Graph Algorithms:
The Core of Graph Analytics

Melli Annamalai and Ryota Yamanaka, Product Management, Oracle
August 27, 2020
AskTOM Office Hours: Graph Database and Analytics

• Welcome to our AskTOM Graph Office Hours series! We’re back with new product updates, use cases, demos and technical tips at https://asktom.oracle.com/pls/apex/asktom.search?oh=3084

• Sessions will be held about once a month

• Subscribe at the page above for updates on upcoming session topics & dates. And submit feedback, questions, topic requests, and view past session recordings.

• Note: Spatial now has a new Office Hours series for location analysis & mapping features in Oracle Database: https://asktom.oracle.com/pls/apex/asktom.search?oh=7761
Safe harbor statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or functionality described for Oracle's products may change and remains at the sole discretion of Oracle Corporation.
Agenda

1. Introduction to Graph Algorithms Melli
2. Graph Algorithms Use Cases Melli
3. Running Graph Algorithms Ryota
4. Scalability in Graph Analytics Ryota

Melli
Nashua, New Hampshire, USA
@AnnamalaiMelli

Ryota
Bangkok, Thailand
@ryotaymnk
Recap: Creating a Graph and Querying a Graph
Product Overview: Graph Database and Analytics

Graph data model: A different way to model your data

Property Graph Feature in Oracle Database:

- **Enterprise capabilities**
- **Highly scalable**
 - In-memory query and analytics and in-database query
 - 10s of billions of edges and vertices

PGQL: Powerful SQL-like graph query language

Analytics Java API: 50+ pre-built graph analysis algorithms

Visualization
- Light-weight web application, UI accessible from a browser

Graph Applications:
- Financial
- Law enforcement and security
- Manufacturing
- Public sector
- Pharma

and more
What is a Graph?

A collection of points (vertices/nodes) and lines between those points (edges)
Create a Graph from Database Tables

PGQL DDL SYNTAX:

```
CREATE PROPERTY GRAPH bank_graph
  VERTEX TABLES (ACCOUNTS LABEL Account PROPERTIES (ACCT_ID))
  EDGE TABLES (TRANSACTIONS
    SOURCE KEY (FROM_ACCOUNT) REFERENCES ACCOUNTS
    DESTINATION KEY (TO_ACCOUNT) REFERENCES ACCOUNTS
    LABEL transfer PROPERTIES (AMOUNT))
```

<table>
<thead>
<tr>
<th>ACCOUNTS</th>
<th>ACCT_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>…</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSACTIONS</th>
<th>FROM_ACCOUNT</th>
<th>TO_ACCOUNT</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>672</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>584</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>259</td>
<td>100000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>833</td>
<td>5001</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>840</td>
<td>7050</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>493</td>
<td>4363</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
Cash Transfer Graph
Graph Queries: Finding Patterns in a Graph

Property Graph Query Language (PGQL)

Is there a pattern that connects 528 to 326 and 569?

SELECT v1, v2, v3, e1, e2
MATCH (v1)-[e1]->(v2),
MATCH (v1)-[e2]->(v3)
where v1.id=528 and v2.id=326 and v3.id=569
Graph Queries: Finding Patterns in a Graph

Cycles

SELECT v1, v2, v3, e1,e2,e3
MATCH (v1)-[e1]->(v2)-[e2]->(v3)-[e3]->(v1)

Paths

SELECT *
MATCH (n)-[:transfer{1,6}]->(m)
WHERE ID(n) = 1

Patterns

SELECT n, ARRAY_AGG(ID(m)), ARRAY_AGG(ID(e))
MATCH TOP 2 SHORTEST ((n) -[e:transfer]->(m))* (n))
WHERE ID(n) = 1
Graph Algorithms
Graph Algorithms

Analyze the full graph

Derive information about:

• What is the value of a vertex in relation to other vertices?
 • Centrality, PageRank, Betweenness Centrality, ...

• In how many ways can you reach vertex B from vertex A?
 • Shortest path, Fattest path, Number of hops in path, ...

• How tightly (or sparsely) is the graph connected? Are there tightly connected sub-graphs within the graph?
 • Are there isolated vertices in the graph?
 • Strongly connected, Weakly connected components, ...

• Evaluating structures
Graph Analytics - 50+ Built-in Algorithms

Detecting Components and Communities
- Strongly Connected Components
- Weakly Connected Components
- Label Propagation
- Conductance Minimization
- Infomap

Ranking and Walking
- PageRank
- Personalized PageRank
- Degree Centrality
- Closeness Centrality
- Vertex Betweenness Centrality
- Eigenvector Centrality
- HITS
- SALSA
- Random Walk with Restart

Evaluating Structures
- Adamic-Adar Index
- Conductance
- Cycle Detection
- Degree Distribution
- Eccentricity
- K-Core
- LCC
- Modularity
- Reachability
- Topological Ordering
- Triangle Counting

Path-Finding
- Shortest Path (Bellman-Ford, Dijkstra, Bidirectional Dijkstra)
- Fattest Path
- Compute Distance Index
- Enumerate Simple Paths
- Fast Path Finding
- Hop Distance

Link Prediction
- WTF (Who to follow)

Others
- Minimum Spanning-Tree
- Matrix Factorization
Ranking: Importance of Vertices

Use cases

- **Financial**: Find accounts through which most of the money flows
- **Retail**: Influencers in a social network, for product recommendation
- **Law enforcement**: Vertices with high betweenness centrality values determine links between groups
Paths between Vertices

Use cases

- **Telecommunications:** Network management: What-If analysis.
- **Financial:** Was there a cash transfer between these two accounts?
- **Manufacturing:** Dependency analysis in a Bill of Materials graph
Detecting Communities

Use cases

• **Financial:** Does this suspicious account belong to a community of fraudsters?

• **Financial:** Community of users using the same device

• **Retail:** Can behavior of members of the community predict churn?
Running Graph Algorithms
Setup Your Graph Server

Installation: https://github.com/ryotayamanaka/oracle-pg/tree/20.3

Clone repository
(Note, the branch is 20.3)

$ git clone https://github.com/ryotayamanaka/oracle-pg.git -b 20.3

Download and extract packages
(Note, the packages are version 20.3)

$ sh extract.sh

Build and start the docker containers

$ docker-compose up -d
Run Algorithms from JShell or Zeppelin

The interpreter for Apache Zeppelin Notebook is provided and Groovy syntax is supported.

We can run algorithms: `analyst.pagerank(graph2)`

(Python API is also planned)
Write Queries to Get the Results

After running algorithms, the results are stored into the graph, e.g. each node gets a new property "pagerank".

Users can access the results using PGQL queries:

```sql
SELECT a.account_no, a.pagerank
FROM MATCH (a)
ORDER BY a.pagerank DESC
```

pagerank: 0.180

pagerank: 0.123
Visualize the Results

Login with the same **session ID** as the one which ran the algorithms.

The size of nodes can be linked to the pagerank scores.
Example - Bank Customer Analysis

Use Case: Customer 360 analysis

Overview

This example shows how integrating multiple datasets, using a graph, facilitates additional analytics can lead to new insights. We will use three small datasets for illustrative purposes. The first contains accounts and account owners. The second is purchases by the people who own those accounts. The third is transactions between these accounts.

The combined dataset is then used to perform the following common graph query and analyses: pattern matching, detection of cycles, finding important nodes, community detection, and recommendation.

Note: This lab assumes you have successfully completed Lab 1 Setup with Docker and have an environment up and running with Zeppelin at http://localhost:8080 and the Graph Visualization component at http://localhost:7007/ul.

Influential Accounts

Which is the account with the highest pagerank?

Filter by "transfer" relationship, run `pagerank` algorithm. The result is stored as "pagerank" new node property, and it can be queried.

```java
graph2 = graph.filter(new EdgeFilter("edge.label()='transfer'"));

analyst.pagerank(graph2);

SELECT a.account_no, a.pagerank
FROM MATCH (a)
ORDER BY a.pagerank DESC
```
Community Detection

Find the communities where every account is reachable from every other account

Run strongly connected component algorithm and reflect the results into "component" node property.

```python
result = analyst.sccKosaraju(sg)
```

```sql
SELECT
    a.scc_kosaraju, COUNT(a.account_no)
FROM MATCH (a)
GROUP BY a.scc_kosaraju
```
Recommendation

Which merchants should be recommended to the account "-201" based on the purchase history?

Filter by "purchased" relationship, run personalized pagerank from the node 201, and then query:

```sql
SELECT ID(x), x.name, x.pagerank
FROM MATCH (x)
WHERE x.type = 'merchant'
AND NOT EXISTS (  
    SELECT *
    FROM MATCH (x)-[:purchased_by]->(a)
    WHERE ID(a) = 201
)
ORDER BY x.pagerank DESC
```
More Algorithms

All built-in algorithms are listed here.

https://docs.oracle.com/cd/E56133_01/latest/reference/analytics/builtins.html
Each algorithm page provides the description, implementation, and the link to Javadoc page.
The method section for each algorithm has examples to show how it can be used in Java.
Scalability in Graph Analytics
Two Types of Processing in Graph Analytics

Query
- Search for surrounding nodes
- Traverse property paths
- Pattern matching
- Extract sub-graphs

Algorithm
- Rank importance of nodes
- Detect components and clusters
- Evaluate structure of communities
- Shortest paths
Two Types of Processing in Graph Analytics

Oracle Graph Server can execute both queries, algorithms, mutation (simplify, filter, ...) and their combination.

Which is the node in 3 steps from my node, and has the highest pagerank among them?
Graph Algorithms and Analysis Flows

Pattern 1 - Finding significant nodes
1. Run graph algorithms for scoring all nodes
 • ranking (centrality, pagerank, …)
 • community detection
2. The scores (=new features) are used for:
 • finding high score nodes
 • as conditions in graph query
 • as machine learning input

• Use Cases
 • Financial fraud detection, Tax fraud detection, Influencer detection, Anormal behavior detection in cyber security, Scoring importance of devices in networks (utility and communication)

Database

Account

Mule account detection
(AskTOM - May 28, 2020)
Graph Algorithms and Analysis Flows

Pattern 2 - Enabling advanced queries
1. Select specific node(s)
2. Run graph algorithms against the node(s)
 • personalized ranking (PPR, ...)
 • community detection
 • reachability
3. Query to return the results to applications:
 • often real-time
• Use Cases
 • Reachability between devices (utility and communication), Recommendation for a customer (retail), Find other members in the same community (fraud and crime analysis)

Real-time recommendation app (AskTOM - July 2, 2020)
Custom Algorithms

PGX Algorithm is a Java-syntax language to write custom graph algorithms (Using Green-Marl is not supported)

PGX Algorithm specification is here. Also, each built-in algorithm page shows their implementations in PGX Algorithm.
Use case of custom algorithm in **Manufacturing BoM** (bill of materials):

- Some of the calculation processes can be optimized, implementing them as **stored programs** on Graph Server.
- E.g. sum up the numbers of parts in a BoM tree.
- One-time traversal from the root node (BFS: breath first search) calculates the numbers of all parts and the graph can keep the results as node properties.
Helpful Links

- Graphs at Oracle
 https://www.oracle.com/goto/graph
- Oracle Property Graph
 http://www.oracle.com/goto/propertygraph
- Blog: Examples, Tips and Tricks
- Social Media
 - Twitter: @OracleBigData, @SpatialHannes, @JeanIhm, @ryotaymnk
 - LinkedIn: Oracle Spatial and Graph Group
 - YouTube: youtube.com/c/OracleSpatialandGraph

Search for "Oracle Graph Server and Client" to upload from oracle.com
AskTOM Office Hours: Graph Database and Analytics

• Welcome to our AskTOM Graph Office Hours series! We’re back with new product updates, use cases, demos and technical tips
 https://asktom.oracle.com/pls/apex/asktom.search?oh=3084

• Sessions will be held about once a month

• **Subscribe** at the page above for updates on upcoming session topics & dates
 And submit feedback, questions, topic requests, and view past session recordings

• **Note:** **Spatial** now has a new Office Hours series for location analysis & mapping features in Oracle Database:
 https://asktom.oracle.com/pls/apex/asktom.search?oh=7761
Our mission is to help people see data in new ways, discover insights, unlock endless possibilities.