimizer estimates predicate
selectivity. This flag takes a numeric value in parentheses from 0 to 3.

0 = standard (non-aggressive, non-sampled) selectivity
1 = aggressive and non-sampled selectivity
2 = sampled and non-aggressive selectivity
3 = sampled and aggressive selectivity.

By default the flag is disabled, which is the equivalent of setting its value
to 0.

* SEQ_CACHE
Adjusts the sequence cache size for the process issuing the SET FLAGS
statement. An optional value can be enclosed in parentheses and must be
a numeric value greater than 2.

Specifying a value of 1 is equivalent to specifying NOSEQ_CACHE.
Use SEQ_CACHE to override the CACHE setting for all sequences
subsequently referenced by the application. The new cache size does not
affect any sequence that has already been referenced, or any sequence
defined as NOCACHE.

* SOLUTIONS
Displays traces on optimizer solutions.

* SORTKEY_EXT
Reports if ORDER BY (or SORTED BY) is referencing only external
(constant) value. The SORTKEY_EXT flag has the same action as setting
the RDMS$DIAG_FLAGS logical name to S.

* SORT_STATISTICS
Displays sort statistics during execution.

* STOMAP_STATS
Displays the processing of storage maps for any tables that are altered,
dropped or affected by the ALTER DATABASE ... DROP STORAGE
AREA ... CASCADE statement.

* STRATEGY
Shows the optimizer strategy. If a table is strictly partitioned, the text
"(partitioned scan#nn)" appears after the table name, where nn indicates
the leaf number for a sequential scan (there may be several within a
single query).

SQL Statements 8–239

SET FLAGS Statement

* TEST_SYSTEM
This flag is used by the Oracle Rdb testing environment to modify the
output of various functions, trace and debugging displays. It is used
to eliminate data in test output that would normally cause differences
between test executions.

* TRACE
Enables output from TRACE statement. See also PREFIX which affects
the output of the TRACE Statement.

* TRANSACTION_PARAMETERS
Displays the transaction actions (and parameter buffer) during the
execution of SAVEPOINT, SET TRANSACTION, START TRANSACTION,
COMMIT, COMMIT AND CHAIN, RELEASE SAVEPOINT, ROLLBACK,
ROLLBACK AND CHAIN, and ROLLBACK TO SAVEPOINT Statements.

* TRANSITIVITY
Enables transitivity between selections and join predicates.
The NOTRANSITIVITY keyword has the same action as the
RDMS$DISABLE_TRANSITIVITY logical name.

* VALIDATE_ROUTINE
Enables revalidation of an invalidated stored procedure or stored
function. The VALIDATE_ROUTINE keyword has the same action as
the RDMS$VALIDATE_ROUTINE logical name.

* VARIANCE_DOF
Sets the default degree of freedom (DOF) for calculation of the mean
(average) in small samples (instead of using the VARIANCE function).
Only the values 0 and 1 are allowed. This keyword is deprecated;
instead use the SQL functions VAR_POP, VAR_SAMP, STDDEV_POP or
STDDEV_SAMP for these semantics.

* WARN_DDL
Sometimes legal data definitions can have side effects, this flag allows
these warning to be enabled and disabled. This flag is enabled by
default, with the exception for when attached by PATHNAME. The data
definition statement still succeeds even with the reported warnings. The
database administrator may choose to rollback the statement based on
this feedback.

* WARN_INVALID
Reports invalidated objects during the ALTER INDEX, DROP INDEX,
DROP TABLE, and DROP MODULE statements.

* WATCH_CALL
Traces the execution of queries, triggers and stored functions and
procedures. The output includes the name of the trigger, function or
procedure or "unnamed" for an anonymous query. In most cases a
query can be named using the OPTIMIZE AS clause. It also includes
the value of CURRENT_USER during the execution of that routine.
CURRENT_USER may be inherited from any module that uses the
AUTHORIZATION clause.

* WATCH_OPEN
Traces all queries executed on the database. This may include SQL
runtime system queries to lookup table names, etc as well as queries
executed by the application. The output includes the 32 digit hex

8–240 SQL Statements

SET FLAGS Statement

identifier, the same as that used by the CREATE OUTLINE statement.
This value uniquely identifies the query being executed.

If a query is a stored routine (function or procedure) then the notation
"(stored)" is appended, if the query is named then it will be classified as
"(query)", otherwise it will be designated as "(unnamed)".

* ZIGZAG_MATCH
Enables zigzag key skip on both outer and inner match loops. When
you specify the ZIGZAG_MATCH keyword with the NOZIGZAG_OUTER
keyword, it disables zigzag key skip on the outer loop (and has the same
action as setting the RDMS$DISABLE_ZIGZAG_MATCH logical name to
1). The NOZIGZAG_MATCH keyword disables zigzag key skip on both
outer and inner match loops (and has the same action as setting the
RDMS$DISABLE_ZIGZAG_MATCH logical name to 2).

* ZIGZAG_OUTER
Enables zigzag key skip on the outer loop. See the entry for ZIGZAG_
MATCH for information on the action taken when you specify ZIGZAG_
OUTER and ZIGZAG_MATCH together.

Examples

Example 1: Enabling and disabling database system debug flags

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX
SQL>
SQL> SET FLAGS ’TRACE’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,TRACE
SQL>
SQL> SET FLAGS ’STRATEGY’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

STRATEGY,PREFIX,TRACE
SQL>
SQL> SET FLAGS ’NOTRACE’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

STRATEGY,PREFIX
SQL>
SQL> SET NOFLAGS;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX
SQL>

SQL Statements 8–241

SET FLAGS Statement

Example 2: Using the PREFIX keyword

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> --
SQL> -- Show that the PREFIX keyword is enabled by default
SQL> --
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX
SQL> --
SQL> -- Enable TRACE
SQL> --
SQL> SET FLAGS ’TRACE’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,TRACE
SQL> --
SQL> -- Show that the prefix is displayed
SQL> --
SQL> BEGIN
cont> TRACE ’AAA’;
cont> END;
~Xt: AAA
SQL> --
SQL> -- Turn off the prefix
SQL> --
SQL> SET FLAGS ’NOPREFIX’;
SQL> SHOW FLAGS

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

TRACE
SQL> --
SQL> -- Show that the prefix is no longer displayed
SQL> --
SQL> BEGIN
cont> TRACE ’AAA’;
cont> END;
AAA

Example 3: Using Host Variables in Interactive SQL

The example also demonstrates using literal strings with multiple options to
enable and disable flags.

SQL> SHOW FLAGS
Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX
SQL> -- declare a host variable to be used with SET FLAGS
SQL> declare :hv char(40);
SQL> -- assign a value to the variable
SQL> begin
cont> set :hv = ’strategy, outline’;
cont> end;
SQL> -- use the host variable to enable or disable flags
SQL> set flags :hv;
SQL> show flags

8–242 SQL Statements

SET FLAGS Statement

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

STRATEGY,PREFIX,OUTLINE
SQL> -- use a string literal directly with the SET FLAGS statement
SQL> set flags ’noprefix,execution(10)’;
SQL> show flags

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

STRATEGY,OUTLINE,EXECUTION(10)

Example 4: Using the MODE(n) Flag

SQL> SET FLAGS ’MODE(10), OUTLINE’;
SQL> SHOW FLAGS
Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,OUTLINE,MODE(10)
SQL> SELECT COUNT(*) FROM EMPLOYEES;
-- Rdb Generated Outline : 30-MAY-1997 16:35
create outline QO_B3F54F772CC05435_0000000A
id ’B3F54F772CC054350B2B454D95537995’
mode 10
as (

query (
-- For loop

subquery (
subquery (
EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)

)
)

)
compliance optional ;

100
1 row selected

Example 5: Using the WARN_INVALID Debug Flag

SQL> SET FLAGS ’WARN_INVALID’;
SQL> SHOW FLAGS;
Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,WARN_INVALID
SQL> -- warning because of dependencies
SQL> DROP TABLE T1 CASCADE;
~Xw: Routine "P3" marked invalid
~Xw: Routine "P2" marked invalid
~Xw: Routine "P1" marked invalid
SQL>
SQL> -- Create an outline that references an INDEX.
SQL> CREATE TABLE T1 (A INTEGER, B INTEGER);
SQL> CREATE INDEX I1 ON T1 (A);
SQL> CREATE OUTLINE QO1
cont> ID ’19412AB61A7FE1FA6053F43F8F01EE6D’
cont> MODE 0
cont> AS (
cont> QUERY (
cont> SUBQUERY (
cont> T1 0 ACCESS PATH INDEX I1
cont>)
cont>)
cont>)
cont> COMPLIANCE OPTIONAL;
SQL>
SQL> -- Warning because of disabled index
SQL> ALTER INDEX I1

SQL Statements 8–243

SET FLAGS Statement

cont> MAINTENANCE IS DISABLED;
~Xw: Outline "QO1" marked invalid (index "I1" disabled)
SQL> SHOW OUTLINE QO1;

QO1
Object has been marked INVALID

Source:
CREATE OUTLINE QO1
ID ’19412AB61A7FE1FA6053F43F8F01EE6D’
MODE 0
AS (

QUERY (
SUBQUERY (
T1 0 ACCESS PATH INDEX I1
)

)
)

COMPLIANCE OPTIONAL;

Example 6: Using the INTERNAL Keyword to Display Trigger Actions

SQL> -- The following code shows the strategy used by the trigger
SQL> -- actions on the AFTER DELETE trigger on EMPLOYEES
SQL> SET FLAGS ’STRATEGY, INTERNALS, REQUEST_NAMES’;
SQL> SHOW FLAGS
Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

INTERNALS,STRATEGY,PREFIX,REQUEST_NAMES
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00164’;
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation DEGREES
Index name DEG_EMP_ID [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation JOB_HISTORY
Index name JOB_HISTORY_HASH [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation SALARY_HISTORY
Index name SH_EMPLOYEE_ID [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Conjunct Get Retrieval by index of relation DEPARTMENTS
Index name DEPARTMENTS_INDEX [0:0]

Temporary relation Get Retrieval by index of relation EMPLOYEES
Index name EMPLOYEES_HASH [1:1] Direct lookup

1 row deleted

Example 7: Using the INDEX_COLUMN_GROUP Keyword

SQL> -- The table STUDENTS has an index on the two columns
SQL> -- STU_NUM and COURSE_NUM. When the INDEX_COLUMN_GROUP
SQL> -- keyword is not set, the optimizer uses a fixed
SQL> -- proportion of the table cardinality based on the equality
SQL> -- with the STU_NUM column. In this example, 5134 rows are expected,
SQL> -- when in reality, only 9 are returned by the query.
SQL> CREATE INDEX STUDENT_NDX ON STUDENTS (STU_NUM,COURSE_NUM DESC);
SQL> --
SQL> SELECT STU_NUM FROM STUDENTS
cont> WHERE STU_NUM = 191270771
cont> ORDER BY OTHER_COLUMN;
Solutions tried 2
Solutions blocks created 1
Created solutions pruned 0
Cost of the chosen solution 4.5644922E+03
Cardinality of chosen solution 5.1342500E+03

8–244 SQL Statements

SET FLAGS Statement

~O: Physical statistics used
Sort
SortId# 7., # Keys 2
Item# 1, Dtype: 2, Order: 0, Off: 0, Len: 1
Item# 2, Dtype: 35, Order: 0, Off: 1, Len: 8
LRL: 32, NoDups:0, Blks:327, EqlKey:0, WkFls: 2

Leaf#01 BgrOnly STUDENTS Card=164296
BgrNdx1 STUDENT_NDX [1:1] Fan=14
191270771
191270771
191270771
191270771
191270771
191270771
191270771
191270771

SORT(9) SortId# 7, --------------------- Version: V5-000
Records Input: 9 Sorted: 9 Output: 0
LogRecLen Input: 32 Intern: 32 Output: 32
Nodes in SoTree: 5234 Init Dispersion Runs: 0
Max Merge Order: 0 Numb.of Merge passes: 0
Work File Alloc: 0
MBC for Input: 0 MBC for Output: 0
MBF for Input: 0 MBF for Output: 0
Big Allocated Chunk: 4606464 busy
191270771

9 rows selected
SQL> --
SQL> -- When you use the SET FLAGS statement to set the
SQL> -- INDEX_COLUMN_GROUP keyword, it activates the optimizer
SQL> -- to consider the index segment columns as a workload column
SQL> -- group, compute the statistics for duplicity factor and null
SQL> -- factor dynamically, and then apply them in estimating the
SQL> -- cardinality of the solution.
SQL> --
SQL> SET FLAGS ’INDEX_COLUMN_GROUP’;
SQL> -- The following is the optimizer cost estimate and sort output trace
SQL> -- for the previous query with INDEX_COLUMN_GROUP enabled. The optimizer
SQL> -- now estimates a lower cardinality of about 8 rows.
Solutions tried 2
Solutions blocks created 1
Created solutions pruned 0
Cost of the chosen solution 3.8118614E+01
Cardinality of chosen solution 8.3961573E+00
~O: Workload and Physical statistics used
Sort
SortId# 2., # Keys 2
Item# 1, Dtype: 2, Order: 0, Off: 0, Len: 1
Item# 2, Dtype: 35, Order: 0, Off: 1, Len: 8
LRL: 32, NoDups:0, Blks:7, EqlKey:0, WkFls: 2

Leaf#01 BgrOnly STUDENTS Card=164296
BgrNdx1 STUDENT_NDX [1:1] Fan=14
191270771
191270771
191270771
191270771
191270771
191270771
191270771
191270771

SORT(2) SortId# 2, --------------------- Version: V5-000
Records Input: 9 Sorted: 9 Output: 0

LogRecLen Input: 32 Intern: 32 Output: 32
Nodes in SoTree: 114 Init Dispersion Runs: 0
Max Merge Order: 0 Numb.of Merge passes: 0

SQL Statements 8–245

SET FLAGS Statement

Work File Alloc: 0
MBC for Input: 0 MBC for Output: 0
MBF for Input: 0 MBF for Output: 0
Big Allocated Chunk: 87552 idle

191270771
9 rows selected

Example 8: Using the AUTO_OVERRIDE Keyword

SQL> -- Suppose that after year 2000 testing was performed on a
SQL> -- production system, the system date and time were not reset
SQL> -- to the correct date. This was not noticed until
SQL> -- after transactions for a full day had been stored. To
SQL> -- correct this problem, the database administrator overrides
SQL> -- the READ ONLY characteristic of the AUTOMATIC column and
SQL> -- adjusts the date and time.
SQL> SELECT * FROM ACCOUNTS
cont> WHERE LAST_UPDATE > DATE’2001-1-1’;

ACCOUNT_NO LAST_NAME LAST_UPDATE CURRENT_BALANCE
NULL Smith 2001-06-02 100000.000

1 row selected
SQL> -- Attempts to fix the date and time fail because the
SQL> -- column is AUTOMATIC.
SQL> UPDATE ACCOUNTS
cont> SET LAST_UPDATE = LAST_UPDATE - INTERVAL’1’ YEAR
cont> WHERE LAST_UPDATE > DATE’2000-1-1’;
%RDB-E-READ_ONLY_FIELD, attempt to update the read-only field LAST_UPDATE
SQL> --
SQL> SET FLAGS ’AUTO_OVERRIDE’;
SQL> SHOW FLAGS
Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,AUTO_OVERRIDE
SQL>--
SQL> -- Fix the date and time.
SQL> UPDATE ACCOUNTS
cont> SET LAST_UPDATE = LAST_UPDATE - INTERVAL’1’ YEAR
cont> WHERE LAST_UPDATE > DATE’2000-1-1’;
1 row updated
SQL>
SQL> SELECT * FROM ACCOUNTS;

ACCOUNT_NO LAST_NAME LAST_UPDATE CURRENT_BALANCE
NULL Smith 1999-06-02 100000.000

1 row selected
SQL>
SQL> SET FLAGS ’NOAUTO_OVERRIDE’;

Example 9: Using the AUTO_INDEX option

8–246 SQL Statements

SET FLAGS Statement

SQL> set dialect ’SQL92’;
SQL> set flags ’AUTO_INDEX,INDEX_STATS’;
SQL> create table PERSON
cont> (employee_id integer primary key,
cont> manager_id integer references PERSON (employee_id),
cont> last_name char(30),
cont> first_name char(30),
cont> unique (last_name, first_name));
~Ai create index "PERSON_PRIMARY_EMPLOYEE_ID"
~Ai larea length is 430
~Ai storage area (default) larea=57
~Ai create sorted index, ikey_len=5
Sort Get Retrieval sequentially of relation PERSON
~Ai create index partition, node=430 %fill=0
~Ai create index "PERSON_FOREIGN1"
~Ai larea length is 215
~Ai storage area is shared: larea=57
~Ai create sorted index, ikey_len=5
Sort Get Retrieval sequentially of relation PERSON
~Ai create index partition, node=0 %fill=0
~Ai create index "PERSON_UNIQUE1"
~Ai larea length is 215
~Ai storage area is shared: larea=57
~Ai create sorted index, ikey_len=62
Sort Get Retrieval sequentially of relation PERSON
~Ai create index partition, node=0 %fill=0
SQL>
SQL> show table (index) person
Information for table PERSON

Indexes on table PERSON:
PERSON_FOREIGN1 with column MANAGER_ID
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

PERSON_PRIMARY_EMPLOYEE_ID with column EMPLOYEE_ID
No Duplicates allowed
Type is Sorted
Key suffix compression is DISABLED
Node size 430

PERSON_UNIQUE1 with column LAST_NAME
and column FIRST_NAME

Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

SQL>

Example 10: Using the WATCH_CALL option

This example shows the output of WATCH_CALL for an INSERT statement
which causes an AFTER INSERT trigger (AFTER_INSERT) to be executed which
calls an SQL function WRITE_TEXT to trace the input data. It then traces a
query named using OPTIMIZE AS clause.

SQL Statements 8–247

SET FLAGS Statement

SQL> insert into SAMPLE_T values (’Fred’);
~Xa: routine "(unnamed)", user=SMITH
~Xa: routine "AFTER_INSERT", user=SMITH
~Xa: routine "WRITE_TEXT", user=SMITH
~Xt: Fred
1 row inserted
SQL> select * from SAMPLE_T
cont> optimize as LOOKUP_SAMPLE_T;
~Xa: routine "LOOKUP_SAMPLE_T", user=SMITH
NEW_NAME
Fred
1 row selected

Example 11: Using the WATCH_OPEN option

This example shows the output of WATCH_OPEN for the same INSERT
statement as seen in example 10.

SQL> insert into SAMPLE_T values (’Fred’);
~Xo: Start Request B667E51E3625026EB7FFF3F4D3A16DC3 (unnamed)
~Xo: Start Request A8568053FE5A1A0852A1BE83A884016F "AFTER_INSERT" (query)
~Xo: Start Request 08AE59062657299B4768F6C2DFB6928E "WRITE_TEXT" (stored)
~Xt: Fred
1 row inserted
SQL>
SQL> select * from SAMPLE_T
cont> optimize as LOOKUP_SAMPLE_T;
~Xo: Start Request F6025FAB1DD36B0DE0E52F3A9641BC5F "LOOKUP_SAMPLE_T" (query)
NEW_NAME
Fred
Fred
2 rows selected

Example 12: Using SET FLAGS from an application program

The SET FLAGS statement can be executed from Dynamic SQL using one of two
methods.

• The first method is immediate execution by passing a string literal. The
string literal argument to SET FLAGS requires that the single quote marks
be doubled for correct inclusion in the string literal argument to EXECUTE
IMMEDIATE.

• The second method is to pass the entire SET FLAGS statement in a
parameter to EXECUTE IMMEDIATE

exec sql
execute immediate ’set flags ’’strategy’’’;

The entire SET FLAGS statement could be in a parameter to EXECUTE
IMMEDIATE

exec sql
execute immediate :set_flags_text;

If SET FLAGS is executed multiple times it can be prepared as a dynamic
statement (PREPARE) and then the statement name used for multiple executions.
The input marker (?) is substituted on different calls to EXECUTE the previously
prepared statement.

8–248 SQL Statements

SET FLAGS Statement

#include <string.h>
#include <sql_rdb_headers.h>

void main ()
{
int SQLCODE;
char myflags[40];

exec sql
prepare set_flags_stmt from ’set flags ?’;

if (SQLCODE != 0)
sql_signal ();

strcpy (myflags, "transaction,item_list");
exec sql

execute set_flags_stmt using :myflags;
if (SQLCODE != 0)

sql_signal ();

exec sql
start transaction;

if (SQLCODE != 0)
sql_signal ();

strcpy (myflags, "notransaction,noitem_list");
exec sql

execute set_flags_stmt using :myflags;
if (SQLCODE != 0)

sql_signal ();

exec sql
rollback;

if (SQLCODE != 0)
sql_signal ();

}

Example 13: Using the CHRONO_FLAG option

The use of CHRONO_FLAG adds more timestamp information to the log.

SQL> set flags ’chrono_fla(2),transaction’;
SQL> start transaction;
ATTACH #1, 29-NOV-2003 10:08:37.51
~T Compile transaction (1) on db: 1
~T Transaction Parameter Block: (len=2)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_WRITE (read write)
ATTACH #1, 29-NOV-2003 10:08:37.58
~T Start_transaction (1) on db: 1, db count=1
SQL> rollback;
ATTACH #1, 29-NOV-2003 10:08:46.74
~T Rollback_transaction (1) on db: 1
SQL> rollback;
ATTACH #1, 29-NOV-2003 10:08:46.74
~T Rollback_transaction (1) on db: 1
SQL>

Example 14: Using the REBUILD_SPAM_PAGES option

When changing the row length or THRESHOLDS clause for a table or index,
the corresponding SPAM pages for the logical area may require rebuilding.
By default, these DDL commands update the AIP and set a flag to indicate
that the SPAM pages should be rebuilt. However, this flag may be set prior to
executing a COMMIT for the transaction and the rebuild will take place within
this transaction.

SQL Statements 8–249

SET FLAGS Statement

The following example shows a simple change to the EMPLOYEES table (mapped
in this example to set of UNIFORM areas). The flag STOMAP_STATS is used to
enable more trace information from the ALTER and COMMIT statements.

SQL> set transaction read write;
SQL>
SQL> set flags ’stomap_stats’;
SQL>
SQL> alter table EMPLOYEES
cont> add column MANAGERS_COMMENTS varchar(300);
~As: reads: async 0 synch 94, writes: async 18 synch 1
SQL>
SQL> alter storage map EMPLOYEES_MAP
cont> store
cont> using (EMPLOYEE_ID)
cont> in EMPIDS_LOW
cont> (thresholds (34,76,90))
cont> with limit of (’00200’)
cont> in EMPIDS_MID
cont> (thresholds (34,76,90))
cont> with limit of (’00400’)
cont> otherwise in EMPIDS_OVER
cont> (thresholds (34,76,90));
~As locking table "EMPLOYEES" (PR -> PU)
~As: removing superseded routine EMPLOYEES_MAP
~As: creating storage mapping routine EMPLOYEES_MAP (columns=1)
~As: reads: async 0 synch 117, writes: async 56 synch 0
SQL>
SQL> set flags ’rebuild_spam_pages’;
SQL>
SQL> commit;
%RDMS-I-LOGMODVAL, modified record length to 423
%RDMS-I-LOGMODVAL, modified space management thresholds to (34%, 76%, 90%)
%RDMS-I-LOGMODVAL, modified record length to 423
%RDMS-I-LOGMODVAL, modified space management thresholds to (34%, 76%, 90%)
%RDMS-I-LOGMODVAL, modified record length to 423
%RDMS-I-LOGMODVAL, modified space management thresholds to (34%, 76%, 90%)
SQL>

The message LOGMODVAL will appear for each logical area in the storage map,
one per partition.

This rebuild action only applies to UNIFORM storage areas and may incur
significant I/O as SPAM pages and data pages are read to allow the SPAM page
to be rebuilt.

Example 15: Using the OPTIMIZATION_LEVEL flag

The following example shows how the behavior of a query changes using the
dynamic optimizer with the OPTIMIZATION_LEVEL flag set.

8–250 SQL Statements

SET FLAGS Statement

SQL> -- show with default behavior (FFirst tactic used)
SQL> select *
cont> from xtest
cont> where col2 between 999980 and 1000000
cont> and col1 > 0
cont> ;
Tables:
0 = XTEST

Leaf#01 FFirst 0:XTEST Card=10
Bool: (0.COL2 >= 999980) AND (0.COL2 <= 1000000) AND (0.COL1 > 0)
BgrNdx1 XTEST_IDX [1:0] Fan=17
Keys: 0.COL1 > 0

0 rows selected
SQL>
SQL> -- use SET FLAGS
SQL> set flags ’optimization_level(total_time)’;
SQL>
SQL> -- show that BgrOnly is used for TOTAL TIME
SQL> select *
cont> from xtest
cont> where col2 between 999980 and 1000000
cont> and col1 > 0
cont> ;
Tables:
0 = XTEST

Leaf#01 BgrOnly 0:XTEST Card=10
Bool: (0.COL2 >= 999980) AND (0.COL2 <= 1000000) AND (0.COL1 > 0)
BgrNdx1 XTEST_IDX [1:0] Fan=17
Keys: 0.COL1 > 0

0 rows selected
SQL>

Example 16: Using the ON ALIAS Clause

The default behavior for SET FLAGS is to establish the flag settings on all
currently attached databases. This clause will allow the database administrator
to set flags on just one database alias.

The following example shows a case where the enabling of AUTO_OVERRIDE
required DBADM privilege on the target database but not on the source database.
It may be that the current user does not have (or really need) DBADM privilege
on that database.

SQL> -- Now enable AUTO_OVERRIDE on only one database
SQL> set flags (on alias abc_a) ’auto_override’;
SQL> set flags (on alias abc_b) ’none’;
SQL> insert into abc_a.SAMPLE_TABLE select * from abc_b.SAMPLE_SOURCE;
SQL> commit;

Example 17: Using the NOREWRITE keyword

SQL> set line length 70
SQL> show flags;

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,WARN_DDL,INDEX_COLUMN_GROUP,MAX_SOLUTION,MAX_RECURSION(100)
,REWRITE(CONTAINING),REWRITE(LIKE),REWRITE(STARTING_WITH)
,REFINE_ESTIMATES(127),NOBITMAPPED_SCAN

SQL>
SQL> set flags ’norewrite’;
SQL> show flags;

SQL Statements 8–251

SET FLAGS Statement

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

PREFIX,WARN_DDL,INDEX_COLUMN_GROUP,MAX_SOLUTION,MAX_RECURSION(100)
,REFINE_ESTIMATES(127),NOBITMAPPED_SCAN

SQL>

8–252 SQL Statements

SET HOLD CURSORS Statement

SET HOLD CURSORS Statement

Specifies the session default attributes for holdable cursors that have not been
previously defined.

Environment

You can use the SET HOLD CURSORS statement:

• In interactive SQL

• Embedded in host language programs to be precompiled to change the
behavior of dynamic cursors

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET HOLD CURSORS variable
string-literal

Arguments

variable
string-literal
Specifies the attribute for the holdable cursor. Values can include:

• ON COMMIT

All cursors declared without a WITH HOLD clause or with a WITH HOLD
ON COMMIT clause remain open when you commit.

• ON ROLLBACK

All cursors declared without a WITH HOLD clause or with a WITH HOLD
ON ROLLBACK clause remain open when you roll back.

• ALL

All cursors remain open with the exception of those declared with a WITH
HOLD clause.

• NONE

All cursors close with the exception of those declared with a WITH HOLD
clause.

This is the default if you do not specify a SET HOLD CURSORS statement.

Usage Notes

• Cursors defined prior to the SET HOLD CURSORS statement are not
affected.

• The string-literal must be inside single quotation marks (’).

SQL Statements 8–253

SET HOLD CURSORS Statement

Example

Example 1: Setting session default attributes for holdable cursors

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> --
SQL> -- Define the session default
SQL> --
SQL> SET HOLD CURSORS ’ON ROLLBACK’;
SQL> --
SQL> -- Declare the cursor
SQL> --
SQL> DECLARE curs1 CURSOR FOR
cont> SELECT first_name, last_name FROM employees;
SQL> OPEN curs1;
SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Terry Smith
SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Rick O’Sullivan
SQL> DELETE FROM employees WHERE CURRENT OF curs1;
1 row deleted
SQL> ROLLBACK;
SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Stan Lasch
SQL> COMMIT;
SQL> FETCH curs1;
%SQL-F-CURNOTOPE, Cursor CURS1 is not opened

Example 2: Overriding the session default attributes for holdable cursors

SQL> -- Set the session default
SQL> --
SQL> SET HOLD CURSORS ’ALL’;
SQL> --
SQL> -- Declare the cursor without a WITH HOLD clause
SQL> --
SQL> DECLARE curs2 CURSOR FOR
cont> SELECT first_name, last_name FROM employees;
SQL> OPEN curs2;
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Terry Smith
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Rick O’Sullivan
SQL> ROLLBACK;
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Stan Lasch
SQL> COMMIT;
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Susan Gray
SQL> CLOSE curs2;
SQL> FETCH curs2;
%SQL-F-CURNOTOPE, Cursor CURS2 is not opened
SQL> --
SQL> -- Declare the cursor overriding the session default by
SQL> -- specifying the WITH HOLD clause
SQL> --
SQL> DECLARE curs3 CURSOR
cont> WITH HOLD PRESERVE ON COMMIT

8–254 SQL Statements

SET HOLD CURSORS Statement

cont> FOR SELECT first_name, last_name FROM employees;
SQL> OPEN curs3;
SQL> FETCH curs3;
FIRST_NAME LAST_NAME
Terry Smith
SQL> FETCH curs3;
FIRST_NAME LAST_NAME
Rick O’Sullivan
SQL> COMMIT;
SQL> FETCH curs3;
FIRST_NAME LAST_NAME
Stan Lasch
SQL> ROLLBACK;
SQL> FETCH curs3;
%SQL-F-CURNOTOPE, Cursor CURS3 is not opened

SQL Statements 8–255

SET IDENTIFIER CHARACTER SET Statement

SET IDENTIFIER CHARACTER SET Statement

Specifies the identifier character set for the module or interactive SQL session.

Environment

You can use the SET IDENTIFIER CHARACTER SET statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET IDENTIFIER CHARACTER SET runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the character set used for database object names such as table names
and column names. The value of runtime-options must be a valid character set.
See Section 2.1.5 for a list of allowable character sets and option values.

Usage Notes

• The SET IDENTIFIER CHARACTER SET statement sets the identifier
character set for the session.

• The specified identifier character set must contain ASCII characters. See
Section 2.1.5 for a list of allowable character sets.

• If you set the dialect to SQL99 or MIA, and if you do not specify the identifier
character set when you create the database, SQL uses the session’s identifier
character set. Otherwise, SQL uses DEC_MCS as the identifier character set
for the database.

• The identifier character set of the session should match the identifier
character set of all attached databases.

• The identifier character set also specifies the character set for the SQLNAME
field in SQLDA and SQLDA2 for statements without an explicit database
context.

8–256 SQL Statements

SET IDENTIFIER CHARACTER SET Statement

• Use the SHOW CHARACTER SETS statement to display the current session
character sets.

For information on setting the character sets for modules in SQL module
language and precompiled SQL, see Section 3.2 and the DECLARE MODULE
Statement.

Example

Example 1: Setting the identifier character set of an interactive session

SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_KANJI
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS
SQL> set identifier character set ’DEC_KANJI’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_KANJI
Identifier character set is DEC_KANJI
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS

SQL Statements 8–257

SET KEYWORD RULES Statement

SET KEYWORD RULES Statement

Specifies whether or not you can use identifiers as keywords in the current attach.

Environment

You can use the SET KEYWORD RULES statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET KEYWORD RULES runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of runtime-options, which must be one of the following:

• SQL89, SQL92, SQL99, SQL2011

• MIA

• ORACLE LEVEL1, ORACLE LEVEL2, ORACLE LEVEL3

• SQLV40

Other than SQLV40, all other options force SQL to reject any keyword used as an
identifier. The examples show the difference in behavior. The session default is
SQLV40.

Usage Notes

• If the SET DIALECT statement is processed after the SET KEYWORD
RULES statement, it overrides the setting of the SET KEYWORD RULES
statement.

• The SET KEYWORD RULES statement implicitly sets the quoting rules. If
the SET QUOTING RULES statement is processed after the SET KEYWORD
RULES statement, it overrides the quoting rules implicitly set by the SET
KEYWORD RULES statement.

8–258 SQL Statements

SET KEYWORD RULES Statement

• If the SET KEYWORD RULES statement is processed after the SET
QUOTING RULES statement, it overrides the quoting rules set by the
SET QUOTING RULES statement.

• Specifying the SET KEYWORD RULES statement changes the keyword and
quoting rules for the current attach only. Use the SHOW CONNECTIONS
statement to display the characteristics of an attach.

Examples

Example 1: Setting the keyword rule characteristics to SQL99

SQL> SET KEYWORD RULES ’SQL99’;
SQL> --
SQL> -- Because NATIONAL is a keyword, SQL returns an error message.
SQL> --
SQL> CREATE DOMAIN NATIONAL CHAR (2);
%SQL-F-RES_WORD_AS_IDE, Keyword NATIONAL used as an identifier
SQL> --
SQL> -- Enclose NATIONAL in double quotation marks.
SQL> --
SQL> CREATE DOMAIN "NATIONAL" CHAR (2);
SQL> --

Example 2: Setting the keyword rule characteristics to SQLV40

SQL> SET KEYWORD RULES ’SQLV40’;
SQL> --
SQL> -- You can use a keyword as an identifier.
SQL> --
SQL> CREATE DOMAIN NATIONAL CHAR (2);
%SQL-I-DEPR_FEATURE, Deprecated Feature: Keyword national used as an identifier
SQL> --

SQL Statements 8–259

SET LITERAL CHARACTER SET Statement

SET LITERAL CHARACTER SET Statement

Specifies the literal character set for the module or interactive SQL session.

Environment

You can use the SET LITERAL CHARACTER SET statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET LITERAL CHARACTER SET runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the character set for literals that are not qualified by a character set or
national character set. The value of runtime-options must be a valid character
set. See Section 2.1 for a list of the allowable character sets and option values.

Usage Notes

• The SET LITERAL CHARACTER SET statement sets the literal character
set for the session.

• If you set the dialect to MIA, the literal character set is KATAKANA.
Otherwise, if you do not set a dialect or change the literal character set, SQL
uses DEC_MCS.

• Use the SHOW CHARACTER SETS statement to display the current session
character sets.

8–260 SQL Statements

SET LITERAL CHARACTER SET Statement

Example

Example 1: Setting the literal character set of an interactive session

SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_KANJI
Identifier character set is DEC_KANJI
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS
SQL> set literal character set ’DEC_KANJI’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_KANJI
Identifier character set is DEC_KANJI
Literal character set is DEC_KANJI
Display character set is SHIFT_JIS

SQL Statements 8–261

SET NAMES Statement

SET NAMES Statement

Specifies the default, identifier, and literal character sets for the session. The
SET NAMES statement also specifies the character parameters for SQL module
language.

Environment

You can use the SET NAMES statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET NAMES runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the character set used for the default, identifier, and literal character set
for the session. The value of runtime-options must be a valid character set. See
Section 2.1.5 for a list of allowable character sets and option values.

Usage Notes

• The SET NAMES statement sets the identifier, default, and literal character
sets for the session and overrides any previous changes. If you want the
identifier, default, or literal character set to be different than the character
set specified in the SET NAMES statement, specify it after issuing the SET
NAMES statement.

• The specified character set must contain ASCII characters. See Section 2.1.5
for a list of allowable character sets.

• The SET NAMES statement also specifies the character set for the
SQLNAME field in SQLDA and SQLDA2 for statements without an explicit
database context.

• Use the SHOW CHARACTER SETS statement to display the current session
character sets.

8–262 SQL Statements

SET NAMES Statement

For information on setting the character sets for modules in SQL module
language and precompiled SQL, see Section 3.2 and the DECLARE MODULE
Statement.

Example

Example 1: Setting the default, identifier, and literal character sets of an
interactive session

SQL> show character sets;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED
SQL> --
SQL> set names ’DEC_KANJI’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_MCS
Identifier character set is DEC_KANJI
Literal character set is DEC_KANJI
Display character set is UNSPECIFIED
SQL> --
SQL> -- Specifying a different default character set
SQL> --
SQL> set default character set ’DEC_KOREAN’;
SQL> show character sets;
Default character set is DEC_KOREAN
National character set is DEC_MCS
Identifier character set is DEC_KANJI
Literal character set is DEC_KANJI
Display character set is UNSPECIFIED
SQL>

SQL Statements 8–263

SET NATIONAL CHARACTER SET Statement

SET NATIONAL CHARACTER SET Statement

Specifies the national character set for the module or interactive SQL session.

Environment

You can use the SET NATIONAL CHARACTER SET statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET NATIONAL CHARACTER SET runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the national character set for your session. The value of runtime-options
must be a valid character set. For a list of allowable character set names and
option values, see Section 2.1.

Usage Notes

• The SET NATIONAL CHARACTER SET statement sets the national
character set for the session.

• The national character set determines the character set for character
string literals qualified by the national character set, NCHAR, and NCHAR
VARYING. Section 2.1 lists the character sets you can use for the national
character set for the database.

• If you have set the dialect to SQL99 or MIA, and if you do not specify the
national character set when you create the database, SQL uses the session’s
national character set. Otherwise, SQL uses DEC_MCS as the national
character set.

• Use the SHOW CHARACTER SETS statement to display the current session
character sets.

8–264 SQL Statements

SET NATIONAL CHARACTER SET Statement

For information on setting the character sets for modules in SQL module
language and precompiled SQL, see Section 3.2 and the DECLARE MODULE
Statement.

Example

Example 1: Setting the national character set for an interactive session

SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_MCS
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS
SQL> set national character set ’DEC_KANJI’;
SQL> show character sets;
Default character set is DEC_KANJI
National character set is DEC_KANJI
Identifier character set is SHIFT_JIS
Literal character set is SHIFT_JIS
Display character set is SHIFT_JIS

SQL Statements 8–265

SET OPTIMIZATION LEVEL Statement

SET OPTIMIZATION LEVEL Statement

Allows the current session defaults to be specified for query optimization
characteristics.

This statement can reset the session defaults using DEFAULT, or can specify
one or more keywords for SELECTIVITY or FAST FIRST or TOTAL TIME
optimization.

This statement affects all subsequent query compiles in interactive SQL, or
queries specified using dynamic SQL.

See Chapter 3 and Chapter 4 for information on setting the optimization level in
SQL module and precompiler languages.

Environment

You can use the SET OPTIMIZATION LEVEL statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• In dynamic SQL as a statement to be dynamically executed

Format

SET OPTIMIZATION LEVEL runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

optimization-level=
DEFAULT

AGGRESSIVE SELECTIVITY
FAST FIRST
SAMPLED SELECTIVITY
TOTAL TIME

,

Arguments

optimization-level
Specifies the optimizer strategy to be used to reset session defaults. The passed
string or parameter value must be a formatted list of keyword values. Select from
the following options:

• AGGRESSIVE SELECTIVITY option if you expect a small number of rows to
be selected.

• DEFAULT option to accept the Oracle Rdb defaults: FAST FIRST and
DEFAULT SELECTIVITY.

• FAST FIRST option if you want your program to return data to the user as
quickly as possible, even at the expense of total throughput.

8–266 SQL Statements

SET OPTIMIZATION LEVEL Statement

• SAMPLED SELECTIVITY option to use literals in the query to perform
preliminary estimation on indexes.

• TOTAL TIME option if you want your program to run at the fastest possible
rate, returning all the data as quickly as possible. If your application runs
in batch, accesses all the records in a query, and performs updates or writes
reports, you should specify TOTAL TIME.

Only one of the TOTAL TIME or FAST FIRST options can be selected. Only
one of the AGGRESSIVE SELECTIVITY or SAMPLED SELECTIVITY options
can be selected. Use a comma to separate the keywords and enclose the list in
parentheses. No other options may be included if DEFAULT is selected.

’string-literal’
parameter
parameter-marker
Specifies the value of the runtime-options, which must be a list of keywords,
separated by commas.

Usage Notes

• You can set the most commonly used optimization level in your initialization
procedure (the SQLINI.SQL procedure that is automatically executed in the
beginning of each session).

• You can change the optimization level default for a particular query (not
just for cursors as with previous versions of Oracle Rdb) by specifying
an OPTIMIZE clause in the UPDATE, INSERT, DELETE, or SELECT
statement.

• Any query that explicitly includes an OPTIMIZE WITH or OPTIMIZE
FOR clause is not affected by the settings established using the SET
OPTIMIZATION LEVEL command.

Example

Example 1: Setting the optimization level

The dynamic optimizer can use either FAST FIRST or TOTAL TIME tactics to
return rows to the application. The default setting, FAST FIRST, assumes that
applications, especially those using interactive SQL, will want to see rows as
quickly as possible and possibly abort the query before completion. Therefore,
if the FAST FIRST tactic is possible the optimizer will sacrifice overall retrieval
time to initially return rows quickly. This choice can be affected by setting the
OPTIMIZATION LEVEL.

The following example contrasts the query strategies selected when FAST FIRST
versus TOTAL TIME is in effect. Databases and queries will vary in their
requirements. Queries should be tuned to see which setting best suits the needs
of the application environment. For the MF_PERSONNEL database there is little
or no difference between these tactics, but for larger tables the differences could
be noticeable.

SQL Statements 8–267

SET OPTIMIZATION LEVEL Statement

SQL> set flags ’STRATEGY,DETAIL’;
SQL> --
SQL> -- No optimization level has been selected. The optimizer
SQL> -- selects the FAST FIRST (FFirst) retrieval tactic to
SQL> -- retrieve the rows from the EMPLOYEES table in the
SQL> -- following query:
SQL> --
SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN (’00167’, ’00168’);
Tables:
0 = EMPLOYEES

Leaf#01 FFirst 0:EMPLOYEES Card=100
Bool: (0.EMPLOYEE_ID = ’00167’) OR (0.EMPLOYEE_ID = ’00168’)
BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
Keys: r0: 0.EMPLOYEE_ID = ’00168’

r1: 0.EMPLOYEE_ID = ’00167’
EMPLOYEE_ID LAST_NAME
00167 Kilpatrick
00168 Nash
2 rows selected
SQL> --
SQL> -- Use the SET OPTIMIZATION LEVEL statement to specify that
SQL> -- you want the TOTAL TIME (BgrOnly) retrieval strategy to
SQL> -- be used.
SQL> --
SQL> SET OPTIMIZATION LEVEL ’TOTAL TIME’;
SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN (’00167’, ’00168’);
Tables:
0 = EMPLOYEES

Leaf#01 BgrOnly 0:EMPLOYEES Card=100
Bool: (0.EMPLOYEE_ID = ’00167’) OR (0.EMPLOYEE_ID = ’00168’)
BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
Keys: r0: 0.EMPLOYEE_ID = ’00168’

r1: 0.EMPLOYEE_ID = ’00167’
EMPLOYEE_ID LAST_NAME
00167 Kilpatrick
00168 Nash
2 rows selected
SQL> --
SQL> -- When the SET OPTIMIZATION LEVEL ’DEFAULT’ statement
SQL> -- is specified the session will revert to the default FAST FIRST
SQL> -- optimizer tactic.
SQL> --
SQL> SET OPTIMIZATION LEVEL ’DEFAULT’;
SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN (’00167’, ’00168’);
Tables:
0 = EMPLOYEES

Leaf#01 FFirst 0:EMPLOYEES Card=100
Bool: (0.EMPLOYEE_ID = ’00167’) OR (0.EMPLOYEE_ID = ’00168’)
BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
Keys: r0: 0.EMPLOYEE_ID = ’00168’

r1: 0.EMPLOYEE_ID = ’00167’
EMPLOYEE_ID LAST_NAME
00167 Kilpatrick
00168 Nash
2 rows selected
SQL>

Example 2: Using sampled selectivity

8–268 SQL Statements

SET OPTIMIZATION LEVEL Statement

This example shows the use of the SET OPTIMIZATION LEVEL command and
the resulting use of "Estim" prior to query compile. The estimate (34 rows) is
quite close to the final result of 37 rows.

SQL> set flags ’strategy,detail,execution’;
SQL> set optimization level ’total time, sampled selectivity’;
SQL> select * from employees where employee_id between ’00000’ and ’00200’;
~Estim EMP_EMPLOYEE_ID Sorted: Split lev=2, Seps=2 Est=34
~Estim EMP_EMPLOYEE_ID Sorted: Split lev=2, Seps=2 Est=34
~S#0005
Tables:

0 = EMPLOYEES
Leaf#01 BgrOnly 0:EMPLOYEES Card=100
Bool: (0.EMPLOYEE_ID >= ’00000’ AND (0.EMPLOYEE_ID <= ’00200’)
BgrNdx1 EMP_EMPLOYEE_ID [1:1] Fan=17
Keys: (0:EMPLOYEE_ID >= ’00000’) AND 0.EMPLOYEE_ID <= ’00200’)

~Estim EMP_EMPLOYEE_ID Sorted: Split lev=2, Seps=1 Est=17
~E#0005.01(1) Estim Index/Estimate 1/17
~E#0005.01(1) Bgrndx1 EofData DBKeys=37 Fetches=0+0 RecsOut=0 #Bufs=30
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL ADDRESS_DATA1 ADRESS_DATA_2
CITY STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE

00190 O’Sullivan Rick G. 78 Mason Rd. NULL
Fremont NH 03044 M 12-Jan-1923 1
.
.
.

~E#005.01(1) Fin Buf DBKeys=37 Fetches=0+32 RecsOut=37
00174 Myotte Daniel V. 95 Princeton Rd. NULL
Bennington MA 03442 M 17-Jan-1948 1

37 rows selected
SQL>

SQL Statements 8–269

SET QUERY Statement

SET QUERY Statement

The SET QUERY statement is used to control query execution within a SQL
session.

Environment

You can use the SET QUERY statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Note that some options for the SET QUERY command may only be used in
interactive SQL.

Format

set-query =

SET QUERY CONFIRM
NOCONFIRM
LIMIT ROWS <rows_value>

TIME <time_value>
CPU TIME <time_value> SECONDS

MINUTES
NOLIMIT ROWS

TIME
CPU TIME

EXECUTION LIMIT CPU TIME <time_value>
ELAPSED TIME SECONDS

MINUTES
EXECUTION NOLIMIT CPU TIME

ELAPSED TIME

Arguments

CONFIRM

Lets you preview the cost of a query, in terms of I/O, before any rows are actually
returned. For example:

SQL> SELECT * FROM EMPLOYEES;
Estimate of query cost: 52 I/O s, rows to deliver: 100
Do you wish to cancel this query (No)? YES
%SQL-F-QUERYCAN, Query cancelled at user s request

Some queries can result in Oracle Rdb performing a large number of I/O
operations, retrieving a large number of rows, or both. The SET QUERY
CONFIRM statement causes SQL to display estimated query costs. If the
cost appears excessive, you can cancel the query by answering No; to continue,
answer Yes.

The SET QUERY CONFIRM statement is only available for interactive SQL.

8–270 SQL Statements

SET QUERY Statement

EXECUTION LIMIT
This option imposes elapsed and CPU time limits on executing queries. This
command affects all subsequent queries executed within the Rdb server process.
You must be attached to a database to execute this statement. This statement
affects all attaches for the current process, not just the current connection.

• CPU TIME time_value [SECONDS | MINUTES]

• ELAPSED TIME time_value [SECONDS | MINUTES]

You can restrict the amount of elapsed time or CPU time used to execute a query.
If the query is not complete before the elapsed or CPU time limit is reached, an
error message is returned.

The default is unlimited time for the query execution. If you omit the SECONDS
and MINUTES keyword then SECONDS is the default. Dynamic SQL options
are inherited from the compilation qualifier for the module.

Note

Specifying a query time limit can cause application failure in certain
circumstances. For instance, an application that runs successfully during
off-peak hours may fail when run during peak hours due to the load on
the database.

Use a positive integer for the number of seconds or minutes; negative integers are
invalid and zero means no limits. If an established limit is exceeded, the query
is canceled and an error message is displayed. When you set a CPU time limit,
elapsed time limit and a row limit (using SET QUERY LIMIT), whichever value
is reached first stops the query.

Database administraors and application developers can use this feature to
prevent users from overloading the system by executing long running, and
probably unproductive queries. The database administrator can manage system
performance and reduce unnecessary resource usage by setting option limits.

EXECUTION NOLIMIT
This option removes a limit imposed by the SET QUERY EXECUTION LIMIT
command.

Use one of the following options.

• ELAPSED TIME

• CPU TIME

EXECUTION NOLIMIT is equivalent to assigning a limit of zero to any of the
options using SET QUERY EXECUTION LIMIT.

LIMIT
Sets limits to restrict the output generated by a query.

The mechanism used to set these limits is called the query governor. The
following gives you three ways to set limits using the query governor:

• ROWS rows_value

You can restrict output by limiting the number of rows a query can return.
The optimizer counts each row returned by the query and stops execution
when the row limit is reached.

SQL Statements 8–271

SET QUERY Statement

The default is an unlimited number of row fetches. Dynamic SQL defaults
are inherited from the compilation qualifier for the module.

• TIME time_value [SECONDS | MINUTES]

You can restrict the amount of time used to optimize a query for execution. If
the query is not optimized and prepared for execution before the total elapsed
time limit is reached, an error message is returned.

The default is unlimited time for the query compilation. If you omit the
SECONDS and MINUTES keyword then SECONDS is the default.

Note

Specifying a query time limit can cause application failure in certain
circumstances. For instance, an application that runs successfully during
off-peak hours may fail when run during peak hours due to the load on
the database.

• CPU TIME time_value [SECONDS | MINUTES]

You can restrict the amount of CPU time used to optimize a query for
execution. If the query is not optimized and prepared for execution before the
CPU time limit is reached, an error message is returned.

The default is unlimited CPU time for the query compilation. If you omit
SECONDS and MINUTES keyword then SECONDS is the default. Dynamic
SQL options are inherited from the compilation qualifier for the module.

Use a positive integer for the number of rows and the number of seconds; negative
integers are invalid and zero means no limits. If an established limit is exceeded,
the query is canceled and an error message is displayed. When you set both a
time limit and the row limit, whichever value is reached first stops the output.

Application developers can use this feature to prevent users from overloading the
system. The database administrator can manage system performance and reduce
unnecessary resource usage by setting option limits.

NOCONFIRM
Disables the query confirm dialog that was previously enabled using SET QUERY
CONFIRM. The SET QUERY NOCONFIRM statement is only available for
interactive SQL.

NOLIMIT
This option removes a limit imposed by the SET QUERY LIMIT command.

Use one of the following options.

• ROWS

• TIME

• CPU TIME

NOLIMIT is equivalent to assigning a limit of zero to any of the options using
SET QUERY LIMIT.

rows_value
This argument represents the number of rows specified for the SET QUERY
argument. It can be a numeric literal, a parameter name (for interactive SQL), or
a parameter-marker (for dynamic SQL).

8–272 SQL Statements

SET QUERY Statement

time_value
This argument represents the number of seconds or minutes specified for the SET
QUERY statement. It can be a numeric literal, a parameter name (for interactive
SQL), or a parameter-market (for dynamic SQL).

Examples

Example 1: Shows the syntax for establishing a row limit within an interactive
SQL session.

SQL> set query limit rows 10000;
SQL> show query limit;
Query limit Time is OFF
Query limit Row count is 10000 rows
Query limit CPU time is OFF
Execution limit CPU time is OFF
Execution limit Elapsed time is OFF
Execution limit Row count is OFF
SQL> set query nolimit rows;
SQL> show query limit;
Query limit Time is OFF
Query limit Row count is OFF
Query limit CPU time is OFF
Execution limit CPU time is OFF
Execution limit Elapsed time is OFF
Execution limit Row count is OFF

Example 2: Uses SET QUERY to establish a two second elapsed time limit for a
query, and shows the error message that is displayed.

SQL> set query execution limit elapsed time 2 seconds;
SQL> delete from EMPLOYEES;
%RDB-E-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXTIMLIM, query governor maximum timeout has been reached
SQL> set query execution nolimit elapsed time;

SQL Statements 8–273

SET QUIET COMMIT Statement

SET QUIET COMMIT Statement

Allows you to control the error reporting behavior when a COMMIT or
ROLLBACK statement is executed although there is no active transaction.
By default, if there is no active transaction, SQL raises an error when a COMMIT
or ROLLBACK statement is executed. If the SET QUIET COMMIT statement is
set to ON, then a COMMIT or ROLLBACK statement executes successfully even
when there is no active transaction.

Environment

You can use the SET QUIET COMMIT statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

Format

SET QUIET COMMIT on-or-off-value

Argument

on-or-off-value
Specifies a string literal or host variable containing the keyword ON or OFF.

The ’ON’ argument specifies that if a COMMIT or ROLLBACK statement is
executed when there is no active transaction, then SQL will not raise an error.
The ’OFF’ argument specifies that if a COMMIT or ROLLBACK statement
is executed when there is no active transaction, then SQL will raise an error.
You can specify the ’ON’ and ’OFF’ arguments using any case (uppercase,
lowercase, or mixed case).

By default, if there is no active transaction, SQL raises an error when the
COMMIT or ROLLBACK statement is executed. This default is retained for
backward compatibility for applications that want to detect this situation.

Usage Notes

• The following options and qualifiers have the same effect as the SET QUIET
COMMIT statement in their respective interfaces:

QUIET COMMIT clause for the SQL module language header option

/QUIET_COMMIT and /NOQUIET_COMMIT qualifiers for the SQL
module language qualifier

/SQLOPTIONS=QUIET_COMMIT and /SQLOPTIONS=NOQUIET_
COMMIT qualifiers for the SQL language precompiler

• If you issue a COMMIT or ROLLBACK statement within a compound
statement, stored procedure, or function, no exception is ever raised when a
transaction is not active and you have not issued the SET QUIET COMMIT
statement. In effect, the behavior of the SET QUIET COMMIT statement is
always on for compound statements, stored procedures, and functions.

8–274 SQL Statements

SET QUIET COMMIT Statement

• The following dialects, when they are used with the SET DIALECT
statement, set the QUIET COMMIT to the ON state: SQL92, SQL99,
SQL2011, and ORACLE dialect.

Example

Example 1: Setting the QUIET COMMIT Option On and Off

SQL> COMMIT;
%SQL-F-NO_TXNOUT, No transaction outstanding
SQL> SET QUIET COMMIT ’ON’;
SQL> ROLLBACK;
SQL> SET QUIET COMMIT ’OFF’;
SQL> ROLLBACK;
%SQL-F-NO_TXNOUT, No transaction outstanding

SQL Statements 8–275

SET QUOTING RULES Statement

SET QUOTING RULES Statement

Specifies whether strings within double quotation marks are interpreted as string
literals or delimited identifiers in the current connection.

Environment

You can use the SET QUOTING RULES statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET QUOTING RULES runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of the runtime-options, which must be one of the following:

• SQL89, SQL92, SQL99, SQL2011

• MIA

• ORACLE LEVEL1, ORACLE LEVEL2, ORACLE LEVEL3

• SQLV40

SQLV40
Specifies that SQL interprets strings within double quotation marks as string
literals.

The default is SQLV40.

Usage Notes

• The default session setting is SQLV40. This keyword specifies that SQL
interprets strings within double quotation marks as string literals. All other
dialect keywords specify that SQL interpret strings within double quotation
marks as delimited identifiers. Delimited identifiers are case sensitive.

8–276 SQL Statements

SET QUOTING RULES Statement

To comply with the ANSI/ISO SQL standard naming conventions, you should
use one of these options. In addition, you must use one of these options to use
multischema database naming.

• If the SET DIALECT statement is processed after the SET QUOTING
RULES statement, it can override the setting of the SET QUOTING RULES
statement.

• If the SET KEYWORD RULES statement is processed after the SET
QUOTING RULES statement, it can override the setting of the SET
QUOTING RULES statement.

• Specifying the SET QUOTING RULES statement changes the quoting rules
for the current connection only. Use the SHOW CONNECTIONS statement
to display the characteristics of a connection.

• SQL99

• SQL92

• SQL89

• MIA

Specifies that SQL interprets strings within double quotation marks as
delimited identifiers. Delimited identifiers are case sensitive.

To comply with the ANSI/ISO SQL standard naming conventions, you should
use one of these options. In addition, you must use one of these options to use
multischema database naming.

• SQLV40

Specifies that SQL interprets strings within double quotation marks as string
literals.

The default is SQLV40.

Examples

Example 1: Setting the quoting rules to SQL99

SQL> SET QUOTING RULES ’SQL99’;
SQL> --
SQL> -- SQL interprets double quotation marks as delimited identifiers.
SQL> --
SQL> CREATE TABLE "Employees_Table"
cont> ("Employee_ID" CHAR(6),
cont> "Employee_Name" CHAR (30));
SQL> --
SQL> -- SQL retains the upper- and lowercase letters within the identifier.
SQL> --
SQL> SHOW TABLE EMPLOYEES_TABLE
No tables found
SQL> SHOW TABLE "Employees_Table"
Information for table Employees_Table

Columns for table Employees_Table:
Column Name Data Type Domain
----------- --------- ------
Employee_ID CHAR(6)
Employee_Name CHAR(30)

.

.

.

SQL Statements 8–277

SET QUOTING RULES Statement

Example 2: Setting the quoting rules to SQLV40

SQL> SET QUOTING RULES ’SQLV40’;
SQL> --
SQL> -- When you set the quoting rules to SQLV40, SQL interprets double
SQL> -- quotation marks as string literals.
SQL> --
SQL> CREATE TABLE "Employees_Table"
%SQL-I-DEPR_FEATURE, Deprecated Feature: " used instead of ’ for string
literal
CREATE TABLE "Employees_Table"

^
%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, name, FROM,
%SQL-F-LOOK_FOR_FIN, found Employees_Table instead
SQL> --
SQL> -- Although you can use double quotation marks for string literals, SQL
SQL> -- returns a deprecated feature message.
SQL> --
SQL> INSERT INTO EMPLOYEES
cont> (EMPLOYEE_ID, LAST_NAME, STATUS_CODE)
cont> VALUES
cont> ("00500", ’Toliver’, ’1’);
%SQL-I-DEPR_FEATURE, Deprecated Feature: " used instead of ’ for string
literal
1 row inserted
SQL> --

8–278 SQL Statements

SET SCHEMA Statement

SET SCHEMA Statement

Specifies the default schema name for an SQL user session in dynamically
prepared and executed or interactive SQL statements until another SET
SCHEMA statement is issued.

Within one multischema database, tables in different schemas can be used in a
single SQL statement; tables in schemas in different databases cannot. If you
omit the schema name when you specify an object in a multischema database,
SQL uses the default schema name.

Environment

You can use the SET SCHEMA statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET SCHEMA schema-string-literal
<schema-parameter>
<schema-parameter-marker>

schema-string-literal =

’ schema-expression ’

schema-expression =

<catalog-name> .
" <alias>.<catalog-name> "

<name-of-schema>
" <alias>.<name-of-schema> "

Arguments

schema-expression
Specifies the name of the default schema for a multischema database. If you omit
the schema name when you specify an object in a multischema database, SQL
uses the default schema name. If you do not specify a default schema name, the
default uses the user name of the current user.

See Section 2.2.15 for more information on schemas.

SQL Statements 8–279

SET SCHEMA Statement

schema-parameter
Specifies a host language variable in precompiled SQL or a formal parameter
in an SQL module language procedure that specifies the default schema. The
schema parameter must contain a schema expression.

schema-parameter-marker
Specifies a parameter marker (?) in a dynamic SQL statement. The schema
parameter marker refers to a parameter that specifies the default schema. The
schema parameter marker must specify a parameter that contains a schema
expression.

schema-string-literal
Specifies a character string literal that specifies the default schema. The schema
string literal must contain a schema expression enclosed within single quotation
marks.

Usage Notes

• SQL does not issue an error message when you use SET SCHEMA to set
default to a schema that does not exist. However, when you refer to that
schema by specifying an unqualified name, SQL issues the error message
shown in the following example:

SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> SHOW CATALOGS
Catalogs in database CORP

"CORP.ADMINISTRATION"
"CORP.RDB$CATALOG"

SQL> SHOW SCHEMAS
Schemas in database with filename corporate_data

ACCOUNTING
PERSONNEL
RECRUITING
RDB$CATALOG.RDB$SCHEMA

SQL> SET SCHEMA ’"CORP.ADMINISTRATION".BOGUS’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
%SQL-F-SCHNOTDEF, Schema BOGUS is not defined

Remember that the double-quoted leftmost pair (the delimited identifier)
in a multischema object name requires uppercase characters. For other
multischema naming rules, see Section 2.2.11. You will receive the following
error message if you specify a delimited identifier in lowercase characters:

SQL> set schema ’"corp.administration".accounting’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
%SQL-F-NODEFDB, There is no default database
SQL> set schema ’"CORP.ADMINISTRATION".accounting’;
SQL> CREATE TABLE NEWTABLE (COL1 REAL);
SQL>

• You cannot use the SET SCHEMA statement for nondynamic statements.

8–280 SQL Statements

SET SCHEMA Statement

Example

Example 1: Setting schema and catalog defaults to create a table in a
multischema database

In this example, user ELLINGSWORTH attaches to two databases: the default
database, personnel, and the multischema corporate_data database with alias
CORP. User ELLINGSWORTH attempts to create a table in the corporate_
data database, and receives an error message because the default schema is
ELLINGSWORTH, which has not been created in the default catalog. User
ELLINGSWORTH uses SET SCHEMA and SET CATALOG statements to change
the defaults to catalog ADMINISTRATION and schema ACCOUNTING of the
corporate_data database.

Use the SHOW DATABASE statement to see the database settings.

SQL> ATTACH ’FILENAME personnel’;
SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> SHOW SCHEMAS;
Schemas in database with filename personnel
No schemas found
Schemas in database CORP

"CORP.ADMINISTRATION".ACCOUNTING
"CORP.ADMINISTRATION".PERSONNEL
"CORP.ADMINISTRATION".RECRUITING
"CORP.RDB$CATALOG".RDB$SCHEMA

SQL> CREATE TABLE CORP.BUDGET (COL1 REAL);
%SQL-F-SCHNOTDEF, Schema "CORP.RDB$CATALOG".CORP is not defined
SQL> --
SQL> -- SQL interprets CORP as schema name, and there is no
SQL> -- CORP schema in the default database.
SQL> --
SQL> -- Add quotation marks to designate qualifier CORP as an alias,
SQL> -- not the schema name.
SQL> --
SQL> SET QUOTING RULES ’SQL92’;
SQL> CREATE TABLE "CORP.BUDGET" (COL1 REAL);
%SQL-F-SCHNOTDEF, Schema "CORP.RDB$CATALOG".ELLINGSWORTH is not defined
SQL> --
SQL> -- The default schema in the database with alias CORP
SQL> -- is the user name ELLINGSWORTH, but there is no
SQL> -- schema named ELLINGSWORTH.
SQL> --
SQL> -- Set the default schema to ACCOUNTING, and qualify it
SQL> -- with a delimited identifier containing the alias CORP and
SQL> -- the catalog ADMINISTRATION. Now you can create the
SQL> -- table BUDGET within schema ACCOUNTING without qualifying
SQL> -- the table name.
SQL> --
SQL> SET SCHEMA ’"CORP.ADMINISTRATION".ACCOUNTING’;
SQL> CREATE TABLE BUDGET (COL1 REAL);
SQL> SHOW TABLES;
User tables in database with filename personnel

CANDIDATES
COLLEGES
.
.
.
User tables in database with alias CORP
"CORP.ADMINISTRATION".ACCOUNTING.BUDGET
.
.
.

SQL Statements 8–281

SET SESSION AUTHORIZATION Statement

SET SESSION AUTHORIZATION Statement

Allows you to transfer the current database attach to another user.

Environment

You can use the SET SESSION AUTHORIZATION statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET SESSION AUTHORIZATION host-variable
’literal-user-auth’

literal-user-auth =

USER ’username’ USING ’password’
(’password1’ , ’password2’)

Arguments

host-variable
’literal-user-auth’
Specifies the name of the user and the password to whom the database attach
is being transferred as a string literal or a host variable. If a host-variable is
specified, it must contain the literal-user-auth as a string literal.

USER ’username’
A character string literal that specifies the operating system user name that the
database system uses for privilege checking.

USING ’password’
USING (’password’, ’password’)
A character string literal that specifies the user’s password for the user name
specified in the USER clause. If the user requires two passwords, then specify
both values in parenthesis and separated by a comma.

Usage Notes

• You must have the SELECT privilege on the database to set session
authorization.

• The specified user and password (in the USING clause) must be a valid
OpenVMS user authorization.

• If the operation is successful, the SESSION_USER and SESSION_UID will
be changed to reflect the specified OpenVMS user.

8–282 SQL Statements

SET SESSION AUTHORIZATION Statement

• No transaction can be active when the session authorization is modified by
this statement.

Examples

Example 1: Reusing the Current Database Attach for Another User

SQL> ATTACH ’FILENAME db$:personnel’;
SQL> SET SESSION AUTHORIZATION ’USER ’’SMITH’’ USING ’’SECRET1’’’;
SQL> SHOW PRIV ON DATABASE RDB$DBHANDLE
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER =[RDB,SMITH],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES+SECURITY+DISTRIBTRAN)

SQL> SET SESSION AUTHORIZATION ’USER ’’JAIN’’ USING ’’SECRET2’’’;
SQL> SHOW PRIV ON DATABASE RDB$DBHANDLE
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER =[RDB,JAIN],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES+SECURITY+DISTRIBTRAN)

SQL Statements 8–283

SET SQLDA Statement

SET SQLDA Statement

Allows a programmer using Dynamic SQL to alter the way the SQLDA (and
SQLDA2) and Dynamic SQL statements are processed by Oracle Rdb.

Environment

You can use the SET SQLDA statement:

• In Dynamic SQL as a statement to be dynamically executed

Format

SET SQLDA literal
host-variable

sqlda_options =

sqlda_option
,

sqlda_option =

PADDING n CHARACTERS
NOPADDING
ENABLE enable-option
DISABLE enable-option
dialect-name

enable-option =

FULL QUERY HEADER
INSERT RETURNING
INTEGER COUNT
NAMED MARKERS
NULL ELIMINATION WARNINGS
ROWID TYPE
TRUNCATE WARNINGS

dialect-name =

SQL2011
SQL99
SQL92
MIA
SQL89
SQLV40
ORACLE LEVEL1
ORACLE LEVEL2
ORACLE LEVEL3

Arguments

Literal
Host-Variable
Parameter passed to the statement. Must be a literal or a host variable
containing one or more SQLDA options (see sqlda_options syntax diagram

8–284 SQL Statements

SET SQLDA Statement

for details). If more than one option is specified, they must be separated by
commas.

sqlda_options
One or more keyword clauses. If more than one clause is specified, they must be
separated by commas.

ENABLE
The ENABLE clause activates one of the following behaviors for Dynamic SQL.

FULL QUERY HEADER - By default, any select expression that is not a
column or DBKEY is given an empty SQLNAME in the SQLDA (SQLNAME_
LEN is zero). When this option is enabled, an approximation of the select
expression is formatted as a label for the expression.

The SQLNAME_LEN will be between 1 and 62, therefore the expression may
be truncated. If any of the SQLDA options ORACLE LEVEL1, ORACLE
LEVEL2 or ORACLE LEVEL3 are set, then the SQLNAME_LEN will be
limited to 30 as this is the largest name supported by Oracle Database.

If the dialect is set to any of ORACLE LEVEL1, ORACLE LEVEL2 or
ORACLE LEVEL3, then some functions will be presented using Oracle
Database names (SYSDATE, SYSTIMESTAMP, ROWID and NVL) instead
of the Oracle Rdb SQL names (CURRENT_TIMESTAMP, DBKEY and
COALESCE) regardless of the SQL syntax used in the original query.

INSERT RETURNING - The default behavior of INSERT ... RETURNING
when executed by dynamic SQL is to place parameters from the RETURNING
INTO clause in to the INPUT SQLDA. This behavior is maintained for
backward compatibility. This option allows the programmer to force different
(and corrected) behavior for the non-compound use of this statement.

Note

If the INSERT RETURNING statement is included in a compound
statement then the parameters are handled correctly.

INTEGER COUNT - The default behavior for Dynamic SQL is to expect the
result data type of the COUNT function as BIGINT. When this option is
enabled, Dynamic SQL will implicitly cast the result to INTEGER. If this
option is disabled, then SQL will revert to a BIGINT result data type.

NAMED MARKERS - as well as traditional parameters markers (?). Dynamic
SQL will now accept named, host-variable style parameter markers. See the
Usage Notes for further details and examples.

NULL ELIMINATION WARNINGS - The default behavior when SET
DIALECT establishes the dialect as SQL92, SQL99, SQL2011, or an ORACLE
dialect is to generate a warning when an aggregate function (COUNT, MIN,
MAX, AVG, STDDEV, etc) eliminates NULL values when computing a result.

This setting of the SQLDA allows dynamic applications to enable or disable
this behavior for all dialects, including SQLV40 (default dialect) and SQL89.

ROWID TYPE - returns DBKEY values as a special type (SQLDA_ROWID,
455) to make processing of the DBKEY values easier. For instance, in prior
releases the SQLDA name field (SQLNAME) for DBKEY entries in the
SQLDA was the only way to distinguish these values from other CHAR
or VARCHAR columns - it would be either DBKEY or ROWID. If a query

SQL Statements 8–285

SET SQLDA Statement

renamed the DBKEY column, then the application had no information in
the SQLDA to indicate that the CHAR or VARCHAR value was binary data.
In all respects, the SQLDA_ROWID type appears as a fixed length string of
octets (possibly containing octets of zero which the C language would treat as
a NULL terminator for a string).

TRUNCATE WARNINGS - The default behavior when SET DIALECT
establishes the dialect as SQL92, SQL99, SQL2011, or an ORACLE dialect
is to generate an error when an assignment would cause a string value to be
truncated. This setting of the SQLDA allows dynamic applications to enable
or disable this behavior for all dialects, including SQLV40 (default dialect)
and SQL89.

Note

Trailing spaces characters are ignored when determining if a string is
truncated.

DISABLE
The DISABLE clause deactivates one of the specified behaviors for Dynamic SQL.
See ENABLE clause for a list of options.

ORACLE LEVEL1
ORACLE LEVEL2
ORACLE LEVEL3
Any of these options will set the SQLDA to supply enhanced semantics. These
options are currently reserved for the use of the OCI Services for Rdb product
that is part of Oracle Rdb SQL/Services component. This setting also implicitly
enables NAMED MARKERS.

PADDING n CHARACTERS
This option directs SQL to configure the SQLDA with larger CHARACTER
VARYING strings than would normally be seen. The value of n is an unsigned
numeric literal that specifies the number of characters that are added to
the estimated length. Any CHARACTER (CHAR) types are converted to
CHARACTER VARYING (VARCHAR). This rule is applied to comparison
operators <, <=, >, >=, =, <>, and string functions (STARTING WITH,
CONTAINING).

NOPADDING
This option sets the number of padding characters to 0. This also implies
that derived CHARACTER (CHAR) types are not converted to CHARACTER
VARYING (VARCHAR) when PADDING CHARACTERS is used. This is the
default setting.

Note

Oracle recommends that applications always check for SQLDA_CHAR
and SQLDA_VARCHAR so that the correctly formatted data is made
available to SQL.

8–286 SQL Statements

SET SQLDA Statement

SQL2011
SQL99
SQL92
MIA
SQL89
SQLV40
Any of these options will revert to the default semantic for the SQLDA which
includes disabling NAMED MARKERS.

Usage Notes

• The ORACLE LEVEL1, ORACLE LEVEL2 and ORACLE LEVEL3 settings
are reserved for use by Oracle Corporation. Current behavior of this setting
may change with any given release based on requirements of the OCI Services
for Rdb component. This setting changes the usage of various SQLDA and
SQLDA2 fields.

• Keywords may not be abbreviated and the clauses must be fully specified.

• The SET DIALECT command will implicitly enable NAMED MARKERS if
the dialect is changed to one of the Oracle dialects.

• The SET DIALECT command will implicitly disable NAMED MARKERS if
the dialect is changed to any dialect other than an ORACLE dialect.

• When NAMED MARKERS are enabled, the contents of the SQLDA and
SQLDA2 will reflect one entry for each name. When traditional parameter
markers are used, a SQLDA (or SQLDA2) entry will exist for each marker (?)
encountered. This change in behavior can simplify the query encoding as well
lead to more efficient strategy creation.

Example

Example 1: Using the NAMED MARKERS feature

This example shows that enabling the NAMED MARKERS feature will allow
SQL to prompt for one value and the displayed Rdb strategy shows that only one
variable is used.

-> SET SQLDA ’ENABLE NAMED MARKERS’;
-> SELECT LAST_NAME FROM EMPLOYEES WHERE FIRST_NAME = :F_NAME AND LAST_NAME <>
:F_NAME;
in: [0] typ=449 len=46
out: [0] typ=453 len=14
[SQLDA - reading 1 fields]
-> Alvin
Tables:
0 = EMPLOYEES

Conjunct: (0.FIRST_NAME = <var0>) AND (0.LAST_NAME <> <var0>)
Get Retrieval sequentially of relation 0:EMPLOYEES
0/FIRST_NAME/Varchar(42/46): Alvin
[SQLDA - displaying 1 fields]
0/LAST_NAME: Toliver
[SQLDA - displaying 1 fields]
0/LAST_NAME: Dement

Example 2: Using the PADDING feature

SQL Statements 8–287

SET SQLDA Statement

The following example shows that the derived type for the named parameter
MI is a SQLDA_CHAR (453) of length 1. The input data (’AA’) is truncated on
assignment and the incorrect results are returned. By adding a small padding the
type is changed to SQLDA_VARCHAR (449) of length 3 and a correct comparison
is performed.

-> ATTACH ’filename sql$database’;
-> SET SQLDA ’enable named markers, nopadding’;
-> SELECT LAST_NAME FROM EMPLOYEES WHERE MIDDLE_INITIAL = :MI;
in: [0] typ=453 len=1
out: [0] typ=449 len=18
[SQLDA - reading 1 fields]
-> AA
[SQLDA - displaying 1 fields]
0/LAST_NAME: Toliver
[SQLDA - displaying 1 fields]
0/LAST_NAME: Lengyel
[SQLDA - displaying 1 fields]
0/LAST_NAME: Robinson
[SQLDA - displaying 1 fields]
0/LAST_NAME: Ames
-> SET SQLDA ’padding 2 characters’;
-> SELECT LAST_NAME FROM EMPLOYEES WHERE MIDDLE_INITIAL = :MI;
in: [0] typ=449 len=7
out: [0] typ=449 len=18
[SQLDA - reading 1 fields]
-> AA
-> EXIT;
Enter statement:

Note that the VARCHAR requires an extra 4 bytes for the length information in
the SQLDA2 used by the Dynamic SQL testing program.

Example 3: Using the ENABLE INTEGER COUNT feature

The following example uses Dynamic SQL and accepts various statements from
the user. When using SET SQLDA, the returned data type of COUNT is altered
from the default (BIGINT) to INTEGER.

-> ATTACH ’filename sql$database’;
inputs: 0
-> SELECT COUNT(*) FROM RDB$DATABASE;
inputs: 0
out: [0] typ=Bigint {505} len=8
[SQLDA - displaying 1 fields]
0/: 1
-> SET SQLDA ’enable integer count’;
inputs: 0
-> SELECT COUNT(*) FROM RDB$DATABASE;
inputs: 0
out: [0] typ=Integer {497} len=4
[SQLDA - displaying 1 fields]
0/: 1
-> EXIT;

Example 4: Enabling FULL QUERY HEADER

The following example uses Dynamic SQL and accepts various statements. The
tool displays the label from the SQLDA as a description for the user.

8–288 SQL Statements

SET SQLDA Statement

Enter statement:
attach ’filename sql$database’;
inputs: 0
Enter statement:
set sqlda ’enable full query header’;
inputs: 0
Enter statement:
select employee_id, first_name || last_name, extract(year from birthday)
from employees
where employee_id = ’00164’;
inputs: 0
out: [0] typ=Char {453} len=5
out: [1] typ=Char {453} len=24
out: [2] typ=Integer {497} len=4
[SQLDA - displaying 3 fields]
0/EMPLOYEE_ID: 00164
1/CONCAT(FIRST_NAME,...): Alvin Toliver
2/EXTRACT(YEAR FROM BIRTHDAY): 1947
Enter statement:

Example 5: Using the ENABLE TRUNCATE WARNINGS feature

The following example uses Dynamic SQL to execute various INSERT statements.
The tool displays the error reported for string truncation.

-> CREATE TABLE SAMPLE_TABLE (COL1 CHAR);
-> INSERT INTO SAMPLE_TABLE VALUES (’xxx’);
inputs: 0
-> !;
-> SET SQLDA ’enable truncate warnings’;
inputs: 0
-> INSERT INTO SAMPLE_TABLE VALUES (’xxx’);
inputs: 0
Error -306:
%RDB-E-TRUN_STORE, string truncated during assignment to a column
-> !;
-> SET SQLDA ’disable truncate warnings’;
inputs: 0
-> INSERT INTO SAMPLE_TABLE VALUES (’xxx’);
inputs: 0

Example 6: Using the NULL ELIMINATION WARNINGS feature

The following example uses Dynamic SQL to execute a COUNT function on a
column that has some values set to NULL. The tool displays the warning reported
in such cases.

SQL Statements 8–289

SET SQLDA Statement

Enter statement:
SET DIALECT ’SQL99’;
inputs: 0
Enter statement:
SELECT COUNT (MIDDLE_INITIAL) FROM EMPLOYEES;
inputs: 0
out: [0] typ=Bigint {505} len=8
--> reported warning; sqlcode=1003
[SQLDA - displaying 1 fields]
0/: 64
Enter statement:
SET SQLDA ’DISABLE NULL ELIMINATION WARNINGS’;
inputs: 0
Enter statement:
SELECT COUNT (MIDDLE_INITIAL) FROM EMPLOYEES;
inputs: 0
out: [0] typ=Bigint {505} len=8
[SQLDA - displaying 1 fields]
0/: 64
Enter statement:

8–290 SQL Statements

SET TRANSACTION Statement

SET TRANSACTION Statement

Starts a transaction and specifies its characteristics. A transaction is a group of
statements whose changes can be made permanent or undone only as a unit.

A transaction ends with a COMMIT or ROLLBACK statement. If you end the
transaction with the COMMIT statement, all the changes made to the database
by the statements are made permanent. If you end the transaction with the
ROLLBACK statement, the statements do not take effect.

You must end the transaction with a COMMIT or ROLLBACK statement
before starting or declaring another transaction. If you try to start or declare
a transaction while another one is active, SQL generates an error message.

Besides the SET TRANSACTION statement, you can specify the characteristics
of a transaction in one of two other ways:

• If you specify the DECLARE TRANSACTION statement, the declarations
in the statement take effect when SQL starts a new transaction that is not
started by the SET TRANSACTION statement. SQL starts a new transaction
with the first executable data manipulation or data definition statement
following the DECLARE TRANSACTION, COMMIT, or ROLLBACK
statement.

• If you omit both the DECLARE and SET TRANSACTION statements, SQL
automatically starts a transaction (using the read/write option) with the
first executable data manipulation or data definition statement following a
COMMIT or ROLLBACK statement. Thus, you can retrieve and update data
without declaring or setting a transaction explicitly.

See the Usage Notes for examples of when you would want to use the DECLARE
TRANSACTION statement instead of the SET TRANSACTION statement.

You can specify many options with the SET TRANSACTION statement, including:

• Transaction mode (READ ONLY/READ WRITE)

• Lock specification clause (RESERVING options)

• Horizontal partition specification (RESERVING options)

• Wait mode (WAIT/NOWAIT)

• Isolation level

• Constraint evaluation specification clause

• Multiple sets of all the preceding options for each database involved in the
transaction (ON . . . AND ON)

The Arguments section explains these options in more detail.

Environment

You can use the SET TRANSACTION statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 8–291

SET TRANSACTION Statement

Format

SET TRANSACTION
tx-options
db-txns

tx-options =

NAME ’quoted-string’
EVALUATING evaluating-clause

,
RESERVING reserving-clause

,
isolation-level
transaction-mode
wait-option

,

transaction-mode =

BATCH UPDATE
READ ONLY
READ WRITE
UTILITY READ

wait-option =
WAIT

<timeout-value>
NOWAIT

isolation-level =

ISOLATION LEVEL READ COMMITTED
REPEATABLE READ
SERIALIZABLE

evaluating-clause =

<constraint-name> AT VERB TIME
<alias> . COMMIT TIME

reserving-clause =

<view-name>
<table-name>

PARTITION (<part-id>)
,

,

FOR READ
EXCLUSIVE WRITE
PROTECTED DATA DEFINITION
SHARED

8–292 SQL Statements

SET TRANSACTION Statement

db-txns =

ON <alias> USING (tx-options)
, DEFAULTS

AND

Arguments

alias
Specifies the alias for a constraint. See the Usage Notes for information on using
aliases for a multischema database.

BATCH UPDATE
Specifies the batch-update mode to reduce overhead in large-load operations.
To speed update operations, Oracle Rdb does not write to snapshot or recovery-
unit journal files in a batch-update transaction. For more information about
batch-update transactions, see the Oracle Rdb Guide to SQL Programming.

The batch-update transaction permits updates to the database without creating
a recovery-unit journal (.ruj) file. Therefore, any rows or indices modified during
the transaction cannot be rolled back because Oracle Rdb does not maintain
before-images of the changed records.

For example, if you need a large test database for development purposes, a batch-
update transaction loads the database but bypasses the journaling facilities. If
the load fails, you must create the database again.

Because you cannot use batch-update transactions with distributed transactions,
you should define the SQL$DISABLE_CONTEXT logical name as ‘‘True’’ before
you start a batch-update transaction. (Distributed transactions require that you
are able to roll back transactions.)

A batch-update transaction started on a database cannot include additional
arguments. However, other databases referred to in the same transaction
declaration can include other arguments.

For example, the following statement is valid:

SQL> SET TRANSACTION ON OLD_DB USING (READ ONLY)
cont> AND ON NEW_DB USING (BATCH UPDATE);

Caution

Before you begin a batch-update transaction in your programs, you should
create a backup copy of the database using the RMU Backup command. If
an error occurs in your program that would normally result in a rollback
of the transaction, Oracle Rdb marks the database as corrupt. To recover
from a corrupt database, you must create the database again from the
backup copy of the database. After correcting the error condition, you can
restart the program from the beginning. You should back up the database
after completing a batch-update transaction as well.

constraint-name
Specifies the name of a constraint.

SQL Statements 8–293

SET TRANSACTION Statement

db-txns
Specifies different transaction options. When you attach to more than one
database and want to specify different transaction options for each database, use
this clause.

evaluating-clause
Specifies the point at which the named constraint or constraints are evaluated.
If you specify VERB TIME, they are evaluated when the data manipulation
statement is issued. If you specify COMMIT TIME, the constraint evaluation is
based on the setting of the SET ALL CONSTRAINTS statement. For read-only
transactions, this clause is allowed but is ignored.

FOR EXCLUSIVE
FOR PROTECTED
FOR SHARED
Specifies the SQL share modes. The keyword you choose determines which
operations you allow others to perform on the tables you are reserving. While
you can specify an EXCLUSIVE or PROTECTED share mode when declaring a
read-only transaction, SQL ignores these entries and specifies SHARED mode.
The default is SHARED. Table 8–6 describes the different share modes.

Table 8–6 SQL Share Modes

Option Access Constraints

SHARED
(Default)

Other users also can work with the same tables. Depending on
the option they choose, they can have read-only or read/write
access to the tables.

PROTECTED Other users can read the tables you are using. They cannot have
write access.

EXCLUSIVE Other users cannot read records from the tables included in
your transaction. If another user refers to the same tables in a
DECLARE TRANSACTION statement, SQL denies access to that
user.

Under some circumstances, the base database system may promote a shared
reservation to protected or exclusive during query processing.

Table 8–7 compares the effect of different lock specifications.

Table 8–7 Comparison of Row Locking for Updates

Lock Specification
SHARED
WRITE

PROTECTED
WRITE

EXCLUSIVE
WRITE

BATCH
UPDATE

Writes to .ruj? Yes Yes Yes No
Writes to .snp? Yes Yes No No
Recovery? Yes Yes Yes No
Multiuser access? Yes Yes No No

ISOLATION LEVEL READ COMMITTED
ISOLATION LEVEL REPEATABLE READ
ISOLATION LEVEL SERIALIZABLE
Defines the degree to which database operations in an SQL transaction are
affected by database operations in concurrently executing transactions. It

8–294 SQL Statements

SET TRANSACTION Statement

determines the extent to which the database protects the consistency of your
data.

Oracle Rdb supports isolation levels READ COMMITTED, REPEATABLE READ,
and SERIALIZABLE. When you use SQL with Oracle Rdb databases, by default,
SQL executes a transaction at isolation level SERIALIZABLE. The higher the
isolation level, the more isolated a transaction is from other currently executing
transactions. Isolation levels determine the type of phenomena that are allowed
to occur during the execution of concurrent transactions. Two phenomena define
SQL isolation levels for a transaction:

• Nonrepeatable read

Allows the return of different results within a single transaction when an
SQL operation reads the same row in a table twice. Nonrepeatable reads can
occur when another transaction modifies and commits a change to the row
between transaction reads.

• Phantom

Allows the return of different results within a single transaction when an
SQL operation retrieves a range of data values (or similar data existence
check) twice. Phantoms can occur if another transaction inserted a new
record and committed the insertion between executions of the range retrieval.

Each isolation level differs in the phenomena it allows. Table 8–8 shows the
phenomena permitted for the isolation levels that you can explicitly specify with
the SET TRANSACTION statement.

Table 8–8 Phenomena Permitted at Each Isolation Level

Isolation Level
Nonrepeatable Reads
Allowed?

Phantoms
Allowed?

READ COMMITTED Yes Yes
REPEATABLE READ No Yes
SERIALIZABLE No No

For read-only transactions, which always execute at isolation level
SERIALIZABLE if snapshots are enabled, the database system guarantees
that you will not see changes made by another user before you issue a COMMIT
statement.

See the Oracle Rdb Guide to SQL Programming for further information about
specifying isolation levels in transactions.

NAME transaction-name
Supplies a title for the transaction. This information is displayed by the SET
FLAGS TRANSACTION keyword.

SQL Statements 8–295

SET TRANSACTION Statement

SQL> declare transaction read write name ’default-transaction’;
SQL> select * from rdb$database;
~T Compile transaction (3) on db: 1
~T Transaction Parameter Block: (len=23)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_BUFFER_NAME "default-transaction"
0016 (00022) TPB$K_WRITE (read write)
~T Start_transaction (3) on db: 1, db count=1

.

.

.

ON alias
AND ON alias
Specifies the alias for a database for which you want to specify transaction
options. An alias is a name for a particular attach to a database. See the Usage
Notes for information about using an alias with a multischema database.

Use the ON clause when you attach to more than one database and want
to specify different transaction options for each database. (If you omit the ON
clause, the single set of transaction options in the SET TRANSACTION statement
applies to all attached databases.)

You can include multiple sets of transaction options, one for each database, in
multiple ON clauses separated with the AND keyword. Example 3 illustrates a
multiple-database transaction.

PARTITION (part-id, ...)
When used with the RESERVING clause, specifies a list of partitions so that only
a subset of the table’s partitions are reserved. For example, an application could
submit several processing jobs that each reserved a separate partition of the
table for EXCLUSIVE access. The default, if this clause is omitted, is to reserve
all partitions with the specified mode. An error is reported if the application
references a partition of the table that was not reserved.

part-id
The partition can be identified as a number that corresponds to the ordinal
position of the partition or the partition name. The name is either defined by
the PARTITION clause of the CREATE STORAGE MAP statement or one that is
system generated. See the output from SHOW STORAGE MAP which lists both
the partition names and the ordinal position.

SQL> show storage map employees_map
EMPLOYEES_MAP

For Table: EMPLOYEES
Placement Via Index: EMPLOYEES_HASH
Partitioning is: UPDATABLE

Partition information for storage map:
Compression is: ENABLED
Partition: (1) SYS_P00079
Storage Area: EMPIDS_LOW
Partition: (2) SYS_P00080
Storage Area: EMPIDS_MID
Partition: (3) SYS_P00081
Storage Area: EMPIDS_OVER

8–296 SQL Statements

SET TRANSACTION Statement

READ
WRITE
DATA DEFINITION
Specifies the lock type. These keywords declare what you intend to do with the
tables you are reserving.

Use READ when you only want to read data from the tables. This is the default
for read-only transactions.

Use WRITE when you want to insert, update, or delete data in the tables. This is
the default for read/write transactions. You cannot specify WRITE for read-only
transactions.

Use DATA DEFINITION when you want to create or alter metadata at the same
time as other users on the same table. This clause can be used only in read/write
transactions. See the Usage Notes for additional information.

READ ONLY
Retrieves a snapshot of the database at the moment the read-only transaction
starts. Other users can update rows in the table you are using, but your
transaction retrieves the rows as they existed at the time the transaction started.
You cannot update, insert, or delete rows, or execute data definition statements in
a read-only transaction with the exception of declaring a local temporary table or
modifying data in a created or declared temporary table. Read-only transactions
are implicitly isolation level serializable.

Because a read-only transaction uses the snapshot (.snp) version of the database,
any changes that other users make and commit during the transaction are
invisible to you. Using a read-only transaction lets you read data without
incurring the overhead of row locking. (You do incur overhead for keeping a
snapshot of the tables you specify in the RESERVING clause, but this overhead
is less than that of a comparable read/write transaction.)

Because of the limited nature of read-only transactions, they are subject to
several restrictions. The Usage Notes describe those restrictions.

READ WRITE
Signals that you want to use the lock mechanisms of SQL for consistency in data
retrieval and update. Read/write is the default transaction. Use the read/write
transaction mode when you need to:

• Insert, update, or delete data

• Retrieve data that is guaranteed to be correct at the moment of retrieval

• Use SQL data definition statements

When you are reading a row in a read/write transaction, no other user can
update that row. Under some circumstances, SQL may lock rows that you are not
explicitly reading.

• If your query is scanning a table without using an index, SQL locks all the
rows in the record stream to maintain isolation level serializable.

• If your query uses indexes, SQL may lock part of an index, which has the
effect of locking several rows.

SQL Statements 8–297

SET TRANSACTION Statement

RESERVING table-name
RESERVING view-name
Lists the tables to be locked during the transaction. Include all the persistent
base tables your transaction will access. You cannot reserve created or declared
temporary tables.

If you use the RESERVING clause to specify tables, you can access only the
tables you have reserved. However, specifying a view in a RESERVING clause is
the same as specifying the base tables on which the view is based.

timeout-value
Specifies the number of seconds for a given transaction to wait for other
transactions to complete. This interval is only valid for the transaction specified
in the SET TRANSACTION statement. Subsequent transactions return to the
database default timeout interval. A timeout value of 0 specifies NOWAIT.

When starting a transaction, there are three different values that are used to
determine the lock timeout interval for that transaction. Those values are:

1. The value specified in the SET TRANSACTION statement

2. The value stored in the database as specified in CREATE or ALTER
DATABASE

3. The value of the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL

The timeout interval for a transaction is the smaller of the value specified in the
SET TRANSACTION statement and the value specified in CREATE DATABASE.
However, if the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL is
defined, the value of this logical name overrides the value specified in CREATE
DATABASE.

USING (tx-options)
USING DEFAULTS
Specifies the transaction options you want for the database referred to by the
alias in the preceding ON clause. You can explicitly specify the transaction, wait
mode, and isolation level option, or you can use the DEFAULTS keyword. Using
DEFAULTS is equivalent to specifying READ WRITE WAIT.

UTILITY READ
This is a special type of READ ONLY transaction performed by utilities that wish
to read the system tables and incur as little overhead as possible. Such utilities
include RMU, Interactive SQL, Dynamic SQL and OCI Services for Rdb. See the
Usage Notes for more detail.

WAIT
NOWAIT
Determines what your transaction does when it encounters a locked row. The
default is WAIT.

• If you specify WAIT, the transaction waits for other transactions to complete
and then proceeds. If you prefer, you can specify that the transaction
proceeds after a certain time interval instead of waiting for other transactions
to complete. You can specify the timeout interval value after the WAIT
keyword. The timeout interval value is expressed in seconds.

• If you specify NOWAIT, your transaction returns an error message when it
encounters a locked row.

8–298 SQL Statements

SET TRANSACTION Statement

Table 8–9 compares the effects of different lock specifications on multiuser
access.

Table 8–9 Effects of Lock Specifications on Multiuser Access

For Tables You Reserve
Other Users Can
Access the Tables Your Effect on Other Users

Other Users’ Effect
on You

READ WRITE

EXCLUSIVE READ
EXCLUSIVE WRITE
EXCLUSIVE DATA
DEFINITION

No access No one else can use the
table.

No effect.

PROTECTED READ PROTECTED READ
SHARED READ

No one else can write to
the table.

No effect.

PROTECTED WRITE SHARED READ No one else can write to
the table. No one else can
read rows you use in any
way until you end your
transaction.

You cannot
update rows
other users read
from a read/write
transaction.

SHARED READ PROTECTED READ
PROTECTED WRITE
SHARED READ
SHARED WRITE

A SHARED WRITE user
cannot update rows you
use in any way.

You cannot
read rows
that read/write
transactions
insert or update
until those
transactions
end.

SHARED WRITE SHARED READ
SHARED WRITE

No one else can read or
update rows you update.
No one else can update
rows you use in any way.

You cannot read
or update rows
that other
read/write
transactions
use in any way.

SHARED DATA
DEFINITION

SHARED DATA
DEFINITION

No one can write or read
from the reserved tables.
Other users can create
and alter metadata for the
table concurrently if they
issue the SHARED DATA
DEFINITION clause.

No effect.

READ ONLY

SHARED READ All but EXCLUSIVE No effect. You do not see
changes to rows.

SQL Statements 8–299

SET TRANSACTION Statement

Defaults

The SET TRANSACTION statement has several levels of defaults. If you omit the
statement altogether or issue the SET TRANSACTION statement by itself, SQL
sets a transaction READ WRITE WAIT ISOLATION LEVEL SERIALIZABLE.

In general, you should use explicit SET TRANSACTION statements, specifying
READ WRITE or READ ONLY, a list of tables in the RESERVING clause, and
a share mode and lock type for each table. The more specific you are in a SET
TRANSACTION statement, the more efficient your database operations will be.

When a SET TRANSACTION statement starts a transaction, any unspecified
transaction characteristics are normal SQL defaults. Table 8–10 summarizes the
defaults for each option and combination of options.

Table 8–10 Defaults for the SET and DECLARE TRANSACTION Statements

Option Default

Transaction Mode:

• READ WRITE

• READ ONLY

The default is READ WRITE. Which transaction
mode, if any, you specify determines the default
lock specification.

Lock Specification:

• RESERVING • If you specify a read/write transaction and
do not include a RESERVING clause, SQL
determines the lock specification for each
table when it is first accessed by a data
manipulation statement. If the first reference
to a table is within a read operation, the table
is locked for SHARED READ. When the first
update statement is issued, the table is locked
for SHARED WRITE.

• If you specify a read/write transaction and
include a RESERVING clause, the default is
SHARED.

• If you do not specify a transaction mode but do
include a RESERVING clause, the default is
SHARED.

• If you specify a read-only transaction, the
default is SHARED READ, whether or not you
specify a RESERVING clause.

Share Mode:

• SHARED

• PROTECTED

• EXCLUSIVE

The default is SHARED.

(continued on next page)

8–300 SQL Statements

SET TRANSACTION Statement

Table 8–10 (Cont.) Defaults for the SET and DECLARE TRANSACTION
Statements

Option Default

Lock Type:

• READ

• WRITE

• DATA DEFINITION

• If you specify a read/write transaction, the
default is WRITE.

• If you specify a read-only transaction, the
default, and only allowed lock type, is READ.

Concurrency Option:

• ISOLATION LEVEL
READ COMMITTED

• ISOLATION LEVEL
REPEATABLE READ

• ISOLATION LEVEL
SERIALIZABLE

The default is ISOLATION LEVEL
SERIALIZABLE.

Wait Mode:

• WAIT

• NOWAIT

The default is WAIT.

Usage Notes

• For each database specified the following restrictions exist:

Only one of the clauses READ ONLY, READ WRITE or BATCH UPDATE
may be used.

No other clauses may be specified with BATCH UPDATE.

Only one of the clauses WAIT and NOWAIT may be used.

ISOLATION LEVEL may only be specified once.

• The clauses can be specified in any order.

• The quoted-string provided for NAME can be up to 255 octets in length.

• You cannot use the SET TRANSACTION statement in an ATOMIC compound
statement.

• The SET TRANSACTION statement may not be executed from a SQL
function or trigger or any stored porcedure called from a SQL function or
trigger.

• If an object is reserved PROTECTED or EXCLUSIVE, that table will not be
subject to nonrepeatable reads (or phantoms) no matter what the isolation
level of the transaction; however, the overall transaction can still experience
these phenomena.

SQL Statements 8–301

SET TRANSACTION Statement

• When you use the SHARED DATA DEFINITION clause, no one (including
you) can query or update the reserved table in the same transaction. Other
users cannot perform any data definition operations on the reserved table
unless they use the SHARED DATA DEFINITION clause.

• To minimize lock conflicts with other users when using the SHARED DATA
DEFINITION clause, commit the transaction immediately.

• All users who are defining indexes on the same table must reserve the table
using the SHARED DATA DEFINITION clause.

• A RESERVING clause that specifies EXCLUSIVE access for the table will
disable concurrent index definition, as only one user will be able to access the
table.

• PROTECTED access cannot be declared with the DATA DEFINITION clause.

• When using isolation level REPEATABLE READ, you will find cases when
Oracle Rdb holds long-term read locks on rows that are not really required to
prevent the nonrepeatable read phenomenon. Isolation level REPEATABLE
READ reduces index contention not data contention.

• When a sequential scan is done under isolation level READ COMMITTED,
the number of lock operations performed will increase.

• Read-only transactions use a snapshot of the database. For this reason,
they are immune to interference from other transactions and are always
serializable by default. The following SQL statements specify conflicting
transaction options and, if specified, return an error message:

SQL> SET TRANSACTION READ ONLY ISOLATION LEVEL READ COMMITTED;
%SQL-F-SETTRASLI, SET TRANSACTION statement specifies conflicting options
SQL> -- or
SQL> SET TRANSACTION READ ONLY ISOLATION LEVEL REPEATABLE READ;
%SQL-F-SETTRASLI, SET TRANSACTION statement specifies conflicting options

• If a row is read with a FOR UPDATE ONLY cursor, then the row is locked
exclusively and the results will not change until a COMMIT or ROLLBACK
statement is issued.

• If you reserve a table with a particular share mode, that share mode may
override the behavior your specified isolation level implies. For example,
nonrepeatable reads are always prevented in a table explicitly reserved for
protected retrieval. Isolation level REPEATABLE READ will not gain you any
additional concurrency in this case. If some tables are reserved for protected
retrieval and others for concurrent retrieval, nonrepeatable read prevention
will not be attempted in the tables reserved for concurrent retrieval.

Thus, you can use interactions between the share mode locks and the isolation
level to achieve specific aims; however, Oracle Rdb does not recommend this
level of complexity be used for applications.

• The SET TRANSACTION statement is an executable statement that
both specifies and starts one transaction. You can include multiple SET
TRANSACTION statements in a host language source file or in an SQL
language module (see Chapter 3). The SET TRANSACTION statement has
the following advantages:

It gives you explicit control over when transactions are started.

It provides flexibility for changing transaction characteristics in a
program source file.

8–302 SQL Statements

SET TRANSACTION Statement

• In contrast to the SET TRANSACTION statement, the DECLARE
TRANSACTION statement is not executable and therefore does not start
a transaction. (The declarations in a DECLARE TRANSACTION statement
take effect when SQL starts an implicit transaction, that is, with the first
executable data manipulation or data definition statement following the
DECLARE TRANSACTION, COMMIT, or ROLLBACK statement.)

You can specify only one DECLARE TRANSACTION statement in a host
language source file or an SQL module language source file. The only way
you can change transaction characteristics in programs using the DECLARE
TRANSACTION statement (without using the SET TRANSACTION
statement) is to put SQL statements in separate source files and specify
different DECLARE TRANSACTION statements in each file.

The advantages offered by the DECLARE TRANSACTION statement are:

It can establish transaction defaults for an interactive SQL session, a
module or single host language file in a program, or any statements
executed dynamically from a module. You might, for example, specify
DECLARE TRANSACTION READ ONLY in the SQLINI.SQL file you
create to set up your interactive SQL environment.

In interactive SQL, the characteristics specified by a DECLARE
TRANSACTION statement are valid until you enter another DECLARE
TRANSACTION statement. (A COMMIT or ROLLBACK statement
followed by a SET TRANSACTION statement may start a transaction
with different characteristics, but subsequent transactions started
implicitly will have the characteristics specified in the last DECLARE
TRANSACTION statement.)

If you specify characteristics using a SET TRANSACTION statement,
however, the characteristics apply only to that transaction. You must
enter the statement again after every COMMIT or ROLLBACK statement
to establish those characteristics again.

The following sequence shows a DECLARE TRANSACTION statement
followed by a SET TRANSACTION statement. The SET TRANSACTION
statement is followed by a ROLLBACK statement.

SQL> -- Declares characteristics for the first transaction:
SQL> --
SQL> DECLARE TRANSACTION READ WRITE;
SQL> --
SQL> -- There is no COMMIT or ROLLBACK statement between the
SQL> -- DECLARE and the SET statements:
SQL> --
SQL> SET TRANSACTION READ ONLY;
SQL> --
SQL> -- The ROLLBACK statement rolls back the SET TRANSACTION
SQL> -- statement.
SQL> --
SQL> ROLLBACK;
SQL> --
SQL> -- The transaction characteristics are once again those
SQL> -- specified in the first DECLARE TRANSACTION statement:
SQL> --
SQL> SELECT * FROM EMPLOYEES;

You can include the DECLARE TRANSACTION statement in an SQL
context file.

SQL Statements 8–303

SET TRANSACTION Statement

In the Oracle Rdb Guide to SQL Programming, the section about program
transportability explains when you may need an SQL context file to
support a program that includes SQL statements.

• Explicitly calling the distributed transaction manager lets you control when
your application transactions across several databases. For more information,
see the Oracle Rdb7 Guide to Distributed Transactions.

• To prevent one database user from corrupting another user’s picture of the
database, SQL:

Delays an operation if the operation needs a row that is locked by another
process, or returns an error if the user specified NOWAIT

Rejects an operation if deadlocks occur (where two processes have locked
rows that each process needs)

No part of a transaction that modifies a database is complete until the entire
transaction is committed successfully. In particular, a deadlock may occur
at any time during the transaction until it is successfully committed. In
programs, except for transactions started in read-only or exclusive modes,
you should check for DEADLOCK after each database operation. In addition,
your program should check for LOCK_CONFLICT if the program declares a
transaction NOWAIT.

Generally, the best way to recover from a deadlock or lock conflict is to use a
ROLLBACK statement and start the transaction again.

When you insert or update data in shared mode, SQL may lock index nodes
for indexes on that table. This feature ensures that SQL will be able to
update those index nodes for the new data. This process frequently causes
deadlocks.

• Because of the limited nature of read-only transactions, SQL imposes the
following restrictions:

You cannot update, insert, or delete data, or execute data definition
statements in a read-only transaction on persistent base tables.

You can update, insert, or delete data in a read-only transaction on
created or declared temporary tables. You can also declare a local
temporary table in a read-only transaction.

In read-only transactions, you can specify only READ lock specifications.
If you specify a WRITE lock specification, SQL generates an error.

Because a read-only transaction uses the snapshot (.snp) version of the
database, SQL will not start a read-only transaction in a database created
with the SNAPSHOT IS DISABLED argument. If you specify a read-only
transaction for such a database, SQL implicitly declares a read/write
transaction that reserves all tables for a shared read.

SQL considers the exclusive write lock specification incompatible with
the read-only transaction mode because exclusive write transactions do
not write changes to the snapshot version of the database. Read-only
transactions cannot get an up-to-date snapshot of the database until the
exclusive write transaction finishes.

8–304 SQL Statements

SET TRANSACTION Statement

If an update transaction reserves a table for exclusive write, and a
subsequent read-only transaction by another user attempts to access that
table and use the wait option (the default), the read-only transaction
waits until the earlier exclusive write transaction commits or rolls back
and then receives an error message. For example, assume that a user
already has reserved the EMPLOYEES table for exclusive write. A second
user enters:

SQL> ROLLBACK;
SQL> SET TRANSACTION READ ONLY WAIT;
SQL> SELECT * FROM EMPLOYEES;
[waits for EXCLUSIVE WRITE transaction to end]

.

.

.
[EXCLUSIVE WRITE transaction performs COMMIT or ROLLBACK]

%RDB-E-LOCK_CONFLICT, request failed due to locked resource; no-wait
parameter specified for transaction
-RDMS-F-CANTSNAP, can’t ready storage area for snapshots

The read-only transaction must issue the SELECT statement again after
the error message.

If your transaction requires exclusive write access to an area of the
database, you should be aware of the results of the exclusive write
transaction on read-only transactions that try to access a copy of the same
tables in the snapshot file.

• To use an alias with a multischema database, you must enable ANSI/ISO
quoting rules and create a delimited identifier, as shown in Example 4. For
more information about delimited identifiers, see Section 2.2.11.

• A process that enabled update carry-over locking at the table level can cause
concurrency problems if the process reserves tables in PROTECTED READ or
PROTECTED WRITE modes. Carry-over locking at the table level is set by
defining the RDMS$AUTO_READY logical name. See the Oracle Rdb7 Guide
to Database Performance and Tuning for more information about this logical
name and carry-over locking.

• If your application uses a server process that is attached to the database for
long periods of time and causes the snapshot file to grow excessively, consider
disabling prestarted transactions. (Prestarted transactions are enabled by
default.) You can disable prestarted transactions using the PRESTARTED
TRANSACTIONS ARE OFF clause of the ATTACH, CONNECT, DECLARE
ALIAS, CREATE DATABASE, and IMPORT statements. For more
information, see the ATTACH Statement and the Oracle Rdb7 Guide to
Database Performance and Tuning.

• If you use the SET TRANSACTION statement in a stored procedure with
either the RESERVING table clause or the EVALUATING constraint clause,
SQL establishes procedure dependencies on the tables or constraints that you
specify. See the CREATE MODULE Statement for a list of statements that
can or cannot cause stored procedure invalidation.

See the Oracle Rdb Guide to SQL Programming for detailed information
about stored procedure dependency types and how metadata changes can
cause invalidation of stored procedures.

• The SET TRANSACTION EVALUATING AT VERB TIME statement is not
allowed for NOT DEFERRABLE constraints.

SQL Statements 8–305

SET TRANSACTION Statement

• Each table referenced by a view is automatically reserved in the same mode
in which the view is reserved, unless the table is explicitly reserved in the
SET TRANSACTION statement. In a READ ONLY transaction all tables are
accessed for read-only.

• Any table referenced by a constraint or trigger is reserved in SHARED READ
mode unless reserved at a higher mode by an explicit SET TRANSACTION
statement.

• Any table updated by a trigger is reserved in SHARED WRITE mode, unless
reserved at a higher mode by an explicit SET TRANSACTION statement. If
the SET TRANSACTION statement has already reserved the table for READ
access, an error is returned when the trigger is loaded.

• If a READ ONLY transaction is in progress, then neither triggers or
constraints are active. Because triggers and constraints are loaded only
for update operations, nothing is automatically reserved in this situation.

• Any table referenced in a COMPUTED BY, AUTOMATIC, or DEFAULT
expression is implicitly reserved in SHARED READ mode by the referencing
statement. If the table is indirectly accessed by a stored function then use
LOCK TABLE to reserve the table.

• The partition clause is not permitted if a table does not have a storage
map, or has a vertically partitioned storage map (that is, it uses the STORE
COLUMNS clause). If an index and the storage map have identical STORE
clauses, then both are locked using the same list of partition numbers.

• Using the PARTITION clause requires careful database and application
design. If the indexes are partitioned using different partitioning keys or
different value ranges, then cross-partition updates might lead to deadlocks
and other lock conflicts between concurrent update processes.

• The PARTITION clause accepts a list of partition names or a list of partition
ordinal values. You may not mix numeric and named notations.

• Duplicate partition names in the RESERVING clause will cause an exception.
Review the RESERVING clause and correct the partition names.

set transaction
read write
evaluating

job_history_foreign1 at verb time
,salary_history_foreign1 at verb time

reserving
employees partition (SYS_P00080, SYS_P00080) for exclusive write

;
%RDB-E-BAD_TPB_CONTENT, invalid transaction parameters in the transaction
parameter block (TPB)
-RDMS-E-DUPPARTNAME, partition SYS_P00080 for table EMPLOYEES already used

• Unknown partition names in the RESERVING clause (which might occur due
to a change in the storage map definition) will cause an exception. Use the
SHOW STORAGE MAP statement to review the partition names.

8–306 SQL Statements

SET TRANSACTION Statement

create module mod_testing1a
language sql
procedure proc_xa ();
begin not atomic
set transaction

read write
evaluating salary_history_foreign1 at verb time
reserving employees partition (SYS_P00080, "UNKNOWN", SYS_P00081)

,departments for protected write;
commit;
end;
end module;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-BAD_TPB_CONTENT, invalid transaction parameters in the transaction
parameter block (TPB)
-RDMS-F-PARTNEXTS, partition "UNKNOWN" does not exist in this map or index
"EMPLOYEES_MAP"

• By default, a transaction that reserves a table for EXCLUSIVE access does
not reserve the LIST (segmented string) area for exclusive access. Because
the LIST area is usually shared by many tables, SHARED access is assumed
by default to permit updates to the other tables.

This means that when you run an import operation or when an application
updates a table reserved for EXCLUSIVE access, you might notice that the
snapshot storage area (.snp) grows. This is because of the I/O to the LIST
area that is performed by default when SHARED WRITE mode is in use.

However, if you attach to the database using an SQL ATTACH or IMPORT
statement and you specify the RESTRICTED ACCESS clause, then all storage
areas are accessed in EXCLUSIVE mode. Use this clause to eliminate the
snapshot I/O and related overhead if you are performing a lot of I/O to the
LIST storage areas (for example, when you are restructuring the database,
or dropping a large table containing LIST OF BYTE VARYING columns and
data).

• UTILITY READ directs Rdb to choose the best transaction mode based on
various database and user preferences. Ideally, Rdb would start a READ
ONLY transaction but may need to upgrade this to a different type of
transaction based on the environment.

1. If SNAPSHOTS are ENABLED DEFERRED, then a READ ONLY
transaction will be stalled until such time as current READ WRITE
transactions commit and then new READ WRITE transactions will start
writing SNAPSHOT rows. Utility read will try to avoid this overhead by
using a READ WRITE transaction.

2. Rdb uses the TRANSACTION MODES which were defined by CREATE or
ALTER DATABASE, plus those that might be inherited from the current
user’s PROFILE (see the CREATE and ALTER PROFILE statement). It
might be that READ ONLY transactions are forbidden or that some types
of READ WRITE transactions are not possible.

3. If this is a standby database (see the HOT STANDBY feature), then only
READ ONLY transactions are permitted.

4. If Rdb is forced to use a READ WRITE transaction, it will implicitly use
ISOLATION LEVEL READ COMMITTED and also disable the ability to
perform DELETE, INSERT and UPDATE operations.

SQL Statements 8–307

SET TRANSACTION Statement

Examples

Example 1: Starting a read-only transaction

SQL> SET TRANSACTION READ ONLY;

This statement lets you read data from the database but not insert or update
data. When you retrieve data, you see the database records as they existed at the
time SQL started the transaction. You do not see any updates to the database
made after that time.

Example 2: Reserving specific tables with the SET TRANSACTION statement

The following statement lets you specify the intended action for each table in the
transaction:

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SET TRANSACTION READ WRITE RESERVING
cont> EMPLOYEES FOR PROTECTED WRITE,
cont> JOBS, SALARY_HISTORY FOR SHARED READ;

Assume that this transaction updates the EMPLOYEES table based on values
found in two other tables: JOBS and SALARY_HISTORY.

• The transaction must update the EMPLOYEES table, so EMPLOYEES is
readied for protected write access.

• The program will only read values from the JOBS and SALARY_HISTORY
tables, so there is no need for write access or protected write access. However,
you do intend to update records in the transaction, so a read-only transaction
is not appropriate.

Example 3: Specifying multiple databases in a SET TRANSACTION statement

You can access multiple databases from within the same transaction. This
example explains how you can benefit from this feature.

Read-only transactions use a snapshot version of the data, and therefore you
might encounter older values in the data your application retrieves. because
another transaction using a read/write transaction might be updating a table.

The snapshot file represents a before-image of the database rows that the other
program is updating. If you require The very latest data, you should specify
read/write access for both databases, and permit other users to read one of the
databases by including the shared read mode. In this way, you maintain data
consistency during updates, while permitting concurrent data retrieval from the
database that your program reads.

However, any read/write transaction you set offers reduced concurrent access
when compared to read-only access. For that reason, use read/write transactions
only when necessary.

Before you can use the multiple database feature of the SET TRANSACTION
statement, you must issue a DECLARE ALIAS statement that specifies each
database you intend to access. The DECLARE ALIAS statement must include
an alias. For example, the following DECLARE ALIAS statements identify two
databases required by an update application:

8–308 SQL Statements

SET TRANSACTION Statement

EXEC SQL
DECLARE DB1 ALIAS FOR FILENAME PERSONNEL;
END EXEC

EXEC SQL
DECLARE DB2 ALIAS FOR FILENAME benefits;
END EXEC

Because the program needs to only read the EMPLOYEES table of the
PERSONNEL database but needs to change values in two tables (TUITION
and STATUS) in the BENEFITS database, the update program might contain the
following SET TRANSACTION statement:

EXEC SQL SET TRANSACTION
ON DB1 USING (READ ONLY
RESERVING DB1.EMPLOYEES FOR SHARED READ)

AND
ON DB2 USING (READ WRITE
RESERVING DB2.TUITION FOR SHARED WRITE

DB2.STATUS FOR SHARED WRITE)

END EXEC

Example 4: Specifying a multischema database in a SET TRANSACTION
statement

If one of the databases you access is a multischema database, you must specify
it using a delimited identifier. The following example shows how to access the
single-schema personnel database and the multischema corporate_data database.
The table EMPLOYEES is located within the schema PERSONNEL in the catalog
ADMINISTRATION within the CORPORATE_DATA database.

SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> ATTACH ’ALIAS PERS FILENAME personnel’;
SQL> SET QUOTING RULES ’SQL92’;
SQL> SET CATALOG ’"CORP.ADMINISTRATION"’;
SQL> SET SCHEMA ’"CORP.ADMINISTRATION".PERSONNEL’;
SQL> --
SQL> SET TRANSACTION ON CORP USING (READ ONLY
cont> RESERVING "CORP.EMPLOYEES" FOR SHARED READ)
cont> AND ON PERS USING (READ WRITE RESERVING
cont> PERS.EMPLOYEES FOR SHARED WRITE);

Example 5: Specifying evaluation at verb time in a SET TRANSACTION
statement

The following example shows an insert into the DEGREES table of a newly
acquired degree for EMPLOYEE_ID 00164. The new degree, MME, is evaluated
and, because it is not one of the acceptable degree codes, an error message is
returned immediately.

SQL> ATTACH ’FILENAME personnel’;
SQL> SET TRANSACTION READ WRITE
cont> EVALUATING DEGREES_FOREIGN1 AT VERB TIME,
cont> DEGREES_FOREIGN2 AT VERB TIME,
cont> DEG_DEGREE_VALUES AT VERB TIME
cont> RESERVING DEGREES FOR PROTECTED WRITE,
cont> COLLEGES, EMPLOYEES FOR SHARED READ;
SQL> SHOW TRANSACTION
Transaction information:

Statement constraint evaluation is off

SQL Statements 8–309

SET TRANSACTION Statement

On the default alias
Transaction characteristics:

Read Write
Evaluating constraint DEGREES_FOREIGN1 at verb time
Evaluating constraint DEGREES_FOREIGN2 at verb time
Evaluating constraint DEG_DEGREE_VALUES at verb time
Reserving table DEGREES for protected write
Reserving table COLLEGES for shared read
Reserving table EMPLOYEES for shared read

Transaction information returned by base system:
a read-write transaction is in progress
- updates have not been performed
- transaction sequence number (TSN) is 153
- snapshot space for TSNs less than 153 can be reclaimed
- session ID number is 21

SQL> INSERT INTO DEGREES
cont> (EMPLOYEE_ID, COLLEGE_CODE, YEAR_GIVEN,
cont> DEGREE, DEGREE_FIELD)
cont> VALUES
cont> (’00164’, ’PRDU’, 1992,
cont> ’MME’, ’Mech Enging’);
%RDB-E-INTEG_FAIL, violation of constraint DEG_DEGREE_VALUES caused
operation to fail
-RDB-F-ON_DB, on database DISK1:[JONES.PERSONNEL]PERSONNEL.RDB;1
SQL> ROLLBACK;

Example 6: Explicitly setting isolation levels in a transaction

This statement lets you read data from and write data to the database. It also
sets the transaction to run at isolation level READ COMMITTED, not at the
higher default isolation level SERIALIZABLE.

SQL> SET TRANSACTION READ WRITE ISOLATION LEVEL REPEATABLE READ;

Example 7: Creating index concurrently

The following example shows how to reserve the table for shared data definition
and how to create an index:

SQL> SET TRANSACTION READ WRITE
cont> RESERVING EMPLOYEES FOR SHARED DATA DEFINITION;
SQL> --
SQL> CREATE INDEX EMP_LAST_NAME1 ON EMPLOYEES (LAST_NAME);
SQL> --
SQL> -- Commit the transaction immediately.
SQL> --
SQL> COMMIT;

Example 8: Reserving a Partition

SQL> -- This example locks only the second partition of
SQL> -- the EMPLOYEES table in exclusive write mode.
SQL> -- The advantage of this is that the process can insert,
SQL> -- update, or delete from this partition without writing
SQL> -- to the snapshot (.snp) file, and in general, uses fewer
SQL> -- resources for operations on the partition.
SQL> SET TRANSACTION READ WRITE
cont> RESERVING EMPLOYEES PARTITION (2) FOR EXCLUSIVE WRITE;

Example 9: Interaction between RESERVING clause and column DEFAULT
values

This example examines the interaction between the RESERVING clause and
DEFAULT values that reference tables (either directly and indirectly). The
RESERVING clause of SET TRANSACTION limits the transaction to just those
tables listed for the transaction.

8–310 SQL Statements

SET TRANSACTION Statement

Tables directly referenced by constraints, triggers, COMPUTED BY columns,
AUTOMATIC columns and DEFAULT values are implicitly reserved for SHARED
READ. However, if these definitions reference the table indirectly via a stored
function then that table is not considered for automatic reservation.

This example uses DEFAULT value to contrast three different mechanisms and
their interactions with the RESERVING clause. The same technique could be
applied to other definitions such as triggers and constraints.

The DEFAULT value is derived from a secondary table (DEFAULTS) that holds
one value for each valid user of the database. The DEFAULT is retrieved based
on the value of CURRENT_USER. In the three tables below the value is either
directly fetched (SAMPLE_TABLE2), or via a stored function (SAMPLE_TABLE1,
and SAMPLE_TABLE3).

The SQL function GET_DEFAULT3 includes a LOCK TABLE statement to ensure
that the table is correctly reserved. Oracle recommends this approach since it
relieves the programmer from knowing which tables might be required when
coding a RESERVING clause for a transaction.

SQL> set dialect ’sql99’;
SQL>
SQL> create table DEFAULTS
cont> (user_id rdb$object_name primary key,
cont> valid_number integer);
SQL> insert into DEFAULTS values (’SMITH’, 100);
1 row inserted
SQL>
SQL> create module UTL1
cont> function GET_DEFAULT1 ()
cont> returns integer
cont> not deterministic;
cont> return (select valid_number from DEFAULTS
cont> where user_id = CURRENT_USER);
cont> end module;
SQL>
SQL> create table SAMPLE_TABLE1
cont> (id integer identity,
cont> quantity integer
cont> default GET_DEFAULT1 ()
cont>);
SQL>
SQL> create table SAMPLE_TABLE2
cont> (id integer identity,
cont> quantity integer
cont> default (select valid_number from DEFAULTS
cont> where user_id = CURRENT_USER)
cont>);
SQL>
SQL> create module UTL3
cont> function GET_DEFAULT3 ()
cont> returns integer
cont> not deterministic;
cont> begin
cont> lock table DEFAULTS for shared read mode;
cont> return (select valid_number from DEFAULTS
cont> where user_id = CURRENT_USER);
cont> end;
cont> end module;
SQL>
SQL> create table SAMPLE_TABLE3
cont> (id integer identity,

SQL Statements 8–311

SET TRANSACTION Statement

cont> quantity integer
cont> default GET_DEFAULT3 ()
cont>);
SQL>
SQL> commit;

The following transactions succeed or fail as explained in the example.

SQL> /*
***> Fails because the module references a table that is not reserved
***> */
SQL> set transaction read write
cont> reserving SAMPLE_TABLE1 for shared write;
SQL> insert into SAMPLE_TABLE1 default values;
%RDB-E-UNRES_REL, relation DEFAULTS in specified request is not a
relation reserved in specified transaction
SQL> rollback;
SQL>
SQL> /*
***> Succeeds because direct access to the table from the DEFAULT
***> is implicitly added to the reserving list as SHARED READ
***> */
SQL> set transaction read write
cont> reserving SAMPLE_TABLE2 for shared write;
SQL> insert into SAMPLE_TABLE2 default values;
1 row inserted
SQL> rollback;
SQL>
SQL> /*
***> Succeeds because the routine adds the table to the reserved
***> table list using LOCK TABLE.
***> */
SQL> set transaction read write
cont> reserving SAMPLE_TABLE3 for shared write;
SQL> insert into SAMPLE_TABLE3 default values;
1 row inserted
SQL> rollback;
SQL>

8–312 SQL Statements

SET VIEW UPDATE RULES Statement

SET VIEW UPDATE RULES Statement

Specifies whether or not SQL applies the ANSI/ISO SQL standard for updatable
views to views created during a session.

Environment

You can use the SET VIEW UPDATE RULES statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SET VIEW UPDATE RULES runtime-options

runtime-options

’string-literal’
parameter
parameter-marker

Arguments

’string-literal’
parameter
parameter-marker
Specifies the value of runtime-options, which must be one of the following:

• SQL89, SQL92, SQL99, SQL2011

• MIA

• ORACLE LEVEL1, ORACLE LEVEL2, ORACLE LEVEL3

• SQLV40

Usage Notes

• The dialect keyword SQLV40 specifies that the ANSI/ISO SQL standard for
updatable views is not applied. SQL considers views that meet the following
conditions to be updatable:

• The DISTINCT keyword is not specified.

• The FROM clause refers to only one table. This table must be either a
base table or a derived table that can be updated.

• The WHERE clause does not contain a subquery.

• The GROUP BY clause is not specified.

• The HAVING clause is not specified.

SQL Statements 8–313

SET VIEW UPDATE RULES Statement

The session default is SQLV40.

• All other dialect keywords specify that the ANSI/ISO SQL standard for
updatable views is applied to all views created during the session. Views that
do not comply with the ANSI/ISO SQL standard for updatable views cannot
be updated.

The ANSI/ISO SQL standard for updatable views requires the following
conditions to be met in the SELECT statement:

• The DISTINCT keyword is not specified.

• Only column names can appear in the select list. Each column name can
appear only once. Functions and expressions such as max(column_name)
or column_name+1 cannot appear in the select list.

• The FROM clause refers to only one table. This table must be either a
base table or a derived table that can be updated.

• The WHERE clause does not contain a subquery.

• The GROUP BY clause is not specified.

• The HAVING clause is not specified.

• If the SET DIALECT statement is processed after the SET VIEW UPDATE
RULES statement, it can override the setting of the SET VIEW UPDATE
RULES statement.

• Specifying the SET VIEW UPDATE RULES statement changes the view rules
for the current connection only. Use the SHOW CONNECTIONS statement
to display the characteristics of a connection.

Example

Example 1: Setting the view characteristics from SQLV40 to SQL99

SQL> ATTACH ’ALIAS ENV1 FILENAME ENVIRONMENT’;
SQL> CONNECT TO ’ALIAS ENV1 FILENAME ENVIRONMENT’ AS ’TEST’;
SQL> SHOW CONNECTIONS TEST
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

8–314 SQL Statements

SET VIEW UPDATE RULES Statement

Alias ENV1:
Identifier character set is DEC_MCS
Default character set is DEC_MCS
National character set is KANJI

SQL> --
SQL> -- Change the environment for view rules from SQLV40 to SQL99
SQL> --
SQL> SET VIEW UPDATE RULES ’SQL99’;
SQL> SHOW CONNECTIONS TEST
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: ANSI/ISO
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias ENV1:
Identifier character set is DEC_MCS
Default character set is DEC_MCS
National character set is KANJI

SQL Statements 8–315

SHOW Statement

SHOW Statement

Displays information about database entities and information about the
interactive SQL session.

Environment

You can use the SHOW statement only in interactive SQL.

Format

SHOW show-params-1
show-params-2
show-session-information

show-params-1 =

show-aliases
show-cache
show-catalogs
CHARACTER SETS
show-collating-sequence
show-connections
CURSORS
show-databases
DISPLAY
show-domains
FLAGS
show-functions
show-indexes
show-journals
show-modules
show-outlines

show-params-2 =

show-profiles
show-privileges
show-procedures
QUERY CONFIRM
QUERY LIMIT
show-roles
show-schemas
show-sequences
show-storage-areas
show-storage-maps
show-synonyms
show-tables
show-triggers
show-users
show-users-granting
show-users-with
VARIABLES
show-views

8–316 SQL Statements

SHOW Statement

show-aliases =

ALIASES
<alias>

,
*

show-cache =

CACHE
<name-list>

show-catalogs =

CATALOGS
name-list

show-collating-sequence =

COLLATING SEQUENCE
name-list

show-connections =

CONNECTIONS
DEFAULT
CURRENT
<connection-name>

,

show-databases =

DATABASES
<alias>

,
*

show-domains =

DOMAINS
SYSTEM name-list
ALL

SQL Statements 8–317

SHOW Statement

show-functions =

FUNCTIONS
SYSTEM (COMMENT) name-list
ALL ID

LANGUAGE
MODULE
OWNER
PARAMETER
SOURCE

,

show-indexes =

INDEXES
SYSTEM INDICES ON <table-name>
ALL ,

name-list
(CARDINALITY) name-list

PARTITIONS
,

show-journals

JOURNALS
name-list

show-modules =

MODULES
SYSTEM (COMMENT) name-list
ALL FUNCTIONS

ID
NAME
OWNER
PROCEDURES
VARIABLES

,

show-outlines

OUTLINES
name-list

show-profiles =

PROFILES
name-list

8–318 SQL Statements

SHOW Statement

name-list =

*
<alias> . <object-name>

,

show-privileges =

AUDIT ON TABLES <table-name>
,

PRIVILEGES ON VIEWS <view-name>
,

PROTECTION ON COLUMNS <column-name>
,

DATABASE <alias>
,

FUNCTION <function-name>
,

PROCEDURE <procedure-name>
,

MODULE <module-name>
,

SEQUENCE <sequence-name>
,

show-procedures =

PROCEDURES
SYSTEM (COMMENT) name-list
ALL ID

LANGUAGE
MODULE
OWNER
PARAMETER
SOURCE

,

show-roles =

ROLES
name-list

show-schemas =

SCHEMAS
name-list

SQL Statements 8–319

SHOW Statement

show-sequences=

SEQUENCES
SYSTEM name-list
ALL

show-storage-areas =

STORAGE AREAS
name-list
(USAGE) name-list

ATTRIBUTES
,

show-storage-maps =

STORAGE MAPS
SYSTEM name-list
ALL (PARTITIONS) name-list

show-synonyms =

SYNONYMS
name-list

show-tables =

TABLES
SYSTEM name-list
ALL (CARDINALITY) name-list

COLUMNS
COMMENT
CONSTRAINTS
INDEXES
STORAGE MAPS
TRIGGERS

,

8–320 SQL Statements

SHOW Statement

show-triggers =

TRIGGERS
SYSTEM name-list
ALL

show-users =

USERS
name-list

show-users-granting =

USERS GRANTING

db-privs-ansi ON DATABASE <alias>
,

table-privs-ansi ON TABLE <table-name>
,

column-privs-ansi ON COLUMN <column-name>
,

ext-routine-privs-ansi ON FUNCTION <function-name
,

ON PROCEDURE <procedure-name
,

module-privs-ansi ON MODULE <module-name>
,

sequence-privs-ansi ON SEQUENCE <sequence-name>
,

TO identifier-ansi-style
PUBLIC

show-views =

VIEWS
SYSTEM (COLUMNS)
ALL COMMENT

SOURCE
,

name-list

SQL Statements 8–321

SHOW Statement

db-privs-ansi =

SELECT
INSERT
OPERATOR
DELETE
CREATE
ALTER
DROP
DBCTRL
DBADM
SHOW
REFERENCES
UPDATE
SECURITY
DISTRIBTRAN

,
ALL PRIVILEGES

table-privs-ansi =

SELECT
INSERT
OPERATOR
DELETE
CREATE
ALTER
DROP
DBCTRL
SHOW
REFERENCES

(<column-name>)
,

UPDATE
(<column-name>)

,
,

ALL PRIVILEGES

column-privs-ansi =

UPDATE
REFERENCES

,
ALL PRIVILEGES

ext-routine-privs-ansi =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

8–322 SQL Statements

SHOW Statement

module-privs-ansi =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

identifier-ansi-style =

user-identifier

show-users-with =

USERS WITH

db-privs-ansi ON DATABASE <alias>
,

table-privs-ansi ON TABLE <table-name>
,

column-privs-ansi ON COLUMN <column-name>
,

ext-routine-privs-ansi ON FUNCTION <function-name>
,

ON PROCEDURE <procedure-name>
,

module-privs-ansi ON MODULE <module-name>
,

sequence-privs-ansi ON SEQUENCE <sequence-name>
,

FROM identifier-ansi-style
PUBLIC

sequence-privs-ansi =

ALTER
DBCTRL
DROP
SELECT

,
ALL PRIVILEGES

SQL Statements 8–323

SHOW Statement

show-session-information =

ANSI DATE MODE
ANSI IDENTIFIERS MODE
ANSI QUOTING MODE
AUTOMATIC TRANSLATION
CONSTRAINT MODE
CONTINUATION CHARACTER
CURRENCY SIGN
DATE FORMAT
DICTIONARY
DIGIT SEPARATOR
DISPLAY
EXECUTION MODE
FLAGGER MODE
HOLD CURSORS MODE
LANGUAGE
RADIX POINT
SQLCA
TRANSACTION
VERSIONS
WARNING MODE

Arguments

*
alias.*
Specifies an asterisk wildcard, preceded by an optional alias. If you do not
precede the wildcard with an alias, SQL displays information about the objects
in the default database. If you precede the wildcard with an alias, SQL displays
information about objects in that database.

ALIASES
Displays information about aliases for all attached databases. For each alias,
SQL displays the path name or file name of the current default database, and the
file specification for the database file.

If you specify aliases by name, SQL displays information about whether or not
multischema mode, snapshots, carry-over locks, adjustable lock granularity,
global buffers, commit to journal optimization, and journal fast commit are
enabled. SQL displays the character sets of the alias if the database default,
national, or identifier character set differs from the session’s default, national,
or identifier character set. SQL also displays the journal fast commit checkpoint
and transaction intervals, the lock timeout interval, the number of users, number
of nodes, buffer size, number of buffers, number of recovery buffers, ACL-based
protections, storage areas, and whether or not the repository is required.

ANSI DATE MODE
Displays the default interpretation for columns with the DATE or CURRENT_
TIMESTAMP data type.

The DATE and CURRENT_TIMESTAMP data types, can be either OpenVMS or
ANSI/ISO. By default, both data types are interpreted as OpenVMS format.

Use the SET DEFAULT DATE FORMAT statement to change the default date.

8–324 SQL Statements

SHOW Statement

ANSI IDENTIFIERS MODE
Displays whether or not identifier checking is enabled. You must enclose reserved
words from the ANSI/ISO SQL standard within double quotation marks to supply
them as identifiers in SQL statements. When you enable identifier checking, SQL
issues an informational message after statements that misuse ANSI/ISO reserved
words. For a list of the reserved words, see Appendix F.4.

By default, identifier checking is disabled. To enable it, use the SET KEYWORD
RULES statement.

ANSI QUOTING MODE
Displays whether or not you must use double quotation marks to delimit the alias
and catalog name pair in subsequent statements. By default, SQL syntax allows
only single quotation marks.

Use the SET QUOTING RULES statement to change the quoting rules.

AUDIT ON
The SHOW AUDIT statement displays all of the audit information for the
specified databases, tables, views, columns, external functions, external
procedures, modules, or sequences.

When performing SHOW ON DATABASE, the list of audit identifiers will be
listed. For other database objects, only the privileges specified to cause auditing
are listed.

AUTOMATIC TRANSLATION
Displays the current setting as established using SET AUTOMATIC
TRANSLATION.

CACHE
Displays information about the specified cache. For example:

SQL> SHOW CACHE
Cache Objects in database with filename sample

CACHE1
CACHE2

SQL> SHOW CACHE cache1

CACHE1
Cache Size: 1000 rows
Row Length: 256 bytes
Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Reserved Rows: 20
Sweep Rows: 3000
No Sweep Thresholds
Allocation: 100 blocks
Extent: 100 blocks

CATALOGS
Displays information about the specified catalogs. If you do not specify any
aliases in the catalog names that you specify, SQL displays this information about
all attached databases.

CHARACTER SETS
Displays information about the specified character sets for the session and all
attached databases.

SQL Statements 8–325

SHOW Statement

COLLATING SEQUENCE sequence-name
Displays the collating sequences for schemas and domains.

CONNECTIONS DEFAULT
CONNECTIONS CURRENT
CONNECTIONS connection-name
Displays database information for the specified connection.

CONSTRAINT MODE
Displays the default setting for constraint evaluation for any transactions
starting after the current transaction. If there is a current transaction, displays
the constraint evaluation mode for the current transaction.

When the constraint mode is IMMEDIATE, SQL evaluates all commit-time
constraints at the end of each statement and at commit time, until the transaction
completes or until you set the constraint mode to OFF. When the constraint mode
is DEFERRED (the default setting), constraint evaluation is deferred until
commit time.

CONTINUE CHARACTER
Displays the value for the continuation character, as established using SET
CONTINUE CHARACTER.

CURRENCY SIGN
Displays the currency indicator, such as the dollar sign ($), that will be used in
output displays.

CURSORS
Displays current cursors.

DATABASES
Displays information about the specified databases. For each database, SQL
displays the alias, the type of database, any defined collating sequence, and the
file specification for the database file.

If the database was declared using a repository path name, SQL also displays
that path name. If you do not specify any aliases with the SHOW DATABASES
statement, SQL displays this information about all declared databases.

SQL displays the character sets of the database if the default, national, or
identifier character set differs from the session’s default, national, or identifier
character set.

If you do specify an alias, SQL also displays information about whether or not
multischema mode, snapshots, carry-over locks, adjustable lock granularity, global
buffers, commit to journal optimization, journaling, and journal fast commit are
enabled. SQL also displays the journal fast commit checkpoint and transaction
intervals, the lock timeout interval, the number of unused storage areas, the
number of unused journal files, the number of users, number of nodes, buffer size,
number of buffers, number of recovery buffers, ACL-based protections, storage
areas, and whether or not the repository is required.

DATE FORMAT
Displays the values for the date-number and time-number arguments of the
SET DATE FORMAT DATE date-number and SET DATE FORMAT TIME
time-number statements.

8–326 SQL Statements

SHOW Statement

DICTIONARY
Displays the current default dictionary directory in the data dictionary.

DIGIT SEPARATOR
Displays the character that will be used as the digit separator in output displays.
(The digit separator is the symbol that separates groups of three digits in values
greater than 999. For example, the comma is the digit separator in the number
1,000.)

DISPLAY
Displays the current settings as established using SET DISPLAY, SET
FEEDBACK, SET HEADING, SET LINE LENGTH (or SET LINESIZE), SET
PAGE LENGTH (or SET PAGESIZE), SET TIMING and SET NULL. Some values
(such as line and page length) are determined from the OpenVMS terminal
characteristics when starting interactive SQL.

DOMAINS
Displays the names, data types, and character sets of specified domains. If you
specify the SHOW DOMAINS statement without any arguments, SQL displays
names, data types, and character sets of all domains in all attached databases.

EXECUTION MODE
Shows whether or not SQL executes the statements that you issue in your
interactive SQL session. The default is to execute the statements as you issue
them. However, if you have issued a SET NOEXECUTE statement in your
session, SQL will not execute subsequent statements.

You can use the SET NOEXECUTE statement to display access strategies and
check for syntax errors. For more information, see the SET Statement.

FLAGGER MODE
Shows whether or not SQL flags statements containing nonstandard syntax for
all set flaggers. If you specify SET FLAGGER ON, which is equivalent to SET
FLAGGER SQL92_ENTRY ON, the SHOW FLAGGER statement informs you
that flagging for the ANSI/ISO standard is set. If you specified SET FLAGGER
MIA ON, the SHOW FLAGGER statement informs you that flagging for the MIA
standard is set.

FLAGS
Displays the database system debug flags that are enabled for the current session.

FROM identifier-ansi-style
FROM PUBLIC
Specifies the identifiers for the new or modified access privilege set entry.
Specifying PUBLIC is equivalent to a wildcard specification of all user identifiers.

FUNCTIONS
Displays information about a specified function; either external or stored. When
you enter the SHOW FUNCTIONS statement without any arguments, SQL
displays the name of the function only. The following table lists the information
that you can display using a set of keywords with the SHOW FUNCTIONS
statement:

SQL Statements 8–327

SHOW Statement

You Specify This: SQL Displays Information About:

COMMENT The description of the function. If none exists, nothing
displays.

ID The unique identification assigned to the function.
LANGUAGE The host language in which the function is coded.
MODULE The name of the module in which the function is defined.
OWNER The owner of the function.
PARAMETER Information about the parameters, including the number

of arguments, the data type, return type, and how the
parameter is passed.

SOURCE Displays the source definitions for the specified functions.

HOLD CURSORS MODE
Displays the default mode for hold cursors. For example:

SQL> SHOW HOLD CURSORS MODE
Hold Cursors default: WITH HOLD PRESERVE NONE

INDEXES
Displays information about specified indexes. SQL displays the name of the
index, the associated column and table, the size of the index key, if the definition
allows duplicate values for the column, the type of index (sorted or hashed), and
whether index compression is enabled or disabled. If you specify the SHOW
INDEXES statement without any arguments, SQL displays definitions of all
indexes in all declared databases.

You Specify This: SQL Performs This Action:

CARDINALITY Adds the index and column prefix cardinality values to the
SHOW output.

PARTITIONS Displays the index partitions showing the partition name and
number the name of the storage area used for the partition.

JOURNALS
Displays information about specified journal files. SQL displays the name of the
file specification and, if created, the backup file specification.

LANGUAGE
Displays the language to be used for translation of month names and
abbreviations in date and time input and display. The language name also
determines the translation of other language-dependent text, such as the
translation for the date literals YESTERDAY, TODAY, and TOMORROW.

MODULES
Displays information about specified modules.

If you do not specify any of the SHOW MODULES options listed in the following
table, SQL displays information about all these options:

8–328 SQL Statements

SHOW Statement

You Specify This: SQL Displays Information About:

COMMENT The description of the module. If none exists, nothing
displays.

FUNCTIONS The stored functions contained in the module.
ID The unique identification assigned to the module.
NAME The name of the module.
OWNER The owner of the module. If the module is a definer’s rights

module, the definer’s user name displays, otherwise for an
invoker’s rights module the output will be blank.

PROCEDURES The stored procedures contained in the module.
VARIABLES Displays module global variables.

name-list
Most SHOW statements accept an optional name-list which can specify the name
of the object, or a wildcard (*) to indicate a summary of all such objects. The
wildcard or name can be prefixed by an alias name, or for multischema databases
a catalog and schema.

Names are by default in uppercase. If the object was defined in mixed or lower
case, or with other special characters then use the SET DIALECT, or SET
QUOTING RULES statements to enable delimited identifers. Then use quotes
("") around the name in the SHOW statement.

object-name
Specifies the name of an object whose definition you want to display.

ON DATABASE alias
Specifies the databases for which you want to display access privilege
set information with the SHOW AUDIT, SHOW PRIVILEGES or SHOW
PROTECTION statements. You can specify a list of aliases, but you must
specify at least one. To display privileges for the default database, use the alias
RDB$DBHANDLE.

ON TABLES table-name
ON VIEWS view-name
ON COLUMNS column-name
ON FUNCTIONS function-name
ON PROCEDURES procedure-name
ON MODULES module-name
ON SEQUENCES sequence-name
Specifies the object for which you want to display access privilege set information
with the SHOW AUDIT, SHOW PRIVILEGES or SHOW PROTECTION
statements. You can specify a list of names, but you must specify at least
one item to display a list. You must qualify a column name with at least the
associated table name.

In an ANSI/ISO-style database, the SHOW PROTECTION statement displays
which privileges have the option of being granted to other users and which
privileges are without the grant option. See the SHOW USERS WITH and
SHOW USERS GRANTING statements in this section for more information about
displaying privileges granted directly or indirectly to other users.

SQL Statements 8–329

SHOW Statement

ON table-name
Specifies the table or tables for which you want to see associated index definitions.

OUTLINES
Displays the definition of the specified outline. SQL displays the outline name,
ID number, mode, query, compliance, and comment if one exists.

If you issue the SHOW OUTLINE statement without the name of a specific
outline, the names of all the outlines stored in the database are displayed.
However, the invalid outlines are not marked as invalid.

PRIVILEGES
PROTECTION
Displays current user identifier and available access rights for the specified
object.

• The SHOW PRIVILEGES statement displays the current user identifier and
available access rights to the specified databases, tables, views, columns,
external functions, external procedures, modules, or sequences.

This statement displays not only the privileges that are explicitly granted to
the user, but also any privileges that the user inherits from database access
or the operating system.

In a client/server environment, the entry shows the identifier of the client.
For example, if a user attaches to a remote database using the USER and
USING clauses, SQL shows the privileges for the user specified in those
clauses.

In an environment that is not client/server, such as when you attach to a local
database, SQL shows not only the privileges of the database user, but of the
logged-on process. For example, if user heleng, with the OpenVMS privilege
BYPASS, uses the USER and USING clauses to attach to the database as
user rhonda, SQL shows that user rhonda has the privileges inherited from
the logged-on process heleng, as well as privileges for user rhonda.

• The SHOW PROTECTION statement displays all of the entries in the access
privilege set for the specified databases, tables, views, columns, external
functions, external procedures, modules, or sequences.

PROCEDURES
Displays information about a specified procedure; either external or stored.

If you do not specify any of the SHOW PROCEDURES attributes (COMMENT,
ID, LANGUAGE, MODULE, OWNER, SOURCE, or PARAMETER), by default
you will see the display for all these options.

You Specify This: SQL Displays Information About:

COMMENT The description of the stored procedure. If none exists,
nothing displays.

ID The unique identification assigned to the procedure.
LANGUAGE The language in which the procedure source is coded.
MODULE The identification number of the module to which a procedure

belongs.
OWNER The owner of the procedure.

8–330 SQL Statements

SHOW Statement

You Specify This: SQL Displays Information About:

PARAMETER Information about the parameters; including the number of
arguments, the data type, and how the parameter is passed.

SOURCE Displays the source definitions for the specified procedures.

PROFILES
Displays the definition of the specified profile. If you do not specify a wildcard or
list of profile names, SQL displays the names of all the profiles in all attached
databases.

QUERY CONFIRM
Shows whether or not SQL displays the cost estimates for a query before
executing that query.

QUERY LIMIT
Displays information about the number of rows a query can return and the
amount of time used to optimize a query for execution.

RADIX POINT
Displays the character that will be used as the radix point in output displays.
(The radix point is the symbol that separates units from decimal fractions. For
example, in the number 98.6, the period is the radix point.)

ROLES
Displays the definition of the specified role. SQL displays the role name, ID
number, and any comments associated with the role definition.

SCHEMAS
Displays the names of specified schemas. If you do not specify an alias as part of
a schema name, SQL displays schema information for all the attached databases.
For each database that is not multischema, SQL displays the message, ‘‘No
schemas found’’. For each multischema database, SQL displays the alias, followed
by a list of schemas contained in that database. Each schema name in the list is
preceded by the catalog and alias names.

SEQUENCES
Displays the definition of the specified sequence. SQL displays the sequence
name, ID number, and the sequence attributes.

SQLCA
Displays the contents of the SQL Communications Area (SQLCA). The SQLCA is
a collection of variables that SQL uses to provide information about the execution
of SQL statements to application programs. In interactive SQL, you can use the
SHOW SQLCA statement to learn about the different variables in the SQLCA.
See Appendix C for more information about the SQLCA.

STATISTICS

Displays simple process statistics for the current process. This command is used
primarily to compare resource usage and elapsed time for different queries.

SQL Statements 8–331

SHOW Statement

The following example shows the output after performing a typical query:

SQL> select count (*)
cont> from employees natural full outer join job_history;

274
1 row selected
SQL> show statistics;

process statistics at 5-MAR-2006 05:57:48.28
elapsed time = 0 00:00:00.16 CPU time = 0 00:00:00.05

page fault count = 430 pages in working set = 22768
buffered I/O count = 26 direct I/O count = 83

open file count = 12 file quota remaining = 7988
locks held = 138 locks remaining = 16776821

CPU utilization = 31.2% AST quota remaining = 995

The statistics are reset after each execution of the SHOW STATISTICS command.

STORAGE AREAS
Displays information about storage areas. If you do not specify a wildcard or list
of storage area names, SQL displays the names of all the storage areas in all
attached databases.

You Specify This: SQL Displays Information About:

USAGE Usage, object name, storage map, and storage map partition
number for the specified storage area. Partition numbers are
always shown in parentheses, and may be accompanied by
a storage map name. For example, for an index there is no
special map because it is part of the index. For a table, the
map is an extra object and therefore is reported.

ATTRIBUTES Storage area type, access, page format, page size, storage
area file, storage area allocation, storage area extent
minimum and maximum, storage area extent percent,
snapshot file, snapshot allocation, snapshot extent minimum
and maximum, snapshot extent percent, whether extents are
enabled or disabled, and the locking level for the specified
storage area.

STORAGE MAPS
Displays information about storage maps. If you do not specify a wildcard or list
of storage map names, SQL displays the names of all the storage maps in all
attached databases.

You Specify This: SQL Displays Information About:

PARTITIONS Storage map partitions showing the partition name, number
and the name of the storage area used for the partition

SYNONYMS
Displays information about the specified synonyms. If you do not specify any
aliases in the synonym names that you specify, SQL displays this information
about all attached databases. The name of the target object, possibly another
synonym, is displayed.

8–332 SQL Statements

SHOW Statement

SYSTEM
ALL
Controls whether SQL displays system-defined domains, indexes, sequences,
storage maps, tables, or views in the output of the SHOW statement.

• If you do not specify either SYSTEM or ALL, the display includes only
user-defined elements.

• If you specify SYSTEM, the display includes elements created for use by the
database system, or layered applications such as the OCI Services component
of SQL/Services.

• If you specify ALL, the display includes both user-defined and system-defined
elements.

TABLES
Displays information about tables and views. If you do not specify a wildcard or
list of table and view names, SQL displays the names of all the tables and views
in all attached databases.

If you do not specify any of the SHOW TABLES options (CARDINALITY,
COLUMNS, COMMENT, CONSTRAINTS, INDEXES, STORAGE MAPS, or
TRIGGERS), by default you will see the display for all these options including the
character set for each column of the specified table.

You Specify This: SQL Displays Information About:

CARDINALITY Displays the approximate cardinality as recorded in the Rdb
system tables for the named tables and their indices.

COLUMNS Each column name, data type, and domain name for the
specified tables.

COMMENT Comments for the specified tables.
CONSTRAINTS Constraints for the specified tables and the constraints

referencing the specified tables. The display shows the name
and type of each constraint, its evaluation time, and its
source definition.

INDEXES Indexes for the specified tables. The display shows the name
and type of each index, if duplicates are allowed, and if
compression is enabled or disabled.

STORAGE MAPS Names of the storage maps for the specified tables.
TRIGGERS Information about triggers. If you do not specify a wildcard

or a trigger name, SQL displays the names of all the triggers
in all attached databases.

TO identifier-ansi-style
TO PUBLIC
Specifies the identifiers for the new or modified access privilege set entry.
Specifying PUBLIC is equivalent to a wildcard specification of all user identifiers.

TRANSACTION
Displays the characteristics of the current transaction or, if there is no active
transaction, the characteristics specified in the last DECLARE TRANSACTION
statement. For each database within the scope of the transaction, SQL displays
the following:

• Transaction

SQL Statements 8–333

SHOW Statement

• Tables specified in the RESERVING clause of the DECLARE TRANSACTION
or SET TRANSACTION statement

• Share mode and lock type for each of those tables

• If fast commit processing is enabled

In addition, the SHOW TRANSACTION statement displays transaction
information returned by the base database system about the transaction, such as
whether or not the transaction is active.

TRIGGERS
Displays information about the specified trigger. If you do not specify a wildcard
or list of trigger names, SQL displays the names of all the triggers in all attached
databases.

USERS
Displays the definition of the specified database user. SQL displays the database
user name (such as defined by the CREATE USER statement), how the user
will be authenticated (currently, only through the operating system), whether
the account is locked or unlocked, and any comments associated with the user
definition.

USERS GRANTING
Displays all the users who gave a particular privilege to a particular user. This
statement displays the privileges that need to be revoked to take a privilege away
from the user, either directly or indirectly.

USERS WITH
Displays all the users who received a particular privilege from a particular user,
including all the users who indirectly received privileges. This is also the list of
users who lose a particular privilege when it is taken away from any users who
granted the privilege.

VARIABLES
Displays information about declared variables.

VERSIONS
Displays the version of SQL and the underlying software components.

VIEWS
Displays information about views. If you do not specify a wildcard or list of view
names, SQL displays the names of all the views in all attached databases.

If you do not specify any of the SHOW VIEW options (COLUMNS, COMMENT,
or SOURCE), by default you will see the display for all these options.

You Specify This: SQL Displays Information About:

COLUMNS Each column name, data type, and domain name for the
specified views.

COMMENT Comments for the specified views.
SOURCE Source definitions for the specified views.

WARNING MODE
Displays the default setting for warning messages. If WARNING MODE is set
to ON, SQL flags statements containing obsolete SQL syntax. Obsolete syntax is

8–334 SQL Statements

SHOW Statement

syntax that was allowed in previous versions of SQL but has changed. Oracle Rdb
recommends that you avoid using such syntax because it may not be supported in
future versions. By default, SQL displays a warning message after any statement
containing obsolete syntax (WARNING MODE ON).

To suppress messages about obsolete syntax, use the SET WARNING
NODEPRECATE statement.

Usage Notes

• The SET DISPLAY NO COMMENT statement will disable the display of
COMMENT information by all SHOW commands.

• If the database default character set and the national character set for the
database differ from the session character sets, the SHOW ALIASES and
SHOW DATABASES statements display the character sets for the specified
database.

• If the character set of a domain, parameter, or table is different than the
database default character set, the SHOW statements display the character
set of the specified domain or table. Otherwise, the display of the character
set information is suppressed.

• The SHOW INDEXES statement displays the size of the key for the specified
index.

• If you attach to the same database twice, SHOW statements may fail with a
deadlock error. You can avoid this error by issuing a COMMIT statement.

• If you use the ALTER TABLE statement to change the order in which
columns are displayed, that ordering is also reflected when you issue a SHOW
TABLE statement.

• If you issue a SHOW TABLES (CONSTRAINTS) statement, it indicates
whether or not the constraint has been disabled.

• If you issue a SHOW TRIGGERS statement, it indicates whether or not the
trigger has been disabled.

• The following usage notes apply to synonyms only:

If neither synonym name nor asterisk (*) is provided, then a list of all
synonyms will be displayed with the type of object. If the word "synonym"
appears in the description, then the source of this synonym is another
synonym. In this case, use SHOW SYNONYM on the source object to get
more information, otherwise use the appropriate SHOW statement for the
named object.

If an asterisk (*) or a synonym name is specified then the synonym, its
comment and details about the source object are displayed.

If a synonym is defined for a table, view, sequence, domain, module,
procedure or function, then a SHOW for that type of object will also list
the defined synonyms.

• The following SHOW commands allow the specified name to contain wildcard
patterns that include "%", "_", and "\" (as the escape character) in order
to select a subset of object names: SHOW COLLATING SEQUENCE,
SHOW DOMAINS, SHOW FUNCTIONS, SHOW INDEXES, SHOW
MODULES, SHOW OUTLINES, SHOW PROCEDURES, SHOW PROFILES,

SQL Statements 8–335

SHOW Statement

SHOW ROLES, SHOW SEQUENCES, SHOW STORAGE MAPS, SHOW
SYNONYMS, SHOW TABLES, SHOW TRIGGERS, SHOW USERS, and
SHOW VIEWS.

For instance, the following query will display all tables with the string "JOB"
in the name.

SQL> show table (comment) %JOB%
Information for table CURRENT_JOB

Comment on table CURRENT_JOB:
View to provide the current job for employees

Information for table JOBS

Comment on table JOBS:
Possible jobs in the company

Information for table JOB_HISTORY

Comment on table JOB_HISTORY:
Employment history within the company

SQL>

Note

This support is not currently available for multischema databases.

Refer to the documentation on the LIKE clause for information on the
wildcard characters "%" and "_". For SHOW commands, the escape character
is defined implicitly as "\".

• The following SHOW commands allow synonyms to be used to identify the
object to be displayed: SHOW DOMAINS, SHOW FUNCTIONS, SHOW
MODULES, SHOW PROCEDURES, SHOW SEQUENCES, SHOW TABLES,
and SHOW VIEWS.

Note

This support is not currently available for multischema databases.

Examples

Example 1: Using the SHOW statement displays

The following log file from an interactive SQL session illustrates some of the
arguments for the SHOW statement:

8–336 SQL Statements

SHOW Statement

SQL> -- Show the session character sets.
SQL> --
SQL> SHOW CHARACTER SETS;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED
SQL> --
SQL> -- Attach to the database and show database character sets.
SQL> --
SQL> ATTACH ’FILENAME MIA_CHAR_SET’;
SQL> SHOW CHARACTER SETS;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias RDB$DBHANDLE:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> --
SQL> -- Attach to the second database and show character sets of both.
SQL> --
SQL> ATTACH ’ALIAS MIA1 FILENAME MIA_CHAR_SET’;
SQL> SHOW CHARACTER SETS;
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias RDB$DBHANDLE:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> --
SQL> -- SHOW ALIAS examples.
SQL> --
SQL> SHOW ALIAS;
Default alias:

Oracle Rdb database in file MIA_CHAR_SET
Alias MIA1:

Oracle Rdb database in file MIA_CHAR_SET
SQL> SHOW ALIAS MIA1;
Alias MIA1:

Oracle Rdb database in file MIA_CHAR_SET
Multischema mode is disabled
Default character set is DEC_KANJI
National character set is KANJI
Identifier character set is DEC_KANJI
Number of users: 50
Number of nodes: 16
Buffer Size (blocks/buffer): 6
Number of Buffers: 20
Number of Recovery Buffers: 20
Snapshots are Enabled Immediate

.

.

SQL Statements 8–337

SHOW Statement

.
ACL based protections

Storage Areas in database with alias MIA1
RDB$SYSTEM Default and list storage area

Journals in database with alias MIA1
No Journals Found

Cache Objects in database MIA1
No Caches Found

SQL> --
SQL> -- SHOW CONNECTIONS examples.
SQL> --
SQL> CONNECT TO ’ALIAS MIA1 FILENAME MIA_CHAR_SET’ AS ’TEST’;
SQL> SHOW CONNECTIONS;
RDB$DEFAULT_CONNECTION
-> TEST
SQL> SHOW CONNECTIONS DEFAULT;
Connection: RDB$DEFAULT_CONNECTION
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40

.

.

.
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias RDB$DBHANDLE:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> SHOW CONNECTIONS TEST;
Connection: TEST
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: SQLV40
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

8–338 SQL Statements

SHOW Statement

SQL> --
SQL> CONNECT TO ’ALIAS MIA1 FILENAME MIA_CHAR_SET’ AS ’test1’;
SQL> --
SQL> -- You must set quoting rules to the SQL99 environment and use
SQL> -- double quotation marks (") to display the settings of the
SQL> -- ’test1’ connection or use SHOW CONNECTIONS CURRENT.
SQL> --
SQL> SHOW CONNECTIONS;
RDB$DEFAULT_CONNECTION
TEST
-> test1
SQL> SHOW CONNECTIONS test1;
Connection: TEST1
%SQL-F-NOSUCHCON, There is not an active connection by that name
SQL> SET QUOTING RULES ’SQL99’;
SQL> SHOW CONNECTIONS "test1";
Connection: test1
Default alias is RDB$DBHANDLE
Default catalog name is RDB$CATALOG
Default schema name is SMITH
Dialect: SQLV40
Default character unit: OCTETS
Keyword Rules: SQLV40
View Rules: SQLV40
Default DATE type: DATE VMS
Quoting Rules: ANSI/ISO
Optimization Level: DEFAULT
Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: OFF
Compound transactions mode: EXTERNAL
Default character set is DEC_MCS
National character set is DEC_MCS
Identifier character set is DEC_MCS
Literal character set is DEC_MCS
Display character set is UNSPECIFIED

Alias MIA1:
Identifier character set is DEC_KANJI
Default character set is DEC_KANJI
National character set is KANJI

SQL> SET CONNECT DEFAULT;
SQL> --
SQL> -- SHOW DATABASES examples.
SQL> --
SQL> SHOW DATABASES;
%SQL-I-SPELLCORR, identifier DATABASES replaced with DATABASE
Default alias:

Oracle Rdb database in file MIA_CHAR_SET
Alias MIA1:

Oracle Rdb database in file MIA_CHAR_SET
SQL> SHOW DATABASE RDB$DBHANDLE;
Default alias:

Oracle Rdb database in file MIA_CHAR_SET
Multischema mode is disabled
Default character set is DEC_KANJI
National character set is KANJI
Identifier character set is DEC_KANJI
Number of users: 50
Number of nodes: 16
Buffer Size (blocks/buffer): 6
Number of Buffers: 20
Number of Recovery Buffers: 20
Snapshots are Enabled Immediate

.

.

SQL Statements 8–339

SHOW Statement

.
ACL based protections

Storage Areas in database with filename MIA_CHAR_SET
RDB$SYSTEM Default and list storage area

Journals in database with filename MIA_CHAR_SET
No Journals Found

Cache Objects in database with filename MIA_CHAR_SET
No Caches Found

SQL> --
SQL> -- SHOW DOMAINS example.
SQL> --
SQL> SHOW DOMAINS;
User domains in database with filename MIA_CHAR_SET
No Domains Found
User domains in database with alias MIA1
No Domains Found

SQL> --
SQL> -- SHOW TABLES example.
SQL> --
SQL> SHOW TABLES;
User tables in database with filename MIA_CHAR_SET

COLOURS
User tables in database with alias MIA1

MIA1.COLOURS
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

Columns for table COLOURS:
Column Name Data Type Domain
----------- --------- ------
ENGLISH CHAR(8)
DEC_MCS 8 Characters, 8 Octets

FRENCH CHAR(8)
ISOLATIN9 8 Characters, 8 Octets

JAPANESE CHAR(8)
SHIFT_JIS 4 Characters, 8 Octets

ROMAJI CHAR(16)
KATAKANA CHAR(8)
KATAKANA 8 Characters, 8 Octets

HINDI CHAR(8)
DEVANAGARI 8 Characters, 8 Octets

GREEK CHAR(8)
ISOLATINGREEK 8 Characters, 8 Octets

ARABIC CHAR(8)
ISOLATINARABIC 8 Characters, 8 Octets

RUSSIAN CHAR(8)
ISOLATINCYRILLIC 8 Characters, 8 Octets

SQL> --
SQL> -- SHOW INDEXES example.
SQL> --
SQL> SHOW INDEXES;
User indexes in database with filename MIA_CHAR_SET

COLOUR_INDEX
User indexes in database with alias MIA1

MIA1.COLOUR_INDEX
SQL> SHOW INDEXES COLOUR_INDEX;
Indexes on table COLOURS:
COLOUR_INDEX with column JAPANESE
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED

Example 2: Showing features that internationalize your terminal session

8–340 SQL Statements

SHOW Statement

The following example displays SHOW statements that let you see the values for
the SET statements dealing with internationalization:

SQL> --
SQL> -- First, use the SET statement to specify nondefault values.
SQL> --
SQL> SET CURRENCY SIGN ’£’
SQL> --
SQL> SET DATE FORMAT TIME 15
SQL> --
SQL> SET DIGIT SEPARATOR ’.’
SQL> --
SQL> SET LANGUAGE GERMAN
SQL> --
SQL> SET RADIX POINT ’,’
SQL> --
SQL> -- Now look at the SHOW displays.
SQL> --
SQL> SHOW CURRENCY SIGN
Currency sign is ’£’.
SQL> --
SQL> SHOW DATE FORMAT
Output date and time format is:
TIME = 15 (for example: kl 00.00)

Input date and time format is:
tt-Monat-jjjj4 hh:mm:ss.cc2

SQL> --
SQL> SHOW DIGIT SEPARATOR
Digit separator is ’.’.
SQL> --
SQL> SHOW LANGUAGE
Language is GERMAN.
SQL> --
SQL> SHOW RADIX POINT
Radix point is ’,’.
SQL>
SQL>disconnect all;

Example 3: Showing the setting for nonstandard syntax flagging

SQL> SHOW FLAGGER MODE
The flagger mode is OFF
SQL> SET FLAGGER SQL92_ENTRY ON
SQL> SHOW FLAGGER MODE
%SQL-I-NONSTASYN92E, Nonstandard SQL92 Entry-level syntax
The SQL92 Entry-level flagger mode is ON

Example 4: Showing after-image journal files

The following example displays journal information:

SQL> ATTACH ’FILENAME SAMPLE’;
SQL> SHOW JOURNAL
Journals in database with filename SAMPLE

AIJ_ONE
AIJ_TWO

SQL> SHOW JOURNAL *
Journals in database with filename SAMPLE

AIJ_ONE
Journal File: DISK1:[DOCS]AIJ1.AIJ;1
Backup File: DISK1:[DOCS.AIJS]AIJ1.AIJ;

AIJ_TWO
Journal File: DISK1:[DOCS]AIJ2.AIJ;1
Backup File: DISK1:[DOCS.AIJS]AIJ2.AIJ;
Edit String: (’$’+HOUR+MINUTE+’_’+MONTH+DAY+’_’+SEQUENCE)

SQL Statements 8–341

SHOW Statement

Example 5: Showing storage area usage and attribute information

The following example displays storage area information:

SQL> -- Display the usage of storage area TEST_AREA and JOBS
SQL> --
SQL> SHOW STORAGE AREAS (USAGE) TEST_AREA
No database objects use Storage Area TEST_AREA
SQL> SHOW STORAGE AREAS (USAGE) JOBS

Database objects using Storage Area JOBS:
Usage Object Name Map / Partition
---------------- ------------------------------- -------------------------------
Storage Map JOBS JOBS_MAP (1)
SQL> --
SQL> -- Display the attributes of storage area JOBS.
SQL> --
SQL> SHOW STORAGE AREAS (ATTRIBUTES) JOBS

JOBS
Access is: Read write
Page Format: Mixed
Page Size: 2 blocks
Area File: DISK1:[DOCS.WORK]JOBS.RDA;1
Area Allocation: 402 pages
Extent: Enabled
Area Extent Minimum: 99 pages
Area Extent Maximum: 9999 pages
Area Extent Percent: 20 percent
Snapshot File: DISK1:[DOCS.WORK]JOBS.SNP;1
Snapshot Allocation: 100 pages
Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Locking is Row Level
No Cache Associated with Storage Area
Thresholds are (70, 85, 95)

Example 6: Showing query outline information

The following example displays query outline information:

SQL> SHOW OUTLINE MY_OUTLINE
MY_OUTLINE

Source:

create outline MY_OUTLINE
id ’09ADFE9073AB383CAABC4567BDEF3832’
mode 0
as (

query (
subquery (
EMPLOYEES 0 access path index EMP_LAST_NAME
join by cross to

DEGREES 1 access path index DEG_EMP_ID
)

)
)

compliance optional ;

Example 7: Showing privileges

8–342 SQL Statements

SHOW Statement

The following example demonstrates the SHOW PRIVILEGES statement:

SQL> ! Attach as the logged on user, [sql,heleng]
SQL> ATTACH ’FILENAME personnel’;
SQL> SHOW PRIVILEGES ON DATABASE RDB$DBHANDLE
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER=[sql,heleng],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES+SECURITY+DISTRIBTRAN)

SQL> !
SQL> ! Attach as user rhonda.
SQL> ATTACH ’FILENAME personnel USER ’’rhonda’’ USING ’’newhampshire’’’;
SQL> ! User rhonda has SELECT privilege.
SQL> SHOW PRIVILEGES ON DATABASE RDB$DBHANDLE
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER=[sql,rhonda],ACCESS=SELECT)
SQL> EXIT
$!
$! On OpenVMS, give the process the BYPASS privilege, which
$! gives you access to any database object.
$ SET PROC/PRIVILEGES=BYPASS
$ SQL$
SQL> ! Attach as user rhonda.
SQL> ATTACH ’FILENAME personnel USER ’’rhonda’’ USING ’’newhampshire’’’;
SQL> !
SQL> ! User rhonda now has all privileges, inherited from the logged-on
SQL> ! process.
SQL> SHOW PRIVILEGES ON DATABASE RDB$DBHANDLE
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER=[sql,rhonda],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES+SECURITY+DISTRIBTRAN)

Example 8: Showing modules, stored procedures, and stored functions

SQL> --
SQL> -- Show the modules in the database.
SQL> --
SQL> ATTACH ’FILENAME mf_personnel’;
SQL> SHOW MODULES
Modules in database with filename mf_personnel
Module name is: UTILITY_FUNCTIONS

SQL> SHOW MODULES utility_functions
Module name is: UTILITY_FUNCTIONS
Header:
utility_functions

language sql
No description found.
Owner is:
Module ID is: 1
Functions/Procedures in Module:

Function ABS
Function MDY
Procedure TRACE_DATE

SQL> --
SQL> -- Show the procedures and functions of the module.
SQL> --
SQL> SHOW MODULES (PROCEDURES) utility_functions
Module name is: UTILITY_FUNCTIONS
Functions/Procedures in Module:

Function ABS
Function MDY
Procedure TRACE_DATE

SQL Statements 8–343

SHOW Statement

SQL> SHOW PROCEDURE trace_date
Procedure name is: TRACE_DATE
Procedure ID is: 3
Source:
trace_date (:dt date);

begin
trace :dt;
end

No description found.
Module name is: UTILITY_FUNCTIONS
Module ID is: 1
Number of parameters is: 1

Parameter Name Data Type
-------------- ---------

DT DATE VMS
Parameter position is 1
Parameter is IN (read)
Parameter is passed by REFERENCE

SQL> SHOW FUNCTIONS abs
Function name is: ABS
Function ID is: 2
Source:
abs (in :arg integer) returns integer

comment ’Returns the absolute value of an integer’;
begin
return case
when :arg < 0 then - :arg
else :arg
end;
end

Comment: Returns the absolute value of an integer
Module name is: UTILITY_FUNCTIONS
Module ID is: 1
Number of parameters is: 1

Parameter Name Data Type
-------------- ---------

INTEGER
Function result datatype
Return value is passed by VALUE

ARG INTEGER
Parameter position is 1
Parameter is IN (read)
Parameter is passed by REFERENCE

Example 9: Showing a storage map that defines both horizontal and vertical
record partitioning

8–344 SQL Statements

SHOW Statement

SQL> SHOW STORAGE MAP EMPLOYEES_1_MAP2
EMPLOYEES_1_MAP2

For Table: EMP2
Partitioning is: UPDATABLE
Store clause: STORE COLUMNS (EMPLOYEE_ID, LAST_NAME, FIRST_NAME,

MIDDLE_INITIAL, STATUS_CODE)
USING (EMPLOYEE_ID)

IN ACTIVE_AREA_A WITH LIMIT OF (’00399’)
IN ACTIVE_AREA_B WITH LIMIT OF (’00699’)
OTHERWISE IN ACTIVE_AREA_C

STORE COLUMNS (ADDRESS_DATA_1, ADDRESS_DATA_2, CITY,
STATE, POSTAL_CODE)

USING (EMPLOYEE_ID)
IN INACTIVE_AREA_A WITH LIMIT OF (’00399’)
IN INACTIVE_AREA_B WITH LIMIT OF (’00699’)
OTHERWISE IN INACTIVE_AREA_C

STORE IN OTHER_AREA
Compression is: ENABLED
Partition 2: Compression is Enabled
Partition 3: Compression is Enabled

Example 10: Displaying a Sequence

SQL> SHOW SEQUENCE EMPIDS
EMPIDS

Sequence Id: 3
Initial Value: 1
Minimum Value: 1
Maximum Value: 9223372036854775787
Next Sequence Value: 1
Increment by: 1
Cache Size: 20
Order
No Cycle
No Randomize
Comment: Sequence for employee IDs.

Example 11: Displaying a Role

SQL> SHOW ROLE SECRETARY
SECRETARY

Identified Externally
Comment: Role for the secretarial staff

Example 12: Displaying a User

SQL> SHOW USER NSTEWART
NSTEWART

Identified Externally
Account Unlocked
Comment: Nicholas Stewart

Example 13: Show Details of One Profile

SQL Statements 8–345

SHOW Statement

SQL> SHOW PROFILE
Profiles in database with filename SQL$DATABASE

DECISION_SUPPORT
SQL> SHOW PROFILE DECISION_SUPPORT

DECISION_SUPPORT
Comment: limit transactions used by report writers

Transaction modes (read only, no read write)
SQL> ALTER PROFILE DECISION_SUPPORT
cont> default transaction read only;
SQL> SHOW PROFILE DECISION_SUPPORT

DECISION_SUPPORT
Comment: limit transactions used by report writers

Default transaction read only
Transaction modes (read only, no read write)

SQL>

Example 14: Show the Use of Delimited Identifiers for Mixed-Case Names

SQL> CREATE PROFILE "Decision_Support"
cont> COMMENT IS ’limit transactions used by report writers’
cont> TRANSACTION MODES (NO READ WRITE, READ ONLY);
SQL> SHOW PROFILE
Profiles in database with filename SQL$DATABASE

Decision_Support
SQL> SHOW PROFILE Decision_Support
No Users found
SQL> SHOW PROFILE "Decision_Support"

Decision_Support
Comment: limit transactions used by report writers

Transaction modes (read only, no read write)

Example 15: Displaying Synonyms

SQL> SHOW SYNONYMS
Synonyms in database with filename SQL$DATABASE

C_SAL View CURRENT_SALARY
E Table synonym EMPS
EMPS Table EMPLOYEES
ID_NUMBER Domain ID_DOM

SQL> SHOW SYNONYMS ID_NUMBER
ID_NUMBER
for domain ID_DOM
Comment: support the old name for this domain

SQL> SHOW VIEWS

User tables in database with filename SQL$DATABASE
CURRENT_INFO A view.
CURRENT_JOB A view.
CURRENT_SALARY A view.
C_SAL A synonym for view CURRENT_SALARY

Example 16: Using Synonyms to Identify Objects

This example creates a sequence and a synonym for a sequence, and uses the
SHOW SEQUENCE command with the synonym.

8–346 SQL Statements

SHOW Statement

SQL> create sequence department_id_sequence;
SQL> create synonym dept_id_s for department_id_sequence;
SQL> show sequence
Sequences in database with filename personnel

DEPARTMENT_ID_SEQUENCE
DEPT_ID_S A synonym for sequence DEPARTMENT_ID_SEQUENCE

SQL> show sequence DEPT_ID_S
DEPT_ID_S A synonym for sequence DEPARTMENT_ID_SEQUENCE

Sequence Id: 1
Initial Value: 1
Minimum Value: 1
Maximum Value: 9223372036854775787
Next Sequence Value: 1
Increment by: 1
Next Sequence Value: 1
Increment by: 1
Cache Size: 20
No Order
No Cycle
No Randomize
Wait
SQL>

Example 17: SHOW AUDIT command

The following example shows the output for SHOW AUDIT ON DATABASE. A
list of two database ALIAS are specified, one database has auditing enabled, the
other has no auditing.

SQL> SHOW AUDIT ON DATABASE RDB$DBHANDLE, DB1;
Audit information for Alias RDB$DBHANDLE
Auditing is enabled
Alarms will be written to the operator
Audit every object access
Forced writes of audit journal records is enabled
Audit Event Classes:

PROTECTION (Grant and Revoke)
DACCESS (Discretionary Access)

Identifiers:
[DEV,TEST_EXECUTE]
[PRD,*]
[MGR,ADMIN]
[AUD,*]

Audit Privileges:
SELECT,DISTRIBTRAN

Alarm Privileges:
DROP,SECURITY

Audit information for Alias DB1
Auditing is disabled

SQL>

Example 18: SHOW TABLE (CARDINALITY) command

The following example shows the additional output when the CARDINALITY
option is used with SHOW TABLES.

SQL> show table (cardinality,index) salary_history;
Information for table SALARY_HISTORY

Table cardinality: 729

SQL Statements 8–347

SHOW Statement

Indexes on table SALARY_HISTORY:
SH_EMPLOYEE_ID with column EMPLOYEE_ID
Index cardinality: 100
Duplicates are allowed
Type is Sorted
Key suffix compression is DISABLED
Node size 430
Percent fill 70

8–348 SQL Statements

SIGNAL Control Statement

SIGNAL Control Statement

Passes the signaled SQLSTATE status parameter back to the application or SQL
interface and terminates the current routine and all calling routines.

Environment

You can use the SIGNAL statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SIGNAL value-expr
SQLSTATE VALUE ’string-literal’

(signal-arg)

Arguments

signal-arg
Specifies a value expression. The specified value is converted to a
CHARACTER(80) CHARACTER SET UNSPECIFIED string and returned as
a secondary message to the client application. If the value expression converts to
a character string longer than 80 characters, it is truncated.

You can use the sql_get_error_text routine to extract the signal-arg text in an
application.

string-literal
A quoted string literal which represents the SQLSTATE value.

value-expr
Expects a character value expression which is used as the SQLSTATE status
parameter. Any provided value expression is converted to a CHAR(5) value which
is passed to SIGNAL.

See Section 2.6 for more information on value expressions. See Appendix C for
more information about SQLSTATE.

Usage Notes

• The current routine and all calling routines and triggers are terminated and
the signaled SQLSTATE status parameter is passed to the application.

• The SQLSTATE value is mapped to the SQLCODE status parameter.

If the SQLSTATE status parameter value maps to more than one SQLCODE
value, the SQLCODE is set to the value -1042.

SQL Statements 8–349

SIGNAL Control Statement

• The contents of the SQLSTATE status parameter string are defined by the
ANSI/ISO SQL Standard and must contain only Latin capital letters (A
through Z) or Arabic digits (0 through 9). Any string longer than 5 characters
is truncated. Any string shorter than 5 characters is space-filled which causes
an error to be returned. The character set for the string must be ASCII,
DEC_MCS, ISOLATIN1, or ISOLATIN9.

• A numeric value expression used with SIGNAL is converted to a character
string with possible leading spaces. The leading spaces are considered invalid.
For example, SIGNAL 02000 is considered invalid, but SIGNAL ’02000’ is
acceptable.

• If the SQLSTATE string contains invalid characters, Oracle Rdb generates
the following error:

%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-SQLSTATE_ILLCH, illegal character in SQLSTATE string passed to
SIGNAL routine

• If the character value expression results in a null value, Oracle Rdb generates
the following error:

%RDB-F-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-SQLSTATE_NULL, unexpected NULL passed to SIGNAL routine

• The error message returned by Oracle Rdb includes the name of the routine
or trigger that called SIGNAL. If the routine is an unnamed compound
statement or multistatement procedure, the error message specifies
"(unnamed)". For example:

%RDB-F-SIGNAL_SQLSTATE, routine "(unnamed)" signaled SQLSTATE "22028"

Note

You can provide a name for a compound statement using the OPTIMIZE
AS clause in the BEGIN or PRAGMA clause.

• SQL applications can examine the SQLSTATE variable to see what was
signaled by SQL or an application SIGNAL call.

Examples

Example 1: Using the SIGNAL and RETURN statements, multiline comments,
and stored functions

The example uses a table, NEXT_KEY_TABLE, to maintain a list of key names
and their current values. In this example, only a single key is created with the
name EMPLOYEE_ID. Each time the function is called, it fetches the value from
the NEXT_KEY_TABLE and returns the next value. If the named key is not
found, an error is returned (SQLSTATE 22023 is defined as "invalid parameter
value").

SQL> CREATE DOMAIN key_name
cont> CHAR(31)
cont> CHECK (VALUE IS NOT NULL)
cont> NOT DEFERRABLE;

8–350 SQL Statements

SIGNAL Control Statement

SQL> --
SQL> CREATE TABLE next_key_table (
cont> next_key_val INTEGER NOT NULL,
cont> next_key_name key_name UNIQUE);
SQL> --
SQL> INSERT INTO next_key_table (next_key_name, next_key_val)
cont> VALUES (’EMPLOYEE_ID’, 0);
1 row inserted
SQL> --
SQL> CREATE MODULE tools
cont> LANGUAGE SQL
cont> FUNCTION next_key (IN :key_name key_name)
cont> RETURNS INTEGER
cont> COMMENT IS ’This routine fetches the next value of the’/
cont> ’specified entry in the sequence table. The’/
cont> ’passed name is converted to uppercase before’/
cont> ’retrieval (see the DEFAULT clause for compound’/
cont> ’statements). The UPDATE ... RETURNING statement’/
cont> ’is used to fetch the new value after the update.’/
cont> ’If no entry exists, then an error is returned.’;
cont> BEGIN
cont> DECLARE :rc, :new_val INTEGER DEFAULT 0;
cont> DECLARE :key_name_upper key_name DEFAULT UPPER(:key_name);
cont> DECLARE :invalid_parameter CONSTANT CHAR(5) = ’22023’;
cont> --
cont> UPDATE next_key_table
cont> SET next_key_val = next_key_val + 1
cont> WHERE next_key_name = :key_name_upper
cont> RETURNING next_key_val
cont> INTO :new_val;
cont> --
cont> GET DIAGNOSTICS :rc = ROW_COUNT;
cont> TRACE ’NEXT_KEY is ’, COALESCE(:new_val, ’NULL’), ’, RC is ’, :rc;
cont> --
cont> IF :rc = 0 THEN
cont> TRACE ’No entry exists for KEY_NAME: ’, :key_name_upper;
cont> SIGNAL :invalid_parameter;
cont> ELSE
cont> TRACE ’Returning new value for ’, :key_name_upper, :new_val;
cont> RETURN :new_val;
cont> END IF;
cont> --
cont> END;
cont> END MODULE;
SQL> --
SQL> CREATE TABLE employee (
cont> employee_id INTEGER,
cont> last_name CHAR(20),
cont> birthday DATE);
SQL> --
SQL> -- Turn on the TRACE flag so we can see the function working.
SQL> --
SQL> SET FLAGS ’TRACE’;
SQL> --
SQL> INSERT INTO employee (employee_id, last_name, birthday)
cont> VALUES (next_key(’EMPLOYEE_ID’), ’Smith’, DATE’1970-1-1’);
~Xt: NEXT_KEY is 1 , RC is 1
~Xt: Returning new value for EMPLOYEE_ID 1
1 row inserted
SQL> --
SQL> INSERT INTO employee (employee_id, last_name, birthday)
cont> VALUES (next_key(’EMPLOYEE_ID’), ’Lee’, DATE’1971-1-1’);
~Xt: NEXT_KEY is 2 , RC is 1
~Xt: Returning new value for EMPLOYEE_ID 2
1 row inserted

SQL Statements 8–351

SIGNAL Control Statement

SQL> --
SQL> INSERT INTO employee (employee_id, last_name, birthday)
cont> VALUES (next_key(’EMPLOYEE_ID’), ’Zonder’, DATE’1972-1-1’);
~Xt: NEXT_KEY is 3 , RC is 1
~Xt: Returning new value for EMPLOYEE_ID 3
1 row inserted
SQL> --
SQL> SELECT * FROM employee ORDER BY EMPLOYEE_ID;
EMPLOYEE_ID LAST_NAME BIRTHDAY

1 Smith 1970-01-01
2 Lee 1971-01-01
3 Zonder 1972-01-01

3 rows selected
SQL> --
SQL> -- Show the error if the unknown key_name is passed.
SQL> --
SQL> INSERT INTO employee (employee_id, last_name, birthday)
cont> VALUES (next_key(’EMPLOYEEID’), ’Zonder’, DATE’1972-1-1’);
~Xt: NEXT_KEY is 0 , RC is 0
~Xt: No entry exists for KEY_NAME: EMPLOYEEID
%RDB-E-SIGNAL_SQLSTATE, routine "NEXT_KEY" signaled SQLSTATE "22023"

Example 2: Specifying a Secondary Error

SQL> BEGIN
SQL> SIGNAL SQLSTATE ’RR000’ (’ Compound Statement Failed’);
cont> END;
%RDB-E-SIGNAL_SQLSTATE, routine "(unnamed)" signaled SQLSTATE "RR000"
-RDB-I-TEXT, Compound Statement Failed

8–352 SQL Statements

Simple Statement

Simple Statement

Includes a single SQL statement in a module procedure or in an embedded host
language program. The statement can include a single executable SQL statement.
A module procedure or embedded procedure that contains a simple statement is
called a simple-statement procedure.

Table 1-1 lists all the SQL statements allowed in a simple statement.

Environment

A simple statement is valid either in a procedure of an SQL module file or in an
embedded host language program prefixed by the keywords EXEC SQL:

• Module SQL

See Section 3.2 for information about using simple statements in module
procedures in an SQL module file.

• Embedded SQL

See Section 4.2 for information about using simple statements in embedded
procedures in host language programs.

Format

simple-statement =

SQL statement

Arguments

SQL statement
Specifies a single executable SQL statement.

Executable SQL statements undergo processing during module compile time
but do not execute until the program runs. SQL executes the simple statement
when the procedure in which it is embedded is called by a host language module.
(Nonexecutable SQL statements are those that SQL processes completely when it
compiles an SQL module but are not executed at run time.) See Section 1.4 for
information about which SQL statements are executable.

The SQL statement must use names specified in the procedure’s formal
parameters wherever it refers to parameters.

Usage Notes

• A simple statement can contain only one SQL statement for each procedure;
however, you can include more than one statement in a procedure if you
specify a compound statement. (A module or embedded procedure that
contains a compound statement is called a multistatement procedure.)
Currently, SQL imposes fewer restrictions on simple-statement procedures
than on multistatement procedures, but multistatement procedures execute
more efficiently. Oracle Rdb suggests that you use multistatement procedures
wherever possible. See the Compound Statement for more information.

SQL Statements 8–353

Simple Statement

• If the statement is contained within a procedure, it must end with a
semicolon.

Examples

Example 1: A simple statement using interactive SQL

SQL> ALTER DATABASE FILENAME mf_personnel
cont> JOURNAL IS DISABLED;

8–354 SQL Statements

START TRANSACTION Statement

START TRANSACTION Statement

Starts a transaction using the specified attributes. If DEFAULT is specified, then
the attributes are derived from the user’s profile.

Environment

You can use the START TRANSACTION statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

START DEFAULT TRANSACTION
TRANSACTION

transaction-mode
isolation-level

,

transaction-mode =

READ ONLY
READ WRITE

isolation-level =

ISOLATION LEVEL READ COMMITTED
REPEATABLE READ
SERIALIZABLE

Arguments

DEFAULT
If the keyword DEFAULT is used, the user-specific default transaction is started.
This default is defined in the profile for the current session user. If none is
specified, a READ ONLY transaction will be started.

SQL> CREATE PROFILE READ_USERS
cont> DEFAULT TRANSACTION READ ONLY WAIT 10;
SQL> ALTER USER JONES PROFILE READ_USERS;

A START DEFAULT TRANSACTION statement executed by JONES will start a
READ ONLY WAIT 10 transaction.

For information on profiles see the ALTER and CREATE PROFILE statements.

ISOLATION LEVEL READ COMMITTED
ISOLATION LEVEL REPEATABLE READ
ISOLATION LEVEL SERIALIZABLE
Defines the degree to which database operations in an SQL transaction are
affected by database operations in concurrently executing transactions. It

SQL Statements 8–355

START TRANSACTION Statement

determines the extent to which the database protects the consistency of your
data.

Oracle Rdb supports isolation levels READ COMMITTED, REPEATABLE READ,
and SERIALIZABLE. When you use SQL with Oracle Rdb databases, by default,
SQL executes a transaction at isolation level SERIALIZABLE. The higher the
isolation level, the more isolated a transaction is from other currently executing
transactions. Isolation levels determine the type of phenomena that are allowed
to occur during the execution of concurrent transactions. Two phenomena define
SQL isolation levels for a transaction:

• Nonrepeatable read

Allows the return of different results within a single transaction when an
SQL operation reads the same row in a table twice. Nonrepeatable reads can
occur when another transaction modifies and commits a change to the row
between transaction reads.

• Phantom

Allows the return of different results within a single transaction when an
SQL operation retrieves a range of data values (or similar data existence
check) twice. Phantoms can occur if another transaction inserted a new
record and committed the insertion between executions of the range retrieval.

Each isolation level differs in the phenomena it allows. Table 8–11 shows the
phenomena permitted for the isolation levels that you can explicitly specify with
the START TRANSACTION statement.

Table 8–11 Phenomena Permitted at Each Isolation Level

Isolation Level
Nonrepeatable Reads
Allowed?

Phantoms
Allowed?

READ COMMITTED Yes Yes
REPEATABLE READ No Yes
SERIALIZABLE No No

For read-only transactions, which always execute at isolation level
SERIALIZABLE if snapshots are enabled, the database system guarantees
that you will not see changes made by another user before you issue a COMMIT
statement.

See the Oracle Rdb Guide to SQL Programming for further information about
specifying isolation levels in transactions.

READ ONLY
Retrieves a snapshot of the database at the moment the read-only transaction
starts. Other users can update rows in the table you are using, but your
transaction retrieves the rows as they existed at the time the transaction started.
You cannot update, insert, or delete rows, or execute data definition statements in
a read-only transaction with the exception of declaring a local temporary table or
modifying data in a created or declared temporary table. Read-only transactions
are implicitly isolation level serializable.

8–356 SQL Statements

START TRANSACTION Statement

Because a read-only transaction uses the snapshot (.snp) version of the database,
any changes that other users make and commit during the transaction are
invisible to you. Using a read-only transaction lets you read data without
incurring the overhead of row locking. (You do incur overhead for keeping a
snapshot of the tables you specify in the RESERVING clause, but this overhead
is less than that of a comparable read/write transaction.)

Because of the limited nature of read-only transactions, they are subject to
several restrictions. The Usage Notes describe those restrictions.

READ WRITE
Signals that you want to use the lock mechanisms of SQL for consistency in data
retrieval and update. Read/write is the default transaction. Use the read/write
transaction mode when you need to:

• Insert, update, or delete data

• Retrieve data that is guaranteed to be correct at the moment of retrieval

• Use SQL data definition statements

When you are reading a row in a read/write transaction, no other user can
update that row. Under some circumstances, SQL may lock rows that you are not
explicitly reading.

• If your query is scanning a table without using an index, SQL locks all the
rows in the record stream to maintain isolation level serializable.

• If your query uses indexes, SQL may lock part of an index, which has the
effect of locking several rows.

Usage Notes

• The START TRANSACTION statement is similar to the SET TRANSACTION
statement in operation. That is, you can specify READ WRITE or READ
ONLY transaction modes as well as various isolation levels.

• The transaction-mode and isolation-level clauses may appear only once in any
START TRANSACTION statement.

• This statement does not support BATCH UPDATE mode, as this is an Oracle
Rdb extension and, therefore, is only supported by SET and DECLARE
TRANSACTION statements.

• Oracle Rdb has extended the START TRANSACTION statement and allows
all transaction options to be omitted. If the transaction-mode is omitted,
it defaults to READ WRITE. If the isolation-level is omitted, it defaults
to ISOLATION LEVEL SERIALIZABLE. Therefore, if all options are
omitted, the transaction defaults to READ WRITE ISOLATION LEVEL
SERIALIZABLE.

• If more than one database is currently attached, a transaction spanning all
databases will be started with the specified or default attributes.

• You cannot use the START TRANSACTION statement in an ATOMIC
compound statement.

SQL Statements 8–357

START TRANSACTION Statement

• The START TRANSACTION statement may not be executed from a SQL
function or trigger or any stored procedure called from a SQL function or
trigger.

Examples

Example 1: Starting a Default Transaction in a Multistatement Procedure or as a
Single Statement

SQL> START DEFAULT TRANSACTION;
SQL>
SQL> BEGIN
cont> COMMIT;
cont> START DEFAULT TRANSACTION;
cont> END;
SQL>
SQL> ROLLBACK;

Example 2: Starting Several Variations of the START TRANSACTION Statement

SQL> START TRANSACTION READ WRITE,
cont> ISOLATION LEVEL READ COMMITTED;
SQL> COMMIT;
SQL>
SQL> -- Defaults to serializable
SQL> START TRANSACTION READ WRITE;
SQL> COMMIT;
SQL>
SQL> -- Defaults to read write
SQL> START TRANSACTION ISOLATION LEVEL READ COMMITTED;
SQL> ROLLBACK;
SQL>
SQL> -- Defaults to read write serializable
SQL> START TRANSACTION;
SQL>
SQL> BEGIN
cont> COMMIT;
cont> START TRANSACTION
cont> ISOLATION LEVEL READ COMMITTED,
cont> READ WRITE;
cont> END;
SQL> COMMIT;

8–358 SQL Statements

TRACE Control Statement

TRACE Control Statement

Writes values to the trace log file after the trace extended debug flag is set. The
TRACE control statement lets you specify multiple value expressions. It stores a
value in a log file for each value expression it evaluates.

Trace logging can help you debug complex multistatement procedures.

Environment

You can use the TRACE control statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

trace-statement =

TRACE value-expr
,

Arguments

value-expr
Specifies a symbol or string of symbols used to represent or calculate a single
value.

See Section 2.6 for a complete description of the variety of value expressions that
SQL provides.

Usage Notes

• The TRACE control statement has no effect when the debug flag is undefined.

• The TRACE statement is enabled by one of these methods:

SET FLAGS ’TRACE’ statement

Defining the RDMS$SET_FLAGS logical name including the ’TRACE’
keyword

Defining the RDMS$DEBUG_FLAGS logical name including the Xt string
(note that X is uppercase and t is lowercase)

Output can be redirected using the RDMS$DEBUG_FLAGS_OUTPUT logical
name. See Appendix E and the Oracle Rdb7 Guide to Database Performance
and Tuning for information on logical names.

SQL Statements 8–359

TRACE Control Statement

• You can trace IN, OUT, and INOUT parameters. For example:

SQL> CREATE MODULE m1
cont> LANGUAGE SQL
cont> PROCEDURE p1 (IN :a INTEGER, OUT :b REAL);
cont> BEGIN
cont> SET :b = :a;
cont> TRACE :a, :b;
cont> END;
cont> END MODULE;
SQL> SET FLAGS ’TRACE’;
SQL> DECLARE :res real;
SQL> CALL p1 (10, :res);
~Xt: 10 1.0000000E+01

RES
1.0000000E+01

• If the TRACE statement is activated then queries in the TRACE statement
are merged into the query outline for the procedure. Example 2 in the
Examples section shows a query outline that contains one query when the
TRACE statement is disabled.

• If any TRACE statement contains a subquery, then Oracle Corporation
recommends using two query outlines (if any are required at all), with
different modes in order to run the query with and without TRACE enabled.
That is, when TRACE is enabled, define MODE to match the TRACE enabled
query outlines.

$ DEFINE RDMS$DEBUG_FLAGS_OUTPUT TRACE.DAT
$ DEFINE RDMS$SET_FLAGS "TRACE, MODE(10)"

Alternatively, use the SET FLAGS statement, which allows the TRACE flag to
be enabled and the MODE established from within an interactive session or
through dynamic SQL. This method allows the query to be run with TRACE
enabled or disabled.

• Use the COALESCE function to format NULL expressions. For example,
TRACE COALESCE(LAST_NAME, ’NULL’);.

Examples

Example 1: Tracing a multistatement procedure

8–360 SQL Statements

TRACE Control Statement

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SET FLAGS ’TRACE’;
SQL> DECLARE :i INTEGER;
SQL> BEGIN
cont> WHILE :i <= 10
cont> LOOP
cont> TRACE ’:i is’, :i;
cont> SET :i = :i +1;
cont> END LOOP;
cont> END;
~Xt: :i is 0
~Xt: :i is 1
~Xt: :i is 2
~Xt: :i is 3
~Xt: :i is 4
~Xt: :i is 5
~Xt: :i is 6
~Xt: :i is 7
~Xt: :i is 8
~Xt: :i is 9
~Xt: :i is 10

Example 2: Generating a query outline when the TRACE statement is disabled

SQL> DECLARE :LN CHAR(40);
SQL> SET FLAGS ’NOTRACE’;
SQL> BEGIN
cont> TRACE ’Jobs Held: ’,
cont> (SELECT COUNT(*)
cont> FROM JOB_HISTORY
cont> WHERE EMPLOYEE_ID = ’00201’);
cont> SELECT LAST_NAME
cont> INTO :LN
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID = ’00201’;
cont> END;
-- Oracle Rdb Generated Outline :
create outline QO_A17FA4B41EF1A68B_00000000
id ’A17FA4B41EF1A68B966C1A0B083BFDD4’
mode 0
as (

query (
-- Select

subquery (
EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;
SQL>

If the query outline is generated with TRACE enabled, then two queries appear;
the first is for the subquery in the TRACE statement and the other is for the
singleton SELECT statement.

If this second query outline is used at run time with the TRACE statement
disabled, then it cannot be applied to the query. Because the outline was created
with compliance optional, the query outline is abandoned and a new strategy is
calculated. If compliance is mandatory, then the query fails. See Example 3.

SQL Statements 8–361

TRACE Control Statement

SQL> DECLARE :LN CHAR(40);
SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont> TRACE ’Jobs Held: ’,
cont> (SELECT COUNT(*)
cont> FROM JOB_HISTORY
cont> WHERE EMPLOYEE_ID = ’00201’);
cont> SELECT LAST_NAME
cont> INTO :LN
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID = ’00201’;
cont> END;
-- Oracle Rdb Generated Outline :
create outline QO_A17FA4B41EF1A68B_00000000
id ’A17FA4B41EF1A68B966C1A0B083BFDD4’
mode 0
as (

query (
-- Trace

subquery (
JOB_HISTORY 0 access path index JOB_HISTORY_HASH
)

)
query (

-- Select
subquery (
EMPLOYEES 0 access path index EMPLOYEES_HASH
)

)
)

compliance optional ;
~Xt: Jobs Held: 4
SQL>

Example 3: Using an Outline with Tracing Enabled That Was Created with
Tracing Disabled

This example shows that enabling the TRACE statement may affect query
outlines defined when TRACE was disabled.

SQL> DECLARE :LN CHAR(40);
SQL>
SQL> BEGIN
cont> TRACE ’Jobs Held: ’,
cont> (SELECT COUNT(*)
cont> FROM JOB_HISTORY
cont> WHERE EMPLOYEE_ID = ’00201’);
cont> SELECT LAST_NAME
cont> INTO :LN
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID = ’00201’;
cont> END;
~S: Outline QO_A17FA4B41EF1A68B_00000000 used
~S: Outline/query mismatch; assuming JOB_HISTORY 0 renamed to EMPLOYEES 0
~S: Full compliance with the outline was not possible
Get Retrieval by index of relation EMPLOYEES
Index name EMPLOYEES_HASH [1:1] Direct lookup

8–362 SQL Statements

TRUNCATE TABLE Statement

TRUNCATE TABLE Statement

Deletes the data in a table while still maintaining the metadata definitions of the
table. Advantages include fast deletion of data in uniform areas, and no change
to dependency data.

Environment

You can use the TRUNCATE TABLE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

TRUNCATE TABLE <table-name>
CONTINUE IDENTITY
RESTART

Arguments

table-name
Specifies the name of the table you want to truncate. This name must be a base
table, or global temporary table. Views and local temporary tables may not be
truncated.

CONTINUE IDENTITY
Requests that the TRUNCATE TABLE statement leave the current next value
unchanged for the associated IDENTITY column.

RESTART IDENTITY
Requests that TRUNCATE TABLE reset the associated IDENTITY column so
that it starts with the START WITH value, or, if there is none, the MINVALUE
value defined for the sequence.

Usage Notes

• You must have DELETE privilege for the table as this commands deletes all
data.

• You must have CREATE privilege at the table level.

• If there exists an AFTER DELETE or BEFORE DELETE trigger defined on
this table, you will require DROP and CREATE privileges for triggers on this
table. These privileges are required because this operation effectively disables
these triggers.

• TRUNCATE TABLE is a data definition statement and as such requires
exclusive access to the table.

SQL Statements 8–363

TRUNCATE TABLE Statement

• The TRUNCATE TABLE statement fails with an error message if:

RDB$SYSTEM storage area is set to read-only

The named table is a view

The named table has been reserved for data definition

The named table is a system table

• TRUNCATE TABLE deletes all data in the table, however, it does not execute
any BEFORE or AFTER DELETE triggers.

• If the dialect is set to SQL2011 and neither CONTINUE IDENTITY nor
RESTART IDENTITY clauses are specified, the default will be CONTINUE
IDENTITY. For all other dialects, the default is RESTART IDENTITY.

• TRUNCATE TABLE explicitly resets the values in Rdb$WORKLOAD rows
associated with this table, as well as removing any index or table storage
statistics.

• All CHECK and FOREIGN KEY constraints that reference the truncated
table are revalidated after the truncate operation to ensure that the database
remains consistent.

If constraint validation fails, the TRUNCATE statement is automatically
rolled back. For example:

SQL> set dialect ’sql99’;
SQL> CREATE TABLE test1
cont> (col1 REAL PRIMARY KEY);
SQL> CREATE TABLE test2
cont> (col1 REAL REFERENCES TEST1 (COL1));
SQL> INSERT INTO test1 VALUES (1);
1 row inserted
SQL> INSERT INTO test2 VALUES (1);
1 row inserted
SQL> COMMIT;
SQL>
SQL> TRUNCATE TABLE test1;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-INTEG_FAIL, violation of constraint TEST2_FOREIGN1 caused operation to
fail
-RDB-F-ON_DB, on database USERS2:[TESTING.DATABASES.]PERSONNEL.RDB;1
SQL> TABLE test1;

COL1
1.0000000E+00

1 row selected
SQL> ROLLBACK;

• When a table contains one or more LIST OF BYTE VARYING columns, the
TRUNCATE TABLE statement must read each row in the table and record
the pointers for all LIST values. This list is processed at COMMIT time to
delete the LIST column data. Therefore, the database administrator must
also allow for this time when truncating the table.

Reserving the table for EXCLUSIVE WRITE is recommended because the
dropped LIST columns will require that each row in the table be updated
and set to NULL - it is this action which queues the pointers for commit time
processing. This reserving mode will eliminate snapshot file I/O, lower lock
resources and reduce virtual memory usage.

8–364 SQL Statements

TRUNCATE TABLE Statement

As the LIST data is stored outside the table, performance may be improved
by attaching to the database with the RESTRICTED ACCESS clause, which
has the side effect of reserving all the LIST storage areas for EXCLUSIVE
access and therefore eliminates snapshot I/O during the delete of the LIST
data.

• If the table contains no LIST OF BYTE VARYING columns, and the table
and all associated indices are stored in UNIFORM storage areas, then
TRUNCATE TABLE will employ the most efficient mechanism to erase the
data from the table.

Examples

Example 1: Deleting data from a table while still maintaining the metadata
definitions

The following example shows how to delete the data from the SALARY_HISTORY
table and still maintain the metadata definitions:

SQL> TRUNCATE TABLE salary_history;
SQL> --
SQL> -- The table still exists, but the rows are deleted.
SQL> --
SQL> SELECT * FROM salary_history;
0 rows selected
SQL> SHOW TABLE (COLUMN) salary_history;
Information for table SALARY_HISTORY

Columns for table SALARY_HISTORY:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM
Foreign Key constraint SALARY_HISTORY_FOREIGN1
SALARY_AMOUNT INTEGER(2) SALARY_DOM
SALARY_START DATE VMS DATE_DOM
SALARY_END DATE VMS DATE_DOM

Example 2: Using the Continue Identity clause

The following example requests that the IDENTITY column not be restarted after
the truncate.

SQL> truncate table HISTORY_LOG continue identity;

SQL Statements 8–365

UNDECLARE Cursor Statement

UNDECLARE Cursor Statement

This statement implicitly closes the named cursor, removes the declared cursor
name from the known cursor list, and releases resources held by SQL and the
Oracle Rdb Server for that cursor.

Environment

You can use the UNDECLARE CURSOR statement:

• In interactive SQL

Format

UNDECLARE CURSOR <cursor-name>
,

Arguments

cursor-name
Specifies the name of the declared cursor.

Usage Notes

• If this is a table cursor, then all associated list cursors are also undeclared.

Example

Example 1: Using the Undeclare Cursor statement

This example demonstates the use of the UNDECLARE CURSOR Statement.

SQL> declare mycursor cursor for select * from work_status;
SQL>
SQL> open mycursor;
SQL> fetch mycursor;
STATUS_CODE STATUS_NAME STATUS_TYPE
0 INACTIVE RECORD EXPIRED
SQL> close mycursor;
SQL>
SQL> undeclare cursor mycursor;
SQL>
SQL> --> expect an error
SQL> open mycursor;
%SQL-F-NOSUCHCUR, Cursor MYCURSOR has not been declared
SQL>

8–366 SQL Statements

UNDECLARE Variable Statement

UNDECLARE Variable Statement

Deletes a variable definition from interactive and dynamic SQL that was used for
invoking stored procedures and for testing procedures in modules or embedded
SQL programs.

Environment

You can use the UNDECLARE statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

Format

UNDECLARE <variable-name>
,

Arguments

variable-name
Specifies the name of the local variable prefixed with a colon (:).

Usage Notes

• Local variables will remain until a successful UNDECLARE statement, or
until the image runs down.

Example

Example 1: Undeclaring variables in interactive SQL

SQL> ATTACH ’FILENAME personnel’;
SQL>
SQL> DECLARE :X INTEGER;
SQL> DECLARE :Y CHAR(10);
SQL>
SQL> BEGIN
cont> SET :X = 100;
cont> SET :Y = ’Active’;
cont> END;
SQL> PRINT :X, :Y;

X Y
100 Active

SQL> SHOW VARIABLES
X INTEGER
Y CHAR(10)
SQL> UNDECLARE :X, :Y;

SQL Statements 8–367

UPDATE Statement

UPDATE Statement

Modifies a row in a table or view.

Environment

You can use the UPDATE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

UPDATE <table-name>
<view-name> <correlation-name>

SET <column-name> = value-expr
NULL
DEFAULT

,

WHERE predicate
optimize-clause

CURRENT OF <cursor-name>

returning-clause

optimize-clause =

OPTIMIZE AS <query-name>
FOR BITMAPPED SCAN

FAST FIRST
SEQUENTIAL ACCESS
TOTAL TIME

OUTLINE outline-definition
USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

8–368 SQL Statements

UPDATE Statement

outline-definition =

MODE mode AS (query-list)
USING

COMPLIANCE MANDATORY
OPTIONAL

EXECUTION OPTIONS (execution-options)

COMMENT IS ’string’
/

returning-clause=

RETURNING value-expr
, INTO <parameter>

,

Arguments

column-name
Specifies the name of a column whose value you want to modify.

correlation-name
Specifies a name you can use to identify the table or view in the predicate of the
UPDATE statement. See Section 2.2.4.1 for more information about correlation
names.

CURRENT OF cursor-name
If the WHERE clause uses CURRENT OF cursor-name, SQL modifies only the
row on which the named cursor is positioned. The cursor named in an UPDATE
statement must meet these conditions:

• The cursor must have been named previously in a DECLARE CURSOR
statement or FOR statement.

• The cursor must be open.

• The cursor must be on a row.

• The FROM clause of the SELECT statement within the DECLARE CURSOR
statement must refer to the table or view that is the target of the UPDATE
statement.

DEFAULT
SQL assigns the DEFAULT defined for the column or domain. If no DEFAULT is
defined, then NULL is assumed.

If the DEFAULT clause is used in an UPDATE statement then one of the
following will be applied:

• If a DEFAULT attribute is present for the column then that value will be
applied during UPDATE.

SQL Statements 8–369

UPDATE Statement

• Else if an AUTOMATIC attribute is present for the column then that value
will be applied during UPDATE. This can only happen if the SET FLAGS
’AUTO_OVERRIDE’ is used since during normal processing these columns
are read-only.

• Otherwise a NULL will be applied during UPDATE.

INTO parameter
Inserts the values specified to specified parameters.

The INTO parameter clause is optional in interactive SQL. In this case the
returned values are displayed.

NULL
Specifies a NULL keyword. SQL assigns a null value to columns for which you
specify NULL. Any column assigned a null value must be defined to allow null
values (defined in a CREATE or ALTER TABLE statement without the NOT
NULL clause).

OPTIMIZE AS query-name
Assigns a name to the query.

OPTIMIZE FOR
The OPTIMIZE FOR clause specifies the preferred optimizer strategy for
statements that specify a select expression. The following options are available:

• BITMAPPED SCAN

Requests the Rdb query optimizer attempt to use BITMAPPED SCAN if
there exists multiple supporting indices. This option is not compatible with
SEQUENTIAL ACCESS.

• FAST FIRST

A query optimized for FAST FIRST returns data to the user as quickly as
possible, even at the expense of total throughput.

If a query can be cancelled prematurely, you should specify FAST FIRST
optimization. A good candidate for FAST FIRST optimization is an interactive
application that displays groups of records to the user, where the user has
the option of aborting the query after the first few screens. For example,
singleton SELECT statements default to FAST FIRST optimization.

If optimization strategy is not explicitly set, FAST FIRST is the default.

• SEQUENTIAL ACCESS

Forces the use of sequential access. This is particularly valuable for tables
that use the strict partitioning functionality.

• TOTAL TIME

If your application runs in batch, accesses all the records in the query,
and performs updates or writes a report, you should specify TOTAL TIME
optimization. Most queries benefit from TOTAL TIME optimization.

OPTIMIZE OUTLINE outline-definition
The OPTIMIZE OUTLINE clause declares a temporary query outline to be used
with the select expression.

See the CREATE OUTLINE Statement for more information on defining an
outline.

8–370 SQL Statements

UPDATE Statement

OPTIMIZE USING outline-name
Explicitly names the query outline to be used with the UPDATE statement even
if the outline ID for the query and for the outline are different.

OPTIMIZE WITH
Selects one of three optimzation controls: DEFAULT (as used by previous
versions of Rdb), AGGRESSIVE (assumes smaller numbers of rows will be
selected), and SAMPLED (which uses literals in the query to perform preliminary
estimation on indices).

predicate
If the WHERE clause includes a predicate, all the rows of the target table for
which the predicate is true are modified.

The columns named in the predicate must be columns of the target table or
view. The target table cannot be named in a column select expression within the
predicate.

See Section 2.7 for more information on predicates.

RETURNING value-expr
Returns the listed value expressions. If DBKEY is specified, SQL returns the
database key (dbkey) of the row being updated. When the DBKEY value is valid,
subsequent queries can use the DBKEY value to access the row directly.

The RETURNING DBKEY clause is not valid in an UPDATE statement used to
assign values to the segments in a column of the LIST OF BYTE VARYING data
type.

Only one row can be updated when you specify the RETURNING clause.

SET
Specifies which columns in the table or view get what values. For each column
you want to modify, you must specify the column name and either a value
expression, the NULL keyword, or the DEFAULT keyword. SQL assigns the
value following the equal sign to the column that precedes the equal sign.

table-name
view-name
Specifies the name of the target table or view that you want to modify.

value-expr
Specifies the new value for the modified column. Columns named in the value
expression must be columns of the table or view named after the UPDATE
keyword. The values can be specified through parameters, qualified parameters,
column select expressions, value expressions, or the default values.

See Chapter 2 for more information about parameters, qualified parameters,
column select expressions, value expressions, and default values.

WHERE
Specifies the rows of the target table or view that will be modified according to
the values indicated in the SET clause. If you omit the WHERE clause, SQL
modifies all rows of the target table or view. You can specify either a predicate or
a cursor name in the WHERE clause.

SQL Statements 8–371

UPDATE Statement

Usage Notes

• When you use the UPDATE statement to modify rows in a view, you change
the rows of the base tables on which the view is based. Because of this, you
cannot use the UPDATE statement on all views. See the CREATE VIEW
Statement for rules about inserting, updating, and deleting values in views.

• SQL does not require UPDATE statements that specify WHERE CURRENT
OF to refer to cursors declared with the appropriate FOR UPDATE clause.

If you specify columns in the SET clause that are not in the FOR
UPDATE clause, SQL issues a warning message and proceeds with the
update modifications.

If there is no FOR UPDATE clause with the DECLARE CURSOR
statement, you can update any column. SQL will not issue any
messages.

• The CURRENT OF clause in an embedded UPDATE statement cannot name
a cursor based on a dynamic SELECT statement. To refer to a cursor based
on a dynamic SELECT statement in the CURRENT OF clause, you must
prepare and dynamically execute the UPDATE statement as well.

• The CURRENT OF clause in an embedded UPDATE statement cannot name
a read-only cursor. See the DECLARE CURSOR Statement for Usage Notes
about read-only cursors.

• When specifying a column name in the UPDATE statement, if the column
name is the same as a parameter, you must use a correlation name or table
name with the column name.

• You cannot specify both the OPTIMIZE clause and the WHERE CURRENT
OF clause.

• You cannot specify an outline name in a compound-use-statement. See the
Compound Statement for more information about compound statements.

• If an outline exists, Oracle Rdb will use the outline specified in the OPTIMIZE
USING clause unless one or more of the directives in the outline cannot be
followed. SQL issues an error message if the existing outline cannot be used.

If you specify the name of an outline that does not exist, Oracle Rdb compiles
the query, ignores the outline name, and searches for an existing outline with
the same outline ID as the query. If an outline with the same outline ID is
found, Oracle Rdb attempts to execute the query using the directives in that
outline. If an outline with the same outline ID is not found, the optimizer
selects a strategy for the query for execution.

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information regarding query outlines.

8–372 SQL Statements

UPDATE Statement

Examples

Example 1: Using the UPDATE statement in interactive SQL

The following interactive SQL example changes the address of the employee with
EMPLOYEE_ID 00164 and confirms the change:

SQL> UPDATE EMPLOYEES
cont> SET ADDRESS_DATA_1 = ’16 Ridge St.’
cont> WHERE EMPLOYEE_ID = ’00164’;
1 row updated
SQL> SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, ADDRESS_DATA_1
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID = ’00164’;
EMPLOYEE_ID FIRST_NAME LAST_NAME ADDRESS_DATA_1
00164 Alvin Toliver 16 Ridge St.
1 row selected

Example 2: Using the UPDATE statement in a program

The following example illustrates using a host language variable in an embedded
SQL statement to update an employee’s status code:

DISPLAY "Enter employee’s ID number: " WITH NO ADVANCING.
ACCEPT ID.
DISPLAY "Enter new status code: " WITH NO ADVANCING.
ACCEPT STATUS-CODE.

EXEC SQL
DECLARE TRANSACTION READ WRITE

END-EXEC

EXEC SQL
UPDATE EMPLOYEES

SET STATUS_CODE = :STATUS-CODE
WHERE EMPLOYEE_ID = :ID

END-EXEC

EXEC SQL COMMIT END-EXEC

Example 3: Using UPDATE ... WHERE CURRENT OF with a compound
statement FOR loop

This compound statement uses a FOR loop to update each employee to apply a
company wide pay raise. The FOR loop defines a cursor name (SAL_CURSOR)
that fetches each row of the employees current salary. The nested UPDATE
statement uses "where current of SAL_CURSOR" to apply the update to the
current row of the cursor.

SQL> begin
cont> for :sal
cont> as each row of table cursor SAL_CURSOR
cont> for select salary_amount
cont> from salary_history
cont> where salary_end is null
cont> do
cont> update salary_history
cont> set salary_amount = salary_amount * 1.001
cont> where current of SAL_CURSOR;
cont> end for;
cont> commit;
cont> end;

SQL Statements 8–373

WHENEVER Statement

WHENEVER Statement

Specifies the execution path a host language program will take when any
embedded SQL statement results in one of these following exception conditions:

• Row not found

• An error condition

• A warning condition

For these conditions, the WHENEVER statement specifies that the program
continue execution or branch to another part of the program.

Environment

You can issue the WHENEVER statement only in host language programs.

Format

WHENEVER NOT FOUND
SQLERROR
SQLWARNING

CONTINUE
GOTO <host-label-name>
GO TO :

<host-label-number>

Arguments

CONTINUE
Specifies that the program continue execution with the next sequential statement
following the statement that generated an error.

GOTO host-label-name
GOTO host-label-number
Specifies that the program branch to the statement identified by the host label.
The form of the host label depends on the host language. You can use a colon (:)
before a host label represented by a name, but not before a host label represented
by a number.

NOT FOUND
Indicates the exception condition returned when SQL processes all the rows of a
result table:

• When a cursor referred to in a FETCH, UPDATE, or DELETE statement is
positioned after the last row

• When a query specifies an empty result table

This is the same condition identified by a value of 100 in the SQLCODE variable,
the value of ’02000’ in the SQLSTATE variable, and by the RDB$_STREAM_
EOF error.

8–374 SQL Statements

WHENEVER Statement

SQLERROR
Indicates any error condition. For the SQLERROR argument of the WHENEVER
statement, SQL defines an error condition as any condition that returns a
negative value to SQLCODE. See Appendix C for a list of the conditions that
result in negative values for the SQLCODE field.

SQLWARNING
Indicates any warning condition. Appendix C lists the conditions that result in
warnings for the SQLSTATE Status Parameter.

Usage Notes

• Use of WHENEVER statements is optional. Omitting a WHENEVER
statement for a class of exception conditions is equivalent to specifying the
CONTINUE argument for that class of conditions.

• WHENEVER statements are not executable. SQL evaluates WHENEVER
statements when the program precompiles. This means that the scope of a
given WHENEVER statement cannot be controlled by conditional statements
in the host program. A given WHENEVER statement affects all executable
SQL statements until the precompiler encounters the next WHENEVER
statement for the same exception condition in its sequential processing of the
source program.

• Once you specify a WHENEVER . . . GOTO statement for a class of exception
conditions, you can disable it with a WHENEVER . . . CONTINUE statement
for that class of conditions.

• The ANSI/ISO 1989 standard requires a colon (:) before the host label name
in the GOTO clause. The current ANSI/ISO SQL standard does not allow this
colon.

Example

Example 1: Using WHENEVER statements in a C or C++ program

/* When an SQL statement results in
an end of stream status, the
program branches to LABEL_NOT_FOUND: */
exec sql

WHENEVER NOT FOUND GOTO label_not_found;

/* When an SQL statement results in a
warning severity error condition, the
program branches to LABEL_ERROR */
exec sql

WHENEVER SQLWARNING GOTO label_error;

/* When an SQL statement results in
an error severity exception condition, the
program branches to LABEL_ERROR */
exec sql

WHENEVER SQLERROR GOTO label_error;

SQL Statements 8–375

WHENEVER Statement

/* Declare the cursor */
.
.
.

/* Open the cursor */
exec sql

OPEN MANAGER;

/* Start a loop to process the rows of the cursor */
for (;;)
{

/* Retrieve the rows of the cursor
and put the value in host language variables */

exec sql
FETCH MANAGER INTO :fname, :lname, :dname;

/* Print the values in the variables */
printf ("%s %s %s\n", fname, lname, dname);
recs++;

}

label_not_found:
printf ("%d rows\n", recs);
.
.
.

exit (EXIT_SUCCESS);

label_error:
sql_signal ();
exit (EXIT_FAILURE);
.
.
.

8–376 SQL Statements

WHILE Control Statement

WHILE Control Statement

Allows the repetitive execution of one or more SQL statements in a compound
statement based on the truth value of a predicate.

Environment

You can use the WHILE control statement in a compound statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format
while-statement=

WHILE predicate
<beginning-label>:

DO compound-use-statement END WHILE

LOOP compound-use-statement END LOOP

<ending-label>

Arguments

beginning-label:
Assigns a name to a control loop. A beginning label used with the LEAVE
statement lets you perform a controlled exit from the WHILE loop. If you include
an ending label, it must be identical to its corresponding beginning label. A
beginning label must be unique within the procedure containing the label.

compound-use-statement
Identifies the SQL statements allowed in a compound statement block. See the
Compound Statement for the list of valid statements.

DO
Marks the start of a control loop.

END LOOP ending-label
Marks the end of a LOOP control loop. If you choose to include the optional
ending label, it must match exactly its corresponding beginning label. An ending
label must be unique within the procedure in which the label is contained.

The optional ending-label argument makes multistatement procedures easier to
read, especially in very complex multistatement procedure blocks.

SQL Statements 8–377

WHILE Control Statement

END WHILE ending-label
Marks the end of a DO control loop. If you choose to include the optional ending
label, it must match exactly its corresponding beginning label. An ending label
must be unique within the procedure in which the label is contained.

The optional ending-label argument makes multistatement procedures easier to
read, especially in very complex multistatement procedure blocks.

LOOP
Marks the start of a control loop.

WHILE predicate
Specifies a search condition that controls how many times SQL can execute a
compound statement.

SQL evaluates the WHILE search condition. If it evaluates to TRUE, SQL
executes the associated sequence of SQL statements. If SQL does not encounter
an error exception, control returns to the WHILE clause at the top of the loop
for subsequent evaluation. Each time the search condition evaluates to TRUE,
the WHILE-DO statement executes the SQL statements embedded within its
DO . . . END WHILE block. If the search condition evaluates to FALSE or
UNKNOWN, SQL bypasses the DO . . . END WHILE block and passes control to
the next statement.

Usage Notes

Although the DO . . . END WHILE and LOOP . . . END LOOP are semantically
equivalent, the DO . . . END WHILE syntax conforms to the ANSI/ISO SQL/PSM
standard.

Examples

Example 1: Using the While Statement to Count Substrings

SQL> DECLARE :SUB_STR CHAR;
SQL> DECLARE :SRC_STR CHAR(50);
SQL> BEGIN
cont> SET :SUB_STR=’l’;
cont> SET :SRC_STR=’The rain in Spain falls mainly on the plain’;
cont> END;
SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont>-- This procedure counts the occurrence of substrings
cont> DECLARE :STR_COUNT INTEGER=0;
cont> DECLARE :CUR_POS INTEGER = POSITION (:SUB_STR IN :SRC_STR);
cont> WHILE :CUR_POS >0 DO
cont> SET :STR_COUNT=:STR_COUNT + 1;
cont> SET :CUR_POS = POSITION (:SUB_STR IN :SRC_STR FROM :CUR_POS + 1);
cont> END WHILE;
cont> TRACE ’FOUND ’, :STR_COUNT, ’ OCCURRENCES OF "’, :SUB_STR, ’"’;
cont> END;
~Xt: Found 4 occurrences of "l"

8–378 SQL Statements

Index

$ (dollar sign)
See Operating system invocation statement ($)

A
Access control lists (ACLs), 8–118

changing, 8–118
database, 8–118
deleting entries from, 8–118
general identifier, 8–123
system-defined identifier, 8–123
table, 8–118
user identifier, 8–118, 8–124

Access privilege sets, 8–127
access control list (ACL) style, 8–118
changing, 8–127
database, 8–127
deleting entries from, 8–127
displaying information about, 8–330
external routine, 8–127
module, 8–127
table, 8–127
user identifier, 8–127, 8–131

ACL clause
of IMPORT statement, 8–12

ACLs
See also ACL clause
See also Privilege, Protection

ACL-style protection clause
differences from ANSI/ISO-style, 8–15

Ada language
INCLUDE FROM DICTIONARY not supported,

8–28
ADJUSTABLE LOCK GRANULARITY clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
AFTER clause

of REVOKE statement, 8–121
After-image journal

displaying information about, 8–328
AGGRESSIVE SELECTIVITY transaction option

SET OPTIMIZATION LEVEL statement,
8–266

Alias
displaying information about, 8–324
for default database, 8–124

Alias (cont’d)
in IMPORT statement, 8–16
in REVOKE statement, 8–123, 8–130
in SET TRANSACTION statement, 8–296
in SHOW statement, 8–324
RDB$DBHANDLE, 8–124
SHOW ALIAS statement, 8–324
specifying, 8–179

ALIAS clause
of IMPORT statement, 8–16

ALL keyword
privileges, 8–127

ALLOCATION clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

ALTER DICTIONARY clause
of INTEGRATE DOMAIN statement, 8–57
of INTEGRATE statement, 8–52

ALTER DICTIONARY clause of INTEGRATE
statement, 8–48

ALTER FILES clause of INTEGRATE statement,
8–48, 8–49

ALTERNATE_OUTLINE_ID option
of SET FLAGS statement, 8–233

ANSI/ISO SQL standard
flagging extensions, 8–165
flagging violations of, 8–165, 8–182, 8–327
SET ANSI DATE statement, 8–181
SET ANSI IDENTIFIERS statement, 8–182
SET ANSI QUOTING statement, 8–182

ANSI/ISO-style privileges, 8–127
ANSI/ISO-style protection clause

differences from ACLS-style, 8–15
ANSI IDENTIFIERS MODE clause

of SHOW statement, 8–325
ANSI QUOTING MODE clause

of SHOW statement, 8–325
Assistance (online help) in SQL, 8–2
ASYNC BATCH WRITES clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
ASYNCH BATCH WRITE clause

IMPORT statement, 8–19

Index–1

ASYNCH PREFETCH clause
IMPORT statement, 8–19

ASYNC PREFETCH clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Authentication
user, 8–15

AUTO_INDEX option
of SET FLAGS statement, 8–233

AUTO_OVERRIDE option
of SET FLAGS statement, 8–233

B
BATCH UPDATE clause

of IMPORT statement, 8–12
Batch-update transaction, 8–12, 8–293
BITMAPPED_SCAN option

of SET FLAGS statement, 8–233
BLR option

of SET FLAGS statement, 8–233
Boldface

disabling in log files, 8–168
BUFFER SIZE clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

C
C++ language

dynamic SQL, 8–81
Cache

displaying information about, 8–325
SHOW CACHE statement, 8–325

CACHE USING clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

CARDINALITY COLLECTION clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

CARDINALITY option
of SET FLAGS statement, 8–233

CARRY OVER LOCKS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

CARTESIAN_LIMIT option
of SET FLAGS statement, 8–233

Catalog
displaying information about, 8–325
expression, 8–185
selecting, 8–185
SHOW CATALOG statement, 8–325

CDD LINKS clause
of IMPORT statement, 8–12

Changing
See also Modifying

Character length
CHARACTERS option, 8–189
in dynamic SQL, 8–189, 8–208
in interactive SQL, 8–189, 8–208
OCTETS option, 8–189

CHARACTER LENGTH clause
CHARACTERS option, 8–189
OCTETS option, 8–189

character set
in SQL module language, 8–225

Character set
displaying, 8–325
module

default character set, 8–202
identifier character set, 8–256
literal character set, 8–260
names character set, 8–262
national character set, 8–264

session
default character set, 8–202
identifier character set, 8–256
literal character set, 8–260
names character set, 8–262
national character set, 8–264

CHARACTER SETS clause
of SHOW statement, 8–325

CHARACTERS option
of SET CHARACTER LENGTH statement,

8–189
CHAR data type

interpreted as fixed character string, 8–26
length field as character count in C, 8–27
null-terminated byte strings in C, 8–27

CHECKSUM CALCULATION clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

CHRONO_FLAG option
of SET FLAGS statement, 8–233

C language
character data interpretation options, 8–26
dynamic SQL, 8–81

CLEAN BUFFER COUNT clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Closing a log file, 8–166, 8–167
Collating sequence

altering, 8–6
displaying information about, 8–326

COLLATING SEQUENCE clause
of IMPORT statement, 8–6
of SHOW statement, 8–326

Index–2

Column privileges
displaying information about, 8–330

COMMIT EVERY clause
of IMPORT statement, 8–13

Compound statements
IF control statement, 8–4
LEAVE control statement, 8–62
LOOP control statement, 8–68
OPTIMIZE WITH clause, 8–36, 8–107, 8–371
RELEASE_SAVEPOINT statement, 8–91
REPEAT control statement, 8–100
ROLLBACK TO SAVEPOINT statement,

8–142
SAVEPOINT statement, 8–144
SET assignment control statement, 8–200
SIGNAL control statement, 8–349
TRACE control statement, 8–359
using with LEAVE, 8–63
WHILE control statement, 8–377

Concurrency
See Isolation level

Concurrent index creation, 8–297
Connection

displaying information about, 8–326
name, 8–194
selecting, 8–194

CONNECTIONS clause of SHOW statement,
8–326

Consistency
See Isolation level

Constraint
default mode, 8–204
displaying evaluation setting, 8–326
evaluating, 8–198

CONSTRAINT MODE clause
of SHOW statement, 8–326

Continuation character
SET statement, 8–163

CONTINUE argument of WHENEVER statement,
8–374

CONTINUE CHARACTER clause
of SHOW statement, 8–326

Control statement
SET, 8–200

Control statements
IF, 8–4
ITERATE, 8–60
LEAVE, 8–62
LOOP, 8–68
REPEAT, 8–100
SET, 8–200
TRACE, 8–359
WHILE, 8–377

CONTROL_BITS option
of SET FLAGS statement, 8–233

COSTING option
of SET FLAGS statement, 8–233

COUNT_SCAN option
of SET FLAGS statement, 8–233

CREATE CACHE clause
of IMPORT statement, 8–13

CREATE INDEX statement
of IMPORT statement, 8–13

CREATE PATHNAME clause of INTEGRATE
statement, 8–47, 8–55

CREATE STORAGE AREA clause
of IMPORT statement, 8–13

CREATE STORAGE MAP statement
of IMPORT statement, 8–13

Creating
indexes concurrently, 8–297

Creating a repository definition
using SQL, 8–55

Currency sign
SHOW CURRENCY SIGN statement, 8–326

CURRENCY SIGN clause
of SET statement, 8–163

CURRENT_TIMESTAMP data type
specifying default format, 8–206

Cursor
displaying information about, 8–326
inserting row into, 8–39
opening, 8–70
SHOW CURSOR statement, 8–326

Cursor declaration
in interactive SQL, 8–366

CURSOR_STATS option
of SET FLAGS statement, 8–233

D
Database

denying access, 8–118, 8–127
displaying information about, 8–326
integrating in repository, 8–47
moving, 8–6
restricted access to, 8–19
specifying

in REVOKE statement, 8–123, 8–130
Database access

restricted, 8–19
Database key

finding for specified record, 8–37
in UPDATE statement, 8–371

Database privileges, 8–118, 8–127
displaying information about, 8–330

DATABASES clause
of SHOW statement, 8–326

Database System Privileges
REVOKE statement, 8–134

DATABASE_PARAMETERS option
of SET FLAGS statement, 8–233

Index–3

DATA clause
of IMPORT statement, 8–13

DATA DEFINITION lock type, 8–297
Data dictionary

See Repository
Data manipulation statements

INSERT from FILENAME statement, 8–45
INSERT statement, 8–32
REPLACE statement, 8–103
SELECT statement, 8–146, 8–158
UPDATE statement, 8–368

Data type
CURRENT_TIMESTAMP, 8–206
DATE, 8–206

DATE clause
of SET ANSI statement, 8–181

DATE data type
specifying default format, 8–206

Date format
default setting, 8–206
SET DATE FORMAT statement, 8–163
SET DEFAULT DATE FORMAT statement,

8–206
SHOW DATE FORMAT statement, 8–326

DATE FORMAT clause
of SET statement, 8–163

Dbkey
See Database key

DBKEY SCOPE clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

DCL
See Operating system invocation statement ($)

DCL invoke statement ($)
See Operating system invocation statement ($)

DDAL option
of SET FLAGS statement, 8–234

DDL_BLR option
of SET FLAGS statement, 8–234

Deadlock
avoiding, 8–298

Debug flags
displaying information about, 8–327

Debugging
multistatement procedures, 8–359

DECdtm services, 8–304
Default character set

in SQL module language, 8–202
of session, 8–202

DEFAULT CONSTRAINT MODE clause
of SET statement, 8–204

Default date format
setting, 8–206

DEFAULT option
SET OPTIMIZATION LEVEL statement,

8–266
DEFAULT STORAGE AREA clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Deleting

access privilege set entries, 8–127
ACL entries, 8–118
database access, 8–118, 8–127
external routine access, 8–127
module access, 8–127
privileges, 8–118, 8–127
table access, 8–118, 8–127

Deprecated feature
See also Obsolete SQL syntax
SET ANSI statement, 8–181

DEPTH clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

DESCRIBE statement
OUTPUT clause, 8–81

DETAIL_LEVEL option
of SET FLAGS statement, 8–234

DETECTED ASYNC PREFETCH clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Dialect setting
MIA, 8–212
ORACLE LEVEL1, 8–209
ORACLE LEVEL2, 8–211
ORACLE LEVEL3, 8–211
SET DIALECT statement, 8–208
SQL2011, 8–214
SQL89, 8–212
SQL92, 8–212
SQL99, 8–213
SQLV40, 8–214

DICTIONARY clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

of SET statement, 8–164
DIGITAL Command Language

See DCL
Digit separator

SHOW DIGIT SEPARATOR statement, 8–327
DIGIT SEPARATOR clause

of SET statement, 8–164
DISPLAY clause

of SHOW statement, 8–327
Displaying ANSI/ISO-style privileges

users granting, 8–334
users receiving, 8–334

Index–4

Displaying database information
aliases, 8–324
cache, 8–325
cardinality, 8–333
catalogs, 8–325
character sets, 8–325
collating sequences, 8–326
columns, 8–333, 8–334
comments, 8–333, 8–334
connections, 8–326
constraint evaluation settings, 8–326
constraints, 8–333
cursors, 8–326
databases, 8–326
date format, 8–324
debug flags, 8–327
domains, 8–327
execution mode, 8–327
external functions, 8–327
hold cursors, 8–328
indexes, 8–328, 8–333
journals, 8–328
modules, 8–328
privileges, 8–330
procedures, 8–330
protection, 8–330
query limit, 8–331
query outlines, 8–330
repository, 8–327
row cache, 8–325
schemas, 8–331
SHOW statement, 8–316
software version, 8–334
source definitions, 8–334
storage area attributes, 8–332
storage areas, 8–332
storage area usage, 8–332
storage maps, 8–332, 8–333
stored functions, 8–327
tables, 8–333
transactions, 8–333
triggers, 8–333
variables, 8–334
views, 8–334

Displaying messages
See also EXECUTE statement
in command files, 8–85

Distributed transaction manager, 8–304
Dollar sign ($) statement

See Operating system invocation statement ($)
Domain

displaying information about, 8–327
DOMAINS clause

of SHOW statement, 8–327
DROP CACHE clause

of IMPORT statement, 8–14

DROP INDEX statement
of IMPORT statement, 8–14

DROP STORAGE AREA clause
of IMPORT statement, 8–14

DROP STORAGE MAP statement
of IMPORT statement, 8–14

Dynamic SQL
associated embedded statements, 8–80, 8–81
C, 8–81
C++, 8–81
INCLUDE statement, 8–25
parameter markers, 8–70, 8–77
PREPARE statement, 8–76
RELEASE statement, 8–88
select lists, 8–76
SQLDA, 8–25
SQLDA2, 8–25
statement names, 8–76, 8–88
statements not allowed, 8–79
statement string length, 8–77
valid statements, 8–80, 8–81

E
EDIT statement

changing settings, 8–164
EDIT STRING clause

overriding SET DATE FORMAT, 8–170
Ending

transactions
ROLLBACK statement, 8–138 to 8–139

Error handling
branching after errors, 8–374
continuing after errors, 8–374
end of stream, 8–374
error conditions, 8–375
warning conditions, 8–375
with message vector, 8–27
with SQLCA, 8–27
with WHENEVER statement, 8–374

ESTIMATES option
of SET FLAGS statement, 8–234

EVALUATING clause in SET TRANSACTION
statement, 8–294

EXECUTE clause
of SET statement, 8–165

EXECUTE statement
in a C++ program, 8–81
in a C program, 8–81
SQLDA, 8–81

EXECUTION option
of SET FLAGS statement, 8–234

EXTENT clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Index–5

External function privileges
displaying information about, 8–330

External functions
displaying information about, 8–327

External procedure
privileges

displaying information about, 8–330
External routine

denying access, 8–127
privileges, 8–127
revoking privilege, 8–123, 8–130
specifying

in REVOKE statement, 8–123, 8–130

F
FAST FIRST transaction option

SET OPTIMIZATION LEVEL statement,
8–266

FEEDBACK clause
of SET statement, 8–165

FILENAME clause
of IMPORT statement, 8–14

File specification
in INCLUDE statement, 8–26
of IMPORT statement, 8–14

Fixed character strings in SQL precompiler, 8–26
FLAGGER clause of SET statement, 8–165
Flagging ANSI/ISO standard extensions, 8–165
FLAGS clause of SHOW statement, 8–327
FOR control statement

using with LEAVE, 8–63
FOR UPDATE clause

of SELECT statement, 8–150
FROM clause

of IMPORT statement, 8–15
of PREPARE statement, 8–76
of SHOW USERS statement, 8–327

FUNCTIONS clause of SHOW statement, 8–327

G
General identifiers, 8–123
Getting out of interactive SQL

QUIT statement, 8–87
GLOBAL BUFFERS clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
GOTO argument of WHENEVER statement,

8–374

H
Handling errors

branching after errors, 8–374
continuing after errors, 8–374
end of stream, 8–374
error conditions, 8–375
warning conditions, 8–375
with message vector, 8–27
with SQLCA, 8–27
with WHENEVER statement, 8–374

Hashed index
loading data with, 8–37

HASHING option
of SET FLAGS statement, 8–234, 8–236

HELP statement, 8–2
Holdable cursor

setting session default, 8–253
Hold cursor definitions

displaying information about, 8–328
HOLD CURSORS MODE clause of SHOW

statement, 8–328

I
Identifier character set

in SQL module language, 8–256
of session, 8–256

IDENTIFIERS clause
of SET ANSI statement, 8–182

Identifiers in access privilege sets, 8–127
user identifier, 8–131

Identifiers in ACLs, 8–118
general, 8–123
multiple, 8–122
system, 8–123
user identifier, 8–124

IF control statement
ELSE clause, 8–4
ELSEIF . . . THEN clause, 8–4
END IF clause, 8–4
IF . . . THEN clause, 8–5
of compound statement, 8–4

IGNORE_OUTLINE option
of SET FLAGS statement, 8–234

IMPORT statement, 8–6
ACL clause, 8–12
ADJUSTABLE LOCK GRANULARITY clause

See CREATE DATABASE statement in
Volume 2

ALIAS clause, 8–16
aliases, 8–16
ALLOCATION clause

See CREATE DATABASE statement in
Volume 2

ASYNC BATCH WRITES clause

Index–6

IMPORT statement
ASYNC BATCH WRITES clause (cont’d)

See CREATE DATABASE statement in
Volume 2

ASYNC PREFETCH clause
See CREATE DATABASE statement in

Volume 2
BATCH UPDATE clause, 8–12
BUFFER SIZE clause

See CREATE DATABASE statement in
Volume 2

CACHE USING clause
See CREATE DATABASE statement in

Volume 2
CARDINALITY COLLECTION clause

See CREATE DATABASE statement in
Volume 2

CARRY OVER LOCKS clause
See CREATE DATABASE statement in

Volume 2
CDD LINKS clause, 8–12
CHECKSUM CALCULATION clause

See CREATE DATABASE statement in
Volume 2

CLEAN BUFFER COUNT clause
See CREATE DATABASE statement in

Volume 2
COLLATING SEQUENCE clause, 8–6
COMMIT EVERY clause, 8–13
CREATE CACHE clause, 8–13
CREATE INDEX statement, 8–13
CREATE STORAGE AREA clause, 8–13
CREATE STORAGE MAP statement, 8–13
DATA clause, 8–13
DBKEY SCOPE clause

See CREATE DATABASE statement in
Volume 2

DEFAULT STORAGE AREA clause
See CREATE DATABASE statement in

Volume 2
DEPTH clause

See CREATE DATABASE statement in
Volume 2

DETECTED ASYNC PREFETCH clause
See CREATE DATABASE statement in

Volume 2
DICTIONARY clause

See CREATE DATABASE statement in
Volume 2

DROP CACHE clause, 8–14
DROP INDEX statement, 8–14
DROP STORAGE AREA clause, 8–14
DROP STORAGE MAP statement, 8–14
EXTENT clause

See CREATE DATABASE statement in
Volume 2

FILENAME clause, 8–14

IMPORT statement (cont’d)
file specifications, 8–14
FROM clause, 8–15
GLOBAL BUFFERS clause

See CREATE DATABASE statement in
Volume 2

INCREMENTAL BACKUP SCAN
OPTIMIZATION clause
See CREATE DATABASE statement in

Volume 2
INTERVAL clause

See CREATE DATABASE statement in
Volume 2

LIST STORAGE AREA clause
See CREATE DATABASE statement in

Volume 2
LOCKING clause

See CREATE DATABASE statement in
Volume 2

LOCK PARTITIONING clause
See CREATE DATABASE statement in

Volume 2
LOCK TIMEOUT INTERVAL clause

See CREATE DATABASE statement in
Volume 2

MAXIMUM BUFFER COUNT clause
See CREATE DATABASE statement in

Volume 2
MEMORY ALLOCATION clause

See CREATE DATABASE statement in
Volume 2

METADATA CHANGES clause
See CREATE DATABASE statement in

Volume 2
MULTISCHEMA clause

See CREATE DATABASE statement in
Volume 2

MULTITHREAD AREA ADDITIONS clause
See CREATE DATABASE statement in

Volume 2
NO ROW CACHE clause

See CREATE DATABASE statement in
Volume 2

NUMBER OF BUFFERS clause
See CREATE DATABASE statement in

Volume 2
NUMBER OF CLUSTER NODES clause

See CREATE DATABASE statement in
Volume 2

NUMBER OF RECOVERY BUFFERS clause
See CREATE DATABASE statement in

Volume 2
NUMBER OF USERS clause

See CREATE DATABASE statement in
Volume 2

OPEN clause
See CREATE DATABASE statement in

Volume 2

Index–7

IMPORT statement (cont’d)
PAGE FORMAT clause

See CREATE DATABASE statement in
Volume 2

PAGE SIZE clause
See CREATE DATABASE statement in

Volume 2
PAGE TRANSFER clause

See CREATE DATABASE statement in
Volume 2

PROTECTION clause, 8–15
RECOVERY JOURNAL clause

See CREATE DATABASE statement in
Volume 2

RESERVE n CACHE SLOTS clause
See CREATE DATABASE statement in

Volume 2
RESERVE n JOURNALS clause

See CREATE DATABASE statement in
Volume 2

RESERVE n STORAGE AREAS clause
See CREATE DATABASE statement in

Volume 2
RESTRICTED ACCESS clause, 8–19
ROW CACHE clause

See CREATE DATABASE statement in
Volume 2

ROWID SCOPE clause
See CREATE DATABASE statement in

Volume 2
SEGMENTED STRING clause

See CREATE DATABASE statement in
Volume 2

SHARED MEMORY clause
See CREATE DATABASE statement in

Volume 2
SNAPSHOT ALLOCATION clause

See CREATE DATABASE statement in
Volume 2

SNAPSHOT CHECKSUM CALCULATION
clause
See CREATE DATABASE statement in

Volume 2
SNAPSHOT DISABLED clause

See CREATE DATABASE statement in
Volume 2

SNAPSHOT ENABLED clause
See CREATE DATABASE statement in

Volume 2
SNAPSHOT EXTENT clause

See CREATE DATABASE statement in
Volume 2

SNAPSHOT FILENAME clause
See CREATE DATABASE statement in

Volume 2
STATISTICS COLLECTION clause

IMPORT statement
STATISTICS COLLECTION clause (cont’d)

See CREATE DATABASE statement in
Volume 2

storage area parameters, 8–15
SYSTEM INDEX COMPRESSION clause

See CREATE DATABASE statement in
Volume 2

THRESHOLD clause
See CREATE DATABASE statement in

Volume 2
THRESHOLDS clause

See CREATE DATABASE statement in
Volume 2

TRACE clause, 8–16
USER clause, 8–16
USING clause

of USER clause, 8–16
WAIT clause

See CREATE DATABASE statement in
Volume 2

WORKLOAD COLLECTION clause
See CREATE DATABASE statement in

Volume 2
WRITE ONCE clause

See CREATE DATABASE statement in
Volume 2

INCLUDE statement, 8–25
file specifications, 8–26
FROM DICTIONARY not supported in Ada,

8–28
message vector, 8–27
Module and Library definitions, 8–26
Module definitions, 8–27
record definitions, 8–26
repository path names, 8–26
restriction, 8–25
SQLCA, 8–27, 8–28

EXTERNAL keyword, 8–25
SQLDA, 8–28
SQLDA2, 8–28
to declare host structures, 8–26, 8–27, 8–28

INCREMENTAL BACKUP SCAN OPTIMIZATION
clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Index

creating concurrently, 8–297
Index definitions

displaying information about, 8–328
INDEXES clause of SHOW statement, 8–328
INDEX_COLUMN_GROUP option

of SET FLAGS statement, 8–234
INDEX_DEFER_ROOT option

of SET FLAGS statement, 8–234

Index–8

INDEX_PARTITIONS option
of SET FLAGS statement, 8–235

INDEX_SIZING option
of SET FLAGS statement, 8–235, 8–236

INDEX_STATS option
of SET FLAGS statement, 8–235

Insert-only table cursor, 8–39
INSERT statement, 8–32

in a C++ program, 8–81
in a C program, 8–81
in dynamic SQL, 8–81
parameter markers, 8–81
PLACEMENT ONLY clause, 8–37
positioned, 8–32

INTEGRATE statement, 8–47
ALTER DICTIONARY clause, 8–48
ALTER FILES clause, 8–48, 8–49
CREATE PATHNAME clause, 8–47
repository path names, 8–48
restriction, 8–49
updating repository, 8–52, 8–57

Intermediate result table, 8–146
INTERNALS option

of SET FLAGS statement, 8–235
Internationalization features

See also IMPORT statement, COLLATING
SEQUENCE clause

See also SET statement, CURRENCY SIGN
clause

See also SET statement, DATE FORMAT clause
See also SET statement, DIGIT SEPARATOR

clause
See also SET statement, LANGUAGE clause
See also SET statement, RADIX POINT clause
See also SHOW statement, SHOW CURRENCY

SIGN
See also SHOW statement, SHOW DATE

FORMAT
See also SHOW statement, SHOW DIGIT

SEPARATOR
See also SHOW statement, SHOW LANGUAGE
See also SHOW statement, SHOW RADIX

POINT
logical names used for, 8–170

INTERVAL clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

INTO clause
of PREPARE statement, 8–77
of UPDATE statement, 8–370
SINGLETON SELECT statement, 8–160

Isolation level
phenomena, 8–295, 8–356
READ COMMITTED, 8–295, 8–356

FOR UPDATE ONLY cursor, 8–302
increase of lock operations, 8–302

Isolation level (cont’d)
REPEATABLE READ, 8–295, 8–356

reducing index contention, 8–302
SERIALIZABLE

default, 8–295, 8–356
read-only transactions, 8–302

ITEM_LIST option
of SET FLAGS statement, 8–235

ITERATE control statement
of compound statement, 8–60

J
JOIN_ORDER option

of SET FLAGS statement, 8–235
JOURNALS clause

of SHOW statement, 8–328

K
Keyword

controlling interpretation of
in dynamic SQL, 8–208, 8–258
in interactive SQL, 8–208, 8–258

rules setting, 8–258

L
Language

displaying date format
SHOW LANGUAGE statement, 8–328

LANGUAGE clause
of SET statement, 8–166

LAREA_READY option
of SET FLAGS statement, 8–235

LEAVE control statement
control loop and, 8–68
of compound statement, 8–62
statement label, 8–62

Leaving interactive SQL
QUIT statement, 8–87

Length
character

in dynamic SQL, 8–189, 8–208
in interactive SQL, 8–189, 8–208

CHARACTERS option, 8–189
OCTETS option, 8–189

Limits and parameters
maximum length for statement strings, 8–77

LINE LENGTH clause
of SET statement, 8–166

LINESIZE clause
of SET statement, 8–166

List
inserting values into, 8–32, 8–43

LIST STORAGE AREA clause
of IMPORT statement

Index–9

LIST STORAGE AREA clause
of IMPORT statement (cont’d)

See CREATE DATABASE statement in
Volume 2

Literal character set
of session, 8–260
of SQL module language, 8–260

Loading data
with hashed indexes, 8–37

LOCKING clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

LOCK PARTITIONING clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

LOCK TABLE statement, 8–65
DATA DEFINITION lock type, 8–65
READ lock type, 8–65
WRITE lock type, 8–65

LOCK TIMEOUT INTERVAL clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Lock timeouts, 8–298
Log file

closing, 8–166, 8–167
disabling boldface, 8–168
opening, 8–166, 8–167

Logical name
for internationalization, 8–170
using with operating system invocation

statement, 8–74
LOOP control statement

beginning label, 8–68
ending label, 8–69
LOOP clause, 8–69
of compound statement, 8–68
using with LEAVE, 8–63
WHILE clause, 8–68

M
MAXIMUM BUFFER COUNT clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
MAX_RECURSION option

of SET FLAGS statement, 8–235
MAX_SOLUTION option

of SET FLAGS statement, 8–235
MAX_STABILITY option

of SET FLAGS statement, 8–235
MBLR option

of SET FLAGS statement, 8–235

MEMORY ALLOCATION clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Messages
flagging obsolete syntax, 8–169, 8–334

Message vector
in INCLUDE statement, 8–27

METADATA CHANGES clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

MIA
dialect setting, 8–212

MIA standard syntax
flagging violations of, 8–327

MODE option
of SET FLAGS statement, 8–236

Modifying
access privilege set entries, 8–127
ACL entries, 8–118
data with UPDATE statement, 8–368
interactive SQL with SET statement, 8–161

Modifying a repository field
using SQL, 8–57

Module
and Library names

in INCLUDE statement, 8–26
default character set, 8–202
denying access, 8–127
identifier character set, 8–256
literal character set, 8–260
name

in INCLUDE statement, 8–27
names character set, 8–262
national character set, 8–264
privileges, 8–127
restriction on multimodule files, 8–28
specifying

in REVOKE statement, 8–123, 8–130
MODULES clause

of SHOW statement, 8–328
Multiple identifiers, 8–122
MULTISCHEMA clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Multistatement procedure

See also Compound statement
debugging, 8–359

MULTITHREAD AREA ADDITIONS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Index–10

N
Name

character set for
session, 8–262
SQL module language, 8–262

dynamic SQL statements, 8–76, 8–88
statement (dynamic), 8–76, 8–88

Naming a query, 8–35, 8–106, 8–150, 8–370
National character set

in SQL module language, 8–264
of session, 8–264

NONE option
of SET FLAGS statement, 8–236

Nonrepeatable read phenomenon
in transactions, 8–295, 8–356

Nonstandard syntax flagging, 8–165
NO ROW CACHE clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
NOT FOUND argument of WHENEVER

statement, 8–374
NOWAIT mode in SET TRANSACTION statement,

8–298
Null-terminated CHAR fields

C language, 8–27
NUMBER OF BUFFERS clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
NUMBER OF CLUSTER NODES clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
NUMBER OF RECOVERY BUFFERS clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
NUMBER OF USERS clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

O
OBLR option

of SET FLAGS statement, 8–237
Obsolete SQL syntax

diagnostic messages, 8–169, 8–334
OCTETS option

of SET CHARACTER LENGTH statement,
8–189

OLD_COST_MODEL option
of SET FLAGS statement, 8–237

OPEN clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Opening a cursor, 8–70
Opening a log file, 8–166, 8–167
OPEN statement, 8–70

USING clause, 8–70
Operating system

invoke statement ($)
and logical names, 8–74

Operating system invocation statement, 8–74
Optimization level

setting, 8–266
OPTIMIZATION_LEVEL option

of SET FLAGS statement, 8–237
OPTIMIZE clause

AS keyword, 8–35, 8–106, 8–150, 8–370
OUTLINE keyword, 8–36, 8–106, 8–152, 8–370
USING keyword, 8–36, 8–107, 8–152, 8–371

Optimizing
queries, 8–35, 8–106, 8–151, 8–370
using an outline, 8–36, 8–106, 8–107, 8–152,

8–370, 8–371
using an query name, 8–35, 8–106, 8–150,

8–370
ORACLE LEVEL1

dialect setting, 8–209
ORACLE LEVEL2

dialect setting, 8–211
ORACLE LEVEL3

dialect setting, 8–211
OSF invoke statement ($)

See Operating system invocation statement ($)
Outline definition

using, 8–36, 8–106, 8–152, 8–370
Outline name

using, 8–36, 8–107, 8–152, 8–371
OUTLINE option

of SET FLAGS statement, 8–237
OUTLINES clause

of SHOW statement, 8–330
OUTPUT clause of DESCRIBE statement, 8–81

P
PAGE FORMAT clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
PAGE LENGTH clause

of SET statement, 8–168
PAGE SIZE clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

Index–11

PAGESIZE clause
of SET statement, 8–168

PAGE TRANSFER clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Parameter
compared with parameter markers, 8–77
specifying dynamic statements, 8–76

Parameter markers, 8–70
compared with host language variables, 8–77
information in SQLDA, 8–78
in statement string, 8–77

Performance
optimizing queries, 8–35, 8–106, 8–151, 8–370

Phantom phenomenon
in transactions, 8–295, 8–356
nonrepeatable read, 8–295, 8–356
permitted at different isolation levels, 8–295,

8–356
PL/I language

SQLDA, 8–25
PLACEMENT ONLY clause

of INSERT statement, 8–37
POSITION clause

of REVOKE statement, 8–121
Positioned insert

using RETURNING DBKEY clause, 8–39
PREFIX option

of SET FLAGS statement, 8–237
Prepared statement names, 8–76
PREPARE statement, 8–76

FROM clause, 8–76
in a C++ program, 8–81
in a C program, 8–81
parameter markers, 8–77
SELECT LIST INTO clause, 8–77
SQLCA, 8–79
SQLDA, 8–77
statement-name, 8–77
statement string, 8–76

PRINT statement, 8–85
Privilege

ALL, 8–127
database, 8–118, 8–127
deleting, 8–118, 8–127
displaying information about, 8–330
module, 8–127
PROTECTION clause

of IMPORT statement, 8–15
REVOKE statement, 8–118, 8–127
SHOW, 8–330
table, 8–118, 8–127

PROCEDURES clause
of SHOW statement, 8–330

profiles
displaying, 8–331

PROFILES clause
of SHOW statement, 8–331

Protection
PROTECTION clause

of IMPORT statement, 8–15
REVOKE statement, 8–127

PROTECTION clause
of IMPORT statement, 8–15

Q
Query

specifying, 8–270
QUERY CONFIRM clause

of SHOW statement, 8–331
Query cost estimate

showing, 8–331
Query limit

displaying information about, 8–331
QUERY LIMIT clause

of SHOW statement, 8–331
Query naming, 8–35, 8–106, 8–150, 8–370
Query optimizer, 8–35, 8–106, 8–151, 8–370
Query outlines

displaying information about, 8–330
QUERY_CPU_TIME_LIMIT option

of SET FLAGS statement, 8–237
QUERY_ROWS_LIMIT option

of SET FLAGS statement, 8–237
QUERY_TIME_LIMIT option

of SET FLAGS statement, 8–237
QUIT statement, 8–87
Quotation mark

controlling interpretation of
in dynamic SQL, 8–208, 8–276
in interactive SQL, 8–208, 8–276

QUOTING clause
of SET ANSI statement, 8–182

Quoting rules, setting, 8–276

R
Radix point

SHOW RADIX POINT statement, 8–331
RADIX POINT clause of SET statement, 8–168
RDB$CATALOG default catalog, 8–185
RDB$DBHANDLE default alias

in REVOKE statement, 8–124
Read/write transaction, 8–297, 8–357
READ lock type, 8–297
Read-only transaction, 8–297, 8–356
Read-only transaction mode

disabled, 8–304
restrictions, 8–304

Index–12

REBUILD_SPAM_PAGES option
of SET FLAGS statement, 8–238

Record definitions
including in programs, 8–26
retrieving from repository, 8–25

RECOVERY JOURNAL clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Re-creating repository definitions, 8–47
REFINE_ESTIMATES option

of SET FLAGS statement, 8–238
RELEASE SAVEPOINT statement

of compound statement, 8–91
RELEASE statement, 8–88

restriction, 8–89
statement-name, 8–88

RENAME statement, 8–93
Renaming

structure name from repository, 8–25
REPEAT control statement

beginning label, 8–100
of compound statement, 8–100

REPLACE statement, 8–103
Replacing data, 8–103
Repository

creating data definitions
using SQL, 8–55

definitions
interpreting CHAR fields in C, 8–26
re-creating with INTEGRATE statement,

8–47
updating with INTEGRATE statement,

8–47
modifying field definitions

using SQL, 8–57
path names

displaying current directory, 8–327
in INCLUDE statement, 8–26
in INTEGRATE statement, 8–48
in SHOW DICTIONARY statement, 8–327

record definitions, 8–25, 8–26
updating using SQL, 8–52, 8–57

REQUEST_NAMES option
of SET FLAGS statement, 8–238

Reserved word
See also Keyword
as user-supplied names, 8–325
flagging use of, 8–182

RESERVE n CACHE SLOTS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

RESERVE n JOURNALS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

RESERVE n STORAGE AREAS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

RESERVING clause in SET TRANSACTION
statement, 8–298

RESTRICTED ACCESS clause
of IMPORT statement, 8–19

Restricted access to database, 8–19
Restriction

AS clause
of INCLUDE statement, 8–25

declared cursors, 8–89
executing prepared statements, 8–89
INTEGRATE statement, 8–49
prepared statements, 8–89
RELEASE statement, 8–89
ROWNUM keyword, 8–215
standard output, 8–171
SYS$OUTPUT, 8–85

Result tables, 8–146, 8–158
intermediate, 8–146

RETURN control statement, 8–115
RETURNING clause

of UPDATE statement, 8–371
RETURNING DBKEY clause, 8–39

of UPDATE statement, 8–371
REVERSE_SCAN option

of SET FLAGS statement, 8–238
REVOKE statement, 8–118

See also GRANT statement
AFTER clause, 8–121
ANSI/ISO-style, 8–127
database access, 8–118, 8–127
database system privileges, 8–134
external routine access, 8–127
general usage notes, 8–117
module access, 8–127
ON COLUMN clause, 8–123, 8–130
ON DATABASE clause, 8–123, 8–130
ON FUNCTION clause, 8–123, 8–130
ON MODULE clause, 8–123, 8–130
ON PROCEDURE clause, 8–123, 8–130
ON SEQUENCE clause, 8–123, 8–130
ON TABLE clause, 8–123, 8–130
POSITION clause, 8–121
RDB$DBHANDLE default alias, 8–124
roles, 8–136
See also GRANT statement, 8–130
table access, 8–118, 8–127

REWRITE option
of SET FLAGS statement, 8–236, 8–237,

8–238, 8–239
Role name

in REVOKE statement, 8–131

Index–13

Roles
REVOKE statement, 8–136

ROLLBACK statement, 8–138, 8–139
ROLLBACK TO SAVEPOINT statement

of compound statement, 8–142
Row cache

displaying information about, 8–325
dropping, 8–14

ROW CACHE clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

ROWID SCOPE clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Row locking for updates, 8–294
ROWNUM keyword

restriction, 8–215

S
SAMPLED SELECTIVITY transaction option

SET OPTIMIZATION LEVEL statement,
8–266

SAVEPOINT statement
of compound statement, 8–144

Schema
displaying information about, 8–331
selecting, 8–279
SHOW SCHEMAS statement, 8–331

Schema expression, 8–279
SCROLL_EMULATION option

of SET FLAGS statement, 8–239
SEGMENTED STRING clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
SELECTIVITY option

of SET FLAGS statement, 8–239
SELECT LIST clause

of PREPARE statement, 8–77
Select lists, 8–76

information in SQLDA, 8–78
PREPARE statement, 8–77

SELECT statement, 8–146, 8–158
FOR UPDATE clause, 8–150
general form, 8–146
select expression, 8–146, 8–158
singleton select, 8–158

SEQ_CACHE option
of SET FLAGS statement, 8–239

Session, 8–202
See also Module

SET ALIAS statement, 8–179

SET ANSI statement, 8–181
DATE clause, 8–181
IDENTIFIERS clause, 8–182
QUOTING clause, 8–182

SET assignment control statement
of compound statement, 8–200

SET AUTOMATIC TRANSLATION statement,
8–183

SET CATALOG statement, 8–185
SET CHARACTER LENGTH statement, 8–189

CHARACTERS option, 8–189
OCTETS option, 8–189

SET CONNECT statement, 8–194
SET CONSTRAINTS statement, 8–197

changing SQL parameters, 8–197
SET Control statement, 8–200
SET DEFAULT CHARACTER SET statement,

8–202
SET DEFAULT DATE FORMAT statement, 8–206
SET DIALECT statement, 8–208

MIA, 8–212
ORACLE LEVEL1, 8–209
ORACLE LEVEL2, 8–211
ORACLE LEVEL3, 8–211
SQL2011, 8–214
SQL89, 8–212
SQL99, 8–212, 8–213
SQLV40, 8–214

SET DISPLAY CHARACTER SET statement,
8–225

SET FEEDBACK statement, 8–220
SET FLAGS statement, 8–227
SET HEADING statement, 8–220
SET HOLD CURSORS statement, 8–253
SET IDENTIFIER CHARACTER SET statement,

8–256
SET KEYWORD RULES statement, 8–258
SET LITERAL CHARACTER SET statement,

8–260
SET NAMES statement, 8–262
SET NATIONAL CHARACTER SET statement,

8–264
SET NULL statement, 8–219
SET OPTIMIZATION LEVEL statement, 8–266

AGGRESSIVE SELECTIVITY option, 8–266
DEFAULT option, 8–266
FAST FIRST option, 8–266
SAMPLED SELECTIVITY option, 8–266
TOTAL TIME option, 8–266

SET QUERY statement, 8–270
SET QUOTING RULES statement, 8–276
SET SCHEMA statement, 8–279
SET SESSION AUTHORIZATION statement,

8–282
host-variable clause, 8–282
USER clause, 8–282
USING clause

of USER clause, 8–282

Index–14

SET SQLDA statement, 8–284
environment, 8–284
in Dynamic SQL, 8–284

SET statement, 8–161
See also SET ALIAS statement
See also SET ALL CONSTRAINTS statement
See also SET ANSI statement
See also SET CATALOG statement
See also SET CHARACTER LENGTH

statement
See also SET COMPOUND TRANSACTIONS

statement
See also SET CONNECT statement
See also SET Control statement
See also SET DEFAULT CHARACTER SET

statement
See also SET DEFAULT CONSTRAINT MODE

statement
See also SET DEFAULT DATE FORMAT

statement
See also SET DIALECT statement
See also SET DISPLAY CHARACTER SET

statement
See also SET DISPLAY statement
See also SET FLAGS statement
See also SET HOLD CURSORS statement
See also SET IDENTIFIER CHARACTER SET

statement
See also SET KEYWORD RULES statement
See also SET LITERAL CHARACTER SET

statement
See also SET NAMES statement
See also SET NATIONAL CHARACTER SET

statement
See also SET OPTIMIZATION LEVEL

statement
See also SET QUIET COMMIT statement
See also SET QUOTING RULES statement
See also SET SCHEMA statement
See also SET TRANSACTION statement
See also SET VIEW UPDATE RULES

statement
ANSI IDENTIFIERS clause, 8–182
changing constraint evaluation mode, 8–205
changing SQL parameters, 8–161
CONTINUE CHARACTER clause, 8–163
CURRENCY SIGN clause, 8–163, 8–173
DATE FORMAT clause, 8–163

EDIT STRING overriding, 8–170
DEFAULT CONSTRAINT MODE clause,

8–204, 8–205
DICTIONARY clause, 8–164
DIGIT SEPARATOR clause, 8–164
ECHO clause, 8–168
EDIT clause, 8–164
EXECUTE clause, 8–165
FEEDBACK clause, 8–165, 8–168

SET statement (cont’d)
FLAGGER clause, 8–165, 8–176
flagging nonstandard syntax, 8–176
HEADING clause, 8–168
internationalization features, 8–173
LANGUAGE clause, 8–166, 8–173
LINE LENGTH clause, 8–166
LINESIZE clause, 8–166
LOGFILE clause, 8–166
logical names for international SET features,

8–170
logical names used in, 8–170
NOLOGFILE clause, 8–166
NOOUTPUT clause, 8–167
NOVERIFY clause, 8–169
NULL clause, 8–168
obsolete syntax warnings, 8–177
OUTPUT clause, 8–167
PAGE LENGTH clause, 8–168
PAGESIZE clause, 8–168
RADIX POINT clause, 8–168
reserved words warnings, 8–182
TIMING clause, 8–169
VERIFY clause, 8–169
WARNING clause, 8–169, 8–177

SET TRANSACTION statement, 8–291
aliases, 8–296
BATCH UPDATE mode, 8–293
comparison of

locking, 8–294
share modes, 8–294

constraint evaluation, 8–294
contrasted with DECLARE TRANSACTION

statement, 8–291
DATA DEFINITION lock type, 8–297
defaults, 8–300
environment, 8–291
EVALUATING clause, 8–294
EXCLUSIVE share mode, 8–294
format, 8–291
for multiple databases, 8–296
in embedded SQL, 8–291
in interactive SQL, 8–291
lock types, 8–297
NOWAIT wait mode, 8–298
ON clause, 8–296
PARTITION, 8–296
PROTECTED share mode, 8–294
READ lock type, 8–297
READ ONLY mode, 8–297, 8–356

disabled, 8–304
restrictions, 8–304

READ WRITE mode, 8–297, 8–357
RESERVING options, 8–298
setting isolation level in, 8–294, 8–355
SHARED share mode, 8–294
SNAPSHOT mode, 8–297, 8–356

disabled, 8–304

Index–15

SET TRANSACTION statement
SNAPSHOT mode (cont’d)

restrictions, 8–304
timeout value in WAIT mode, 8–298
USING clause, 8–298
UTILITY READ clause, 8–298
wait modes, 8–298
WAIT wait mode, 8–298
WRITE lock type, 8–297

SET VIEW UPDATE RULES statement, 8–313
SHARED MEMORY clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Share modes in SET TRANSACTION statement,

8–294
SHOW statement, 8–316

ALIASES clause, 8–324
ANSI DATE MODE clause, 8–324
ANSI IDENTIFIERS MODE clause, 8–325
ANSI QUOTING MODE clause, 8–325
AUDIT ON clause, 8–325
AUTOMATIC TRANSLATION clause, 8–325
CACHE clause, 8–325
CATALOGS clause, 8–325
CHARACTER SETS clause, 8–325
COLLATING SEQUENCE clause, 8–326
CONNECTIONS clause, 8–326
CONSTRAINT MODE mode, 8–326
CONTINUE CHARACTER clause, 8–326
CURRENCY SIGN clause, 8–326
CURSORS clause, 8–326
DATABASES clause, 8–326
DATE FORMAT clause, 8–326
DICTIONARY clause, 8–327
DIGIT SEPARATOR clause, 8–327
DISPLAY clause, 8–327, 8–335
DOMAINS clause, 8–327
EXECUTION MODE clause, 8–327
FLAGGER MODE clause, 8–327
FLAGS clause, 8–327
FUNCTIONS clause, 8–327
HOLD CURSORS MODE clause, 8–328
INDEXES clause, 8–328
JOURNALS clause, 8–328
LANGUAGE clause, 8–328
MODULES clause, 8–328
OUTLINES clause, 8–330
PRIVILEGES clause, 8–330
PROCEDURES clause, 8–330
PROFILES clause, 8–319, 8–331
PROTECTION clause, 8–330
QUERY CONFIRM clause, 8–331
QUERY LIMIT clause, 8–331
RADIX POINT clause, 8–331
ROLES clause, 8–331
SCHEMAS clause, 8–331
SEQUENCES clause, 8–331

SHOW statement (cont’d)
SQLCA clause, 8–331
STATISTICS clause, 8–331
STORAGE AREAS clause, 8–332
STORAGE MAPS clause, 8–332
SYNONYMS clause, 8–332, 8–335
TABLES clause, 8–333
TRANSACTION clause, 8–333
TRIGGERS clause, 8–333, 8–334
USERS clause, 8–334
USERS GRANTING clause, 8–334
USERS WITH clause, 8–334
VARIABLES clause, 8–334
VERSIONS clause, 8–334
VIEWS clause, 8–334
WARNING MODE clause, 8–334

SIGNAL control statement, 8–349
Simple statements, 8–353
SINGLETON SELECT statement

INTO clause, 8–160
SNAPSHOT ALLOCATION clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
SNAPSHOT CHECKSUM CALCULATION clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
SNAPSHOT DISABLED clause

of CREATE DATABASE statement
effect on READ ONLY, 8–304

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
SNAPSHOT ENABLED clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
SNAPSHOT EXTENT clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
SNAPSHOT FILENAME clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
Snapshot transaction, 8–297, 8–356
Snapshot transaction mode

disabled, 8–304
restrictions, 8–304

Software version, displaying with SHOW
VERSION, 8–334

SOLUTIONS option
of SET FLAGS statement, 8–239

SORTKEY_EXT option
of SET FLAGS statement, 8–239

Index–16

SORT_STATISTICS option
of SET FLAGS statement, 8–239

SQL2011
dialect setting, 8–214

SQL89
dialect setting, 8–212

SQL92
dialect setting, 8–212

SQL99
dialect setting, 8–213

SQLCA
displaying contents of, 8–331
explicit declaration required, 8–28
in INCLUDE statement, 8–27

EXTERNAL keyword, 8–25
in PREPARE statement, 8–79

SQLDA, 8–71
in INCLUDE statement, 8–28
in PREPARE statement, 8–76, 8–77
parameter markers, 8–78
select lists, 8–76

SQLDA2
in INCLUDE statement, 8–28

SQLERROR argument of WHENEVER statement,
8–375

SQL module language
character set, 8–225
default character set, 8–202
identifier character set, 8–256
literal character set, 8–260
names character set, 8–262
national character set, 8–264

SQL precompiler
CHAR interpretation, 8–26
embedding SQL statements in programs, 8–28
where embedded statements allowed, 8–28

SQLV40
dialect setting, 8–214

SQLWARNING argument of WHENEVER
statement, 8–375

START TRANSACTION statement, 8–355
DEFAULT clause, 8–355
environment, 8–355
format, 8–355
in embedded SQL, 8–355
in interactive SQL, 8–355

Statement names
in PREPARE statement, 8–77
in RELEASE statement, 8–88

Statement string
in PREPARE, 8–76
length, 8–77

Statistics
displaying information about, 8–331

STATISTICS COLLECTION clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

STOMAP_STATS option
of SET FLAGS statement, 8–239

Stopping interactive sessions
with QUIT, 8–87

Stopping transactions, 8–138
Storage area

displaying information about, 8–332
DROP STORAGE AREA clause of IMPORT

statement, 8–14
STORAGE AREAS statement clause, 8–332

Storage area parameters
of IMPORT statement, 8–15

Storage maps
displaying information about, 8–332
SHOW STORAGE MAPS statement, 8–332

Stored function
displaying, 8–328
displaying information about, 8–327
RETURN control statement, 8–115

Stored module privileges
displaying information about, 8–330

Stored procedure
displaying, 8–328, 8–330

Storing data, 8–32, 8–103
STRATEGY option

of SET FLAGS statement, 8–239
Subprograms, restrictions on multimodule files,

8–28
synonyms

displaying, 8–332
SYNONYMS clause

of SHOW statement, 8–332
SYS$CURRENCY logical name, 8–163
SYS$DIGIT_SEP logical name, 8–164
SYS$LANGUAGE logical name, 8–166
SYS$RADIX_POINT logical name, 8–168
System-defined identifiers, 8–123
SYSTEM INDEX COMPRESSION clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

T
Table

denying access, 8–118, 8–127
displaying information about, 8–333
including repository definitions of, 8–26
privileges, 8–118, 8–127
result, 8–146, 8–158
specifying

in REVOKE statement, 8–123, 8–130
TRUNCATE TABLE statement, 8–363
truncating, 8–363

Table cursor
inserting row into, 8–39

Index–17

Table privileges
displaying information about, 8–330

TABLES clause
of SHOW statement, 8–333

TEST_SYSTEM option
of SET FLAGS statement, 8–240

THRESHOLD clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

THRESHOLDS clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

Time formats
SET DATE FORMAT statement, 8–163
SHOW DATE FORMAT statement, 8–326

TIMING clause
of SET statement, 8–169

TOTAL TIME option
SET OPTIMIZATION LEVEL statement,

8–266
TRACE clause

of IMPORT statement, 8–16
TRACE control statement

of compound statement, 8–359
TRACE option

of SET FLAGS statement, 8–240
Transactions

aliases, 8–296
BATCH UPDATE mode, 8–293
constraint evaluation, 8–294, 8–326
DATA DEFINITION lock type

in LOCK TABLE statement, 8–65
in SET TRANSACTION statement, 8–297

defaults, 8–300
displaying information about, 8–333
environment, 8–291, 8–355
EVALUATING clause in SET TRANSACTION

statement, 8–294
EXCLUSIVE share mode, 8–294
format for specifying, 8–291, 8–355
for multiple databases, 8–296
in

embedded SQL, 8–291, 8–355
interactive SQL, 8–291, 8–355

locking comparison, 8–294
lock types, 8–297
NOWAIT wait mode, 8–298
ON clause of SET TRANSACTION statement,

8–296
PROTECTED share mode, 8–294
READ lock type

in LOCK TABLE statement, 8–65
in SET TRANSACTION statement, 8–297

read-only
always SERIALIZABLE, 8–302

Transactions (cont’d)
READ ONLY mode, 8–297, 8–356

disabled, 8–304
restrictions, 8–304

READ WRITE mode, 8–297
in START TRANSACTION statement,

8–357
RESERVING clause in SET TRANSACTION

statement, 8–298
ROLLBACK statement, 8–138 to 8–139
setting isolation levels, 8–294, 8–355
setting lock timeout interval, 8–298
SET TRANSACTION statement, 8–291
SHARED share mode, 8–294
share modes comparison, 8–294
SNAPSHOT mode, 8–297, 8–356

disabled, 8–304
restrictions, 8–304

START TRANSACTION statement, 8–355
USING clause of SET TRANSACTION

statement, 8–298
UTILITY READ clause of SET TRANSACTION

statement, 8–298
wait modes, 8–298
WAIT wait mode, 8–298
WRITE lock type

in LOCK TABLE statement, 8–65
in SET TRANSACTION statement, 8–297

TRANSACTION_PARAMETERS option
of SET FLAGS statement, 8–240

TRANSITIVITY option
of SET FLAGS statement, 8–240

triggers
displaying, 8–334

Triggers
displaying information about, 8–333

TRIGGERS clause
of SHOW statement, 8–334

TRUNCATE TABLE statement, 8–363
Truncating

tables, 8–363

U
UNDECLARE cursor statement, 8–366
UNDECLARE variable statement, 8–367
UPDATE statement, 8–368

INTO clause, 8–370
RETURNING clause, 8–371
RETURNING DBKEY clause, 8–371

Updating
repository definitions, 8–47
repository using SQL, 8–52, 8–57

User authentication
IMPORT statement, 8–15

USER clause
of IMPORT statement, 8–16

Index–18

User identifier, 8–118, 8–127
in REVOKE statement, 8–124, 8–130, 8–131

Users granting privileges
displaying information about, 8–334

Users receiving privileges
displaying information about, 8–334

User-supplied name
dynamic SQL statements, 8–76, 8–88
statement names, 8–76, 8–88

USING clause
of USER clause

of IMPORT statement, 8–16

V
VALIDATE_ROUTINE option

of SET FLAGS statement, 8–240
Variable

displaying information about, 8–334
specifying dynamic statements, 8–76
SQLCA, 8–25
SQLDA, 8–25

Variable declaration
in dynamic SQL, 8–367
in interactive SQL, 8–367

VARIANCE_DOF option
of SET FLAGS statement, 8–240

Version, displaying with SHOW VERSION, 8–334
View

displaying information about, 8–334
update of

controlling interpretation of
in dynamic SQL, 8–208, 8–313
in interactive SQL, 8–208, 8–313

View privileges
displaying information about, 8–330

View update rules
setting, 8–313

W
WAIT clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2
WAIT mode in SET TRANSACTION statement,

8–298
WARNING clause

of SET statement, 8–169
WARN_DDL option

of SET FLAGS statement, 8–240
WARN_INVALID option

of SET FLAGS statement, 8–240
WATCH_CALL option

of SET FLAGS statement, 8–240
WATCH_OPEN option

of SET FLAGS statement, 8–240

WHENEVER statement, 8–374
CONTINUE argument, 8–374
GOTO argument, 8–374
NOT FOUND argument, 8–374
SQLERROR argument, 8–375
SQLWARNING argument, 8–375

WHILE control statement
beginning label, 8–377
of compound statement, 8–377

WORKLOAD COLLECTION clause
of IMPORT statement

See CREATE DATABASE statement in
Volume 2

WRITE lock type, 8–297
WRITE ONCE clause

of IMPORT statement
See CREATE DATABASE statement in

Volume 2

Z
ZIGZAG_MATCH option

of SET FLAGS statement, 8–241
ZIGZAG_OUTER option

of SET FLAGS statement, 8–241

Index–19

