
Oracle® Rdb for OpenVMS
New Features Manual

Release 7.4

July 2022

®

Oracle Rdb New Features, Release 7.4.1.2 for OpenVMS

Copyright © 1984, 2022 Oracle and/or its affiliates. All rights reserved.
Oracle Corporation - Worldwide Headquarters, 2300 Oracle Way, Austin, TX 78741, United States

Primary Author: Rdb Engineering and Documentation group

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,
translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited. The information contained
herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing. If this is software or related documentation that is
delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or
iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous
applications.

Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle CODASYL
DBMS, Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are registered trademarks of
Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Contents

Preface . v

1 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2

1.1 Enhancements . 1–1
1.1.1 Substring Function Changes . 1–1
1.1.2 Support for EMPTY_BLOB and EMPTY_CLOB in SQL 1–3
1.1.3 New ANY_VALUE Aggregate Function . 1–4
1.1.4 Updated Diagnostics for the RMU REPAIR Command 1–5
1.1.5 Updated Diagnostics for the RMU MOVE_AREA Command 1–6
1.1.6 Hash Join Enhancements and Support . 1–6
1.2 Obsolete Features . 1–13

2 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1

2.1 Enhancements . 2–1
2.1.1 Optional Builtin Function RDB$$IS_ROW_FRAGMENTED 2–1
2.1.2 WITH READ ONLY clause for CREATE and ALTER VIEW 2–2
2.1.3 Enhanced conversion of date/time string literals 2–3
2.1.4 Support for OVERRIDING clause in INSERT and REPLACE

statements . 2–3
2.1.5 RMU RECOVER /PROGESS_REPORT Qualifier and Ctrl-T Display

. 2–5
2.1.6 Additional options for the RMU SET DATABASE command 2–8
2.1.7 SUMMARY_ONLY qualifier to RMU Dump Audit 2–9
2.1.8 New RMU VERIFY /MINIMIZE_CONFLICTS feature 2–10
2.1.9 New OPTION=GENERATED added to RMU Extract command 2–10
2.1.10 Changed behavior for the NOEDIT_FILENAME qualifier in RMU

Backup After_Journal command . 2–12
2.2 Obsolete Features . 2–12
2.2.1 Comma Statement Separator in Trigger Body No Longer Supported

. 2–12

3 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

3.1 Enhancements . 3–1
3.1.1 PCSI Support for Rdb Kit Installation and Deinstallation 3–1
3.1.2 Some Aggregate Functions Inherit Source Column EDIT STRING . . . 3–2
3.1.3 Enhanced LIKE Table Support in CREATE TABLE Statement 3–3
3.1.4 RMU RECLAIM /FREE_PAGES Qualifier Frees Unused Data Page

Clumps . 3–6
3.1.5 CREATE DEFAULT AUDIT Supports CREATE OR REPLACE Syntax

and Semantics . 3–11
3.1.6 System Privileges Feature . 3–12

iii

3.1.7 Database Vault Feature . 3–22
3.1.8 SET FLAGS Keyword for Hash Join Feature - HASHING 3–23
3.1.9 JOIN BY HASH Clause in CREATE OUTLINE Statement 3–24
3.1.10 Hash Join Feature . 3–25
3.1.11 ALTER DATABASE ... LOAD ACL IDENTIFIERS Clause 3–27
3.1.12 ALTER TABLE Actions for READ ONLY Table 3–29
3.1.13 NULLS FIRST and NULLS LAST Options for ORDER BY Clause . . 3–30
3.1.14 Enhancements to RMU Unload After_Image (LogMiner) Interface . . . 3–31
3.1.14.1 XML Option to FORMAT Qualifier . 3–31
3.1.14.2 TRIM Option . 3–32
3.1.14.3 SYMBOLS Qualifier . 3–32
3.1.15 Named Partition Support for RESERVING Clause 3–33
3.2 Obsolete Features . 3–34
3.2.1 RMU Backup No Longer Supports HUFFMAN or LZSS Compression,

Use ZLIB Instead . 3–34

A Optimizer Enhancements

A.1 Optimizer Enhancements . A–1
A.1.1 Changes and Improvements to the Rdb Optimizer and Query

Compiler . A–1
A.1.2 Optimized NOT NULL Constraint Execution A–4
A.1.3 New BITMAPPED SCAN Clauses Added to OPTIMIZE Clause A–5
A.1.4 Query Optimization Improvements for IN Clause A–6
A.1.5 Query Optimization Improvements for DATE ANSI Queries A–8
A.1.6 New "Index Counts" Optimization for SORTED Indices A–8

B RDO, RDBPRE and RDB$INTERPRET Features

B.1 RDO, RDBPRE and RDB$INTERPRET Features B–1
B.1.1 New Request Options for RDO, RDBPRE and RDB$INTERPRET B–1
B.1.2 New Language Features for RDO and Rdb Precompiler B–3
B.1.3 RDO Interface Now Supports Synonym References B–5

Examples

1–1 Example 1: Using OPTIMIZE USING . 1–10
1–2 Example 2: Using the OPTIMIZE FOR HASH JOIN clause 1–12

Tables

3–1 System Privileges . 3–18

iv

Preface

Purpose of This Manual
This manual contains the New Features Chapters for Oracle Rdb Release 7.4.1.2
and prior Rdb 7.4 releases.

Deprecated and Desupported Features for Oracle Rdb
Each release of Oracle Rdb introduces behavior changes for your database
in addition to new features. Changes in behavior include deprecated and
desupported debug flags, parameters, options, syntax, and the deprecation and
desupport of features and components.

Each chapter in this manual describes behavior changes where features have
been deprecated or desupported in that release. By deprecate, we mean that the
feature is no longer being enhanced but is still supported for the full life of the
Oracle Rdb release. By desupported, we mean that Oracle will no longer fix bugs
related to that feature and may remove the code altogether (see the Obsolete
Features section in each chapter). Where indicated, a deprecated feature may be
desupported in a future major release.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support.
For information, visit http://www.oracle.com/us/support/contact/index.html or
visit http://www.oracle.com/us/corporate/accessibility/support/index.html if you are
hearing impaired.

Document Structure
This manual consists of the following chapters:

Chapter 1 Describes enhancements introduced in Oracle Rdb Release 7.4.1.2

Chapter 2 Describes enhancements introduced in Oracle Rdb Release 7.4.1.1

Chapter 3 Describes enhancements introduced in Oracle Rdb Release 7.4.1.0

Appendix A Describes enhancements in the Optimizer

Appendix B Describes RDO, RDBPRE and RDB$INTERPRET Features

v

1
Enhancements And Changes Provided in

Oracle Rdb Release 7.4.1.2

1.1 Enhancements
1.1.1 Substring Function Changes

This release of Oracle Rdb provides native versions of the functions SUBSTR
and SUBSTRB which were previously provided as external functions in the SQL_
FUNCTIONSnn.SQL script.

Note

Those external functions will remain defined in the SQL_
FUNCTIONS74.SQL function script to support applications that currently
use them, or wish to continue to use those functions.

These new native functions have the following advantages over the external
functions:

• These functions are now part of the Oracle Rdb SQL language and no external
functions for SUBSTR or SUBSTRB need be defined in the database.

• These functions are polymorphic; meaning they adapt to the passed character
string - both length and character set. Therefore, the result will be derived
from the length of the input string length and the length field (if specified).

The SQL external functions defined in SQL_FUNCTIONS74.SQL were
typically limited to CHAR and VARCHAR inputs of 2000 characters, and
returned a VARCHAR (2000) typed result even when operating on shorter
string inputs.

• These builtin functions now accept CHAR and VARCHAR strings up to 65535
octets in length (the actual length in CHARACTERS will depend on the
character set being used).

• These changes will typically result in much lower virtual memory usage and
better run-time performance for queries. In particular applications using
ORACLE dialects (such as those using OCI Services for Rdb) should expect a
considerable reduction in query size.

Note

Applications created using the SQL Module Language or SQL Pre-
compiler in prior releases will continue to use the SQL external functions
until those application sources are recompiled.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2 1–1

The substring family of functions operate similarly with these differences:

• SUBSTRING (char_string FROM start_position [FOR substring_length])

This is the ANSI and ISO SQL Database Language implementation. Optional
USING CHARACTERS or USING OCTETS clauses adjusts the interpretation
of the start_position and substring_length.

• SUBSTR (char_string , start_position [, substring_length])

For SUBSTR start_position and substring_length represent units as
characters. SUBSTR is similar in operation to SUBSTRING with the USING
CHARACTERS clause with these extra rules.

* If start_position is 0, then it is treated as 1.

* If start_position is positive, then Oracle Rdb counts from the beginning of
char_string to find the first character of the result.

* If start_position is negative, then Oracle Rdb counts backward from the
end of char_string. For example, to return the last 3 characters of a
string you can pass start_position as -3 and the substring_length as 3. If
the computed beginning of char_string is prior to the start of the string
then a zero length string is the result.

• SUBSTRB (char_string , start_position [, substring_length])

For SUBSTRB start_position and substring_length represent units as octets.
SUBSTRB is similar in operation to SUBSTRING with the USING OCTETS
clause with the same rules as described for SUBSTR.

If the dialect is set to an Oracle dialect (ORACLE LEVEL1, ORACLE LEVEL2,
or ORACLE LEVEL3) these functions will return NULL if the resulting string
was zero length.

Changes in Query Signature related to Query Outlines
The database administrator should be aware that queries using SUBSTR or
SUBSTRB generated by SQL will be differently structured from queries using the
SQL external functions even if the results remain the same.

Similarly, the SUBSTRING builtin function now directly supports the Oracle
dialect semantics which consider a zero length string result as being equivalent
to NULL. So when using SUBSTRING under the Oracle dialects (ORACLE
LEVEL1, ORACLE LEVEL2, and ORACLE LEVEL3) the actual query will be
changed.

Therefore, any query outline previously created for such queries will need to be
redefined. The generated query id (signature) changes even if the strategy does
not.

Consider this example which shows that under Oracle Rdb V7.3 SUBSTRING
queries for Oracle Dialects were rewritten with CASE expressions to ensure the
correct result semantics.

1–2 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2

SQL> select employee_id, last_name, first_name
cont> from employees
cont> where substring (last_name from 2 for 1) = ’’’’
cont> ;
~S: Outline "QO_0_73_MODE_3" used
Tables:
0 = EMPLOYEES

Leaf#01 FFirst 0:EMPLOYEES Card=100
Bool: CASE (WHEN (CHAR_LENGTH (SUBSTRING (0.LAST_NAME FROM 2 FOR 1)) = 0)

THEN NULL ELSE SUBSTRING (0.LAST_NAME FROM 2 FOR 1)) = ’’’
BgrNdx1 EMP_LAST_NAME [0:0] Fan=12
Bool: CASE (WHEN (CHAR_LENGTH (SUBSTRING (0.LAST_NAME FROM 2 FOR 1)) = 0)

THEN NULL ELSE SUBSTRING (0.LAST_NAME FROM 2 FOR 1)) = ’’’
EMPLOYEE_ID LAST_NAME FIRST_NAME
00171 D’Amico Aruwa
00190 O’Sullivan Rick
2 rows selected
SQL>

In this case a query outline QO_0_73_MODE_3 was defined (and was used) which
matched the query signature. However, when run under this release of Oracle
Rdb with a simplified query the outline is no longer matched.

SQL> select employee_id, last_name, first_name
cont> from employees
cont> where substring (last_name from 2 for 1) = ’’’’
cont> ;
Tables:
0 = EMPLOYEES

Leaf#01 FFirst 0:EMPLOYEES Card=101
Bool: SUBSTRING (0.LAST_NAME FROM 2 FOR 1) = ’’’
BgrNdx1 EMP_LAST_NAME [0:0] Fan=12
Bool: SUBSTRING (0.LAST_NAME FROM 2 FOR 1) = ’’’

EMPLOYEE_ID LAST_NAME FIRST_NAME
00171 D’Amico Aruwa
00190 O’Sullivan Rick
2 rows selected
SQL>

Either the query could be modified to explicitly use the OPTIMIZE USING clause
or a new query outline created to match the new query signature.

1.1.2 Support for EMPTY_BLOB and EMPTY_CLOB in SQL
This release of Oracle Rdb adds the new SQL functions EMPTY_BLOB () and
EMPTY_CLOB ().

Purpose
EMPTY_BLOB and EMPTY_CLOB return an empty handle that can be used
to initialize a LIST OF BYTE VARYING variable or as a value expression in
an INSERT, UPDATE, or REPLACE statement to initialize a LIST OF BYTE
VARYING column. An EMPTY indication means that the LIST is initialized, but
not populated with data.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2 1–3

Examples
The following example initializes the BADGE_PHOTO column of the sample
EMPLOYEES table to EMPTY using the UPDATE statement.

SQL> alter table EMPLOYEES
cont> add column BADGE_PHOTO list of byte varying
cont> ;
SQL>
SQL> update EMPLOYEES
cont> set BADGE_PHOTO = empty_blob ();
101 rows updated
SQL>

The following example initializes the BADGE_PHOTO column of the sample
EMPLOYEES table to EMPTY using the INSERT statement.

SQL> insert into EMPLOYEES
cont> values (’99001’, ’McAlister’, ’James’, ’A’,
cont> ’33 Running Deer Road’, ’’, ’Hollis’, ’NH’, ’03049’,
cont> ’M’, date vms’3-May-1989’, ’2’, /* part-time */
cont> empty_blob() /* no photo yet */
cont>);
1 row inserted
SQL>

1.1.3 New ANY_VALUE Aggregate Function
This release of Oracle Rdb adds the SQL function ANY_VALUE.

Format

ANY_VALUE ([ALL | DISTINCT] value_expr) [FILTER (WHERE boolean_expr)]

Arguments

• ALL, and DISTINCT: These keywords are supported by ANY_VALUE
although they have no effect on the result of the query and are effectively
ignored.

• value_expr: The expression can be a column, constant, variable, function or a
complex expression.

• boolean_expr: the FILTER clause can be used to further filter the rows that
participate in the aggregation.

Description
ANY_VALUE is an aggregate function that returns a single non-deterministic
value of value_expr.

Use ANY_VALUE to optimize a query that has a GROUP BY clause. ANY_
VALUE returns a value of an expression in a group. It is optimized to return the
first value.

1–4 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2

It ensures that there are no comparisons for any incoming row and also
eliminates the necessity to specify every column as part of the GROUP BY
clause. Because it does not compare values, ANY_VALUE returns a value more
quickly than MIN or MAX in a GROUP BY query.

NULL values in the expression are ignored.

Returns any value within each group based on the ORDER BY specification.
Returns NULL if all rows in the group have NULL expression values.

Example
The following example shows the use of ANY_VALUE. When computing the
aggregation of the rows values of SALARY_END which are NULL are excluded.
In cases where all rows are excluded the ANY_VALUE function returns NULL.

SQL> select
cont> employee_id, any_value (salary_end), count(*)
cont> from salary_history
cont> where employee_id in (’00241’, ’00227’, ’00225’, ’00164’)
cont> group by employee_id
cont> ;
EMPLOYEE_ID
00164 2-Mar-1981 4
00225 NULL 1
00227 NULL 1
00241 NULL 1
4 rows selected
SQL>

1.1.4 Updated Diagnostics for the RMU REPAIR Command
With this release of Oracle Rdb the RMU Repair command has been updated to
output improved messages when changes are made to the database.

• %RMU-W-FULLAIJBKUP, partially-journaled changes made; database may
not be recoverable

This message warns the user that, even though After Image Journaling
is enabled, not all structural changes made to the database by the Repair
operation are journaled. Therefore, the user should consider backing up the
database once the repair operation completes.

This message is only output if After Image Journaling is enabled for the
database.

$ RMU/REPAIR/ABM MF_PERSONNEL
%RMU-W-FULLAIJBKUP, partially-journaled changes made; database may not
be recoverable
%RMU-W-DOFULLBCK, full database backup should be done to ensure future recovery

• %RMU-W-DOFULLBCK, full database backup should be done to ensure
future recovery

This message warns the user to do a full database backup after the repair
operation completes to ensure that the structural changes made by the Repair
operation can be restored by the RMU Restore command and subsequent
RMU Recover from database AIJ files.

• %RMU-I-REPAIR_DEF, operation not specified; Reconstructing the SPAM
pages for specified areas

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2 1–5

This message informs the user that with no directives included on the RMU
Repair command it defaulted to the /SPAM operation.

$ RMU/REPAIR MF_PERSONNEL
%RMU-I-REPAIR_DEF, operation not specified; Reconstructing the SPAM
pages for specified areas
%RMU-W-DOFULLBCK, full database backup should be done to ensure future
recovery

1.1.5 Updated Diagnostics for the RMU MOVE_AREA Command
With this release of Oracle Rdb the RMU Move_Area command has been updated
to output improved messages when changes are made to the database.

• %RMU-W-FULLAIJBKUP, partially-journaled changes made; database may
not be recoverable

This message warns the user that the actual move of database files to another
device or directory is not journaled. Therefore, the user should consider
performing a full backup of the database once the move operation completes.

The RMU Restore of the full database backup will recover the device and
directory changes made and a subsequent RMU Recover will update the
moved areas as needed.

The following example shows the %RMU-W-FULLAIJBKUP message being
output for a move operation which moves the database root file of a database
with After Image Journaling enabled.

$ RMU/MOVE_AREA /ROOT=disk:[directory] /NOLOG MF_PERSONNEL
%RMU-W-FULLAIJBKUP, partially-journaled changes made; database may not

be recoverable
%RMU-I-AIJRSTAVL, 1 after-image journal available for use
%RMU-I-AIJRSTMOD, 1 after-image journal marked as "modified"
%RMU-I-AIJISON, after-image journaling has been enabled
%RMU-W-DOFULLBCK, full database backup should be done to ensure future

recovery

1.1.6 Hash Join Enhancements and Support
Status: BETA

Introduction
Table joins are typically solved using a mix of index and sorting strategies. In
some cases there may not be any suitable index to use resulting in the solution
selected by the optimizer requiring an extra sorting step.

The use of Hash Join eliminates the need to sort data by using an in-memory
hash table to filter the join data.

This feature can be enabled by using any one of the following methods:

• Using the OPTIMIZE FOR HASH JOIN clause

The optimizer will attempt to apply Hash Join on joins within the query. See
SQL HELP SELECT for more information.

• Using SET FLAGS ’HASHING(JOINS)’ statement

1–6 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2

The optimizer will attempt to apply Hash Join on joins within all subsequent
queries within this session. Use SET FLAGS ’NOHASHING’ to disable this
action within the session.

• Define the logical name RDMS$SET_FLAGS "HASHING(JOINS)"

Similar to using the SET FLAGS statement, defining RDMS$SET_FLAGS to
the value "HASHING(JOINS)" will enable this feature and will be applied to
any applications that perform joins. Deassign this logical name (as well as
RDMS$ENABLE_HASH_JOIN, see below) to disable this action within the
process.

• Define the logical name RDMS$ENABLE_HASH_JOIN to true

Defining this logical name to true ("T", "t", "Y", "y" or "1") instructs the Rdb
optimizer to attempt to use in-memory Hash Join to solve queries. Deassign
this logical name (as well as RDMS$SET_FLAGS, see above) to disable this
action within the process.

Use the RMU /SHOW LOGICAL RDMS$ENABLE_HASH_JOIN
/DESCRIPTION command to see details.

• Create a query outline

The outline should use the JOIN BY HASH clause to adjust specific parts
of the query solution. Refer to SQL HELP CREATE OUTLINE for further
information on query outlines.

The created query outline will be used when referenced by name in the
OPTIMIZE USING clause, or by any query matching the query signature
(query outline id).

Oracle Corporation appreciates any and all feedback on this feature.

Changes for This Release
This release of Oracle Rdb includes an improved design of the Hash Join feature
with these enhancements:

• Reduced VM usage for Hash Join solution

Copies of the join keys is reduced for duplicate values.

• Reduced CPU usage during Hash Join operation

Previously CPU usage increased as more duplicates were encountered in the
hash table entries. The current version reduces the CPU time by no longer
re-scanning the duplicate chains.

• Relaxed restrictions when Hash Join is using sequential retrieval

Sequential retrieval is now more widely applied when no indices are defined
or available for the join columns.

• Improved FULL OUTER JOIN support

Wrong results related to Hash Join strategy, that occurred with Full Outer
Join in prior releases, have been corrected.

• Improved diagnostics reported when Hash Join is rejected

The SET FLAGS statement or the equivalent logical name RDMS$SET_
FLAGS definition can be used to enable the display of these diagnostics. See
the Examples.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2 1–7

Current Restrictions
Currently, the use of Hash Join may be rejected by the optimizer for a number of
reasons as specified below. The reported reasons for the rejection can be displayed
by running the query after setting the flags STRATEGY and DETAIL(2).

1. CHAR or VARCHAR characteristics of Index Columns differ

When CHAR or VARCHAR columns are used during hashing the length,
character set and collating sequence of the compared columns must be the
same.

Example:
~Sh: Hash Join #!2S inner rejected-TAB1_NDX and (generated-index)

column 0 lengths differ
~Sh: Hash Join #!11S inner rejected-TAB1_NDX and (generated-index)

column 1 collating sequences differ
~Sh: Hash Join #!3S inner rejected-TAB1_NDX and (generated-index)

column 2 character sets differ

2. Data types in index columns differ

The columns used for hashing must have the same datatypes.

Example:
~Sh: Hash Join #5S inner rejected-TAB_NDX and (generated-index)

column 0 datatypes differ

3. Date/time types in index columns differ

If the join is between TIMESTAMP and DATE VMS columns then Oracle Rdb
will consider this as non-matching data type.

Example:
~Sh: Hash Join #!ULS inner rejected-TAB3_NDX and (generated-index)

column 2 date/time types differ

4. The number of index columns differ

The number of columns to compare in both streams must be the same.

Example:
~Sh: Hash Join #6S inner rejected-TAB1_NDX and (generated-index)

number of columns differ

5. Sort orders in index columns differ

The sort ordering for columns (ASC and DESC clauses) must match.

Example:
~Sh: Hash Join #!ULS inner rejected-TAB2_NDX2 and (generated-index)

column 1 sort orders differ

6. Integer precision in index columns differ

Hash Join cannot be used if it is required to compare integer columns with
different precision.

Example:
~Sh: Hash Join #6S inner rejected-TAB1_NDX and TAB2_NDX column 0 scales differ

7. OR Retrieval on outer or inner table

Hash Join cannot be used if either stream relies on the results of an OR-
retrieval optimization.

Example:
~Sh: Hash Join #9S inner rejected-OR retrieval on inner table
~Sh: Hash Join #19S outer rejected-OR retrieval on outer table

1–8 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2

8. Outer or inner column not equivalent with join columns

Hash Join can only be done using columns that are considered to be in the
same equivalence group and thus may be compared.

Example:
~Sh: Hash Join #12S outer rejected-X1 column 0 not equivalent with join columns
~Sh: Hash Join #3S inner rejected-(generated-index)

column 0 not equivalent with join columns

9. Index columns not provided as join columns

Hash join using the named index will be rejected if not all index columns are
provided values (no partial index key matches are allowed).

Example:
~Sh: Hash Join #1S outer rejected-values of all outer

TAB1_NDX columns not provided
~Sh: Hash Join #16S inner rejected-values of all inner

TAB2_NDX columns not provided

10. Outer or inner index column not a join predicate

Hash Join can only be done when the matching columns for the inner and
outer streams take part in the join predicate.

Example:
~Sh: Hash Join #15S inner rejected-TAB1_NDX column 1 not a join predicate

11. Outer or inner stream not a table

Hash Join requires that streams access a table directly or via an index.

Example:
~Sh: Hash Join #11S inner rejected-inner stream not a table
~Sh: Hash Join #14S outer rejected-outer stream not a table

12. Outer or inner stream not comply with outlines

Hash Join cannot be done if a stream cannot be optimized in accordance with
the supplied outline.

Example:
~Sh: Hash Join #4S inner rejected-does not comply with outline
~Sh: Hash Join #12S outer rejected-does not comply with outline

13. Query contains aggregate outer join boolean

Hash Join is not available if the outer join relies on a check on the results of
an aggregation.

Example:
~Sh: Hash Join #3S inner rejected-Q2 contains Aggregate OJ boolean

14. Reverse scan on outer or inner table

If either stream uses Reverse Scan then Hash Join is not possible.

Example:
~Sh: Hash Join #7S outer rejected-reverse scan on outer table

15. Sequential retrieval on outer or inner table not available

If the value to be matched is not derived from an actual or derived column
Hash Join cannot utilize Sequential Retrieval

Example:
~Sh: Hash Join #4S outer rejected-sequential retrieval on outer table
~Sh: Hash Join #12S inner rejected-sequential retrieval on inner table

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2 1–9

Examples
This section contains examples of attempts to use Hash Join when restrictions
are encountered.

The following query reverts to cross strategy when full compliance with the
outline was not possible:

First, create a query outline. This example uses an Rdb generated outline for the
query produced using SET FLAGS ’OUTLINE’ with the name LOJ_NEST_HSH.

Example 1–1 Example 1: Using OPTIMIZE USING

drop outline LOJ_NEST_HSH;
create outline LOJ_NEST_HSH
id ’FE43684748E33D965A065EF6545EB1BB’
mode 0
as (

query (
-- For loop

subquery (
subquery (
P 2 access path sequential
)
join by cross to

subquery (
S 0 access path sequential
join by hash to

P 1 access path sequential
)

)
)

)
compliance optional ;

Now execute the query with this query outline.

set flags ’strategy,detail(2)’;

select snum, s.city, status, pnum, p.city, weight
from s left join p
on s.city = p.city and

(exists (select pnum from p where pnum = ’P0’))
OPTIMIZE USING LOJ_NEST_HSH
;
~S: Outline "LOJ_NEST_HSH" used
~Sh: Hash Join #3S inner rejected-Q2 contains Aggregate OJ boolean
~S: Full compliance with the outline was not possible
Tables:
0 = S
1 = P
2 = P

(continued on next page)

1–10 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2

Example 1–1 (Cont.) Example 1: Using OPTIMIZE USING

Cross block of 2 entries Q1
Cross block entry 1
Aggregate-F1: 0:COUNT-ANY (<subselect>) Q3
Conjunct: 2.PNUM = ’P0’
Get Retrieval sequentially of relation 2:P Card=6 JCard=1

Cross block entry 2
Match (Left Outer Join) Inner_TTBL Q2
Outer loop
Match_Key:0.CITY
Sort: 0.CITY(a)
Get Retrieval sequentially of relation 0:S Card=5 JCard=5

Inner loop
Match_Key:1.CITY
Temporary relation
Sort: 1.CITY(a)
Get Retrieval sequentially of relation 1:P Card=6 JCard=10

S.SNUM S.CITY S.STATUS P.PNUM P.CITY P.WEIGHT
S5 Athens 30 NULL NULL NULL
S1 London 20 NULL NULL NULL
S4 London 20 NULL NULL NULL
S2 Paris 10 NULL NULL NULL
S3 Paris 30 NULL NULL NULL
5 rows selected

If the query outline definition is changed to use COMPLIANCE MANDATORY
then the query using it will fail to run if JOIN BY HASH is not possible.

create outline LOJ_NEST_HSH
id ’FE43684748E33D965A065EF6545EB1BB’
mode 0
as (

query (
-- For loop

subquery (
subquery (
P 2 access path sequential
)
join by cross to

subquery (
S 0 access path sequential
join by hash to

P 1 access path sequential
)

)
)

)
compliance mandatory ;

(continued on next page)

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2 1–11

Example 1–1 (Cont.) Example 1: Using OPTIMIZE USING

set flags ’strategy,detail(2)’;

select snum, s.city, status, pnum, p.city, weight
from s left join p
on s.city = p.city and

(exists (select pnum from p where pnum = ’P0’))
OPTIMIZE USING LOJ_NEST_HSH
;
~S: Outline "LOJ_NEST_HSH" used
~Sh: Hash Join #3S inner rejected-Q2 contains Aggregate OJ boolean
~S: Full compliance with the outline was not possible
%RDB-E-QRYCOMP_FAILED, query or routine failed to compile
-RDMS-F-OUTLINE_FAILED, could not comply with mandatory query outline directives

The following query reverts to cross strategy when full compliance with the query
outline is not possible.

Example 1–2 Example 2: Using the OPTIMIZE FOR HASH JOIN clause

select snum, s.city, status, pnum, p.city, weight
from s left join p
on s.city = p.city and

(exists (select pnum from p where pnum = ’P0’))
OPTIMIZE FOR HASH JOIN
;
~S: Outline "QO_FE43684748E33D96_00000000" used
~Sh: Hash Join abandoned because Q2 contains Aggregate OJ boolean
~S: Full compliance with the outline was not possible
Tables:
0 = S
1 = P
2 = P

Cross block of 2 entries Q1
Cross block entry 1
Aggregate-F1: 0:COUNT-ANY (<subselect>) Q3
Conjunct: 2.PNUM = ’P0’
Get Retrieval sequentially of relation 2:P

Cross block entry 2
Match (Left Outer Join) Inner_TTBL Q2
Outer loop
Match_Key:0.CITY
Sort: 0.CITY(a)
Get Retrieval sequentially of relation 0:S

Inner loop
Match_Key:1.CITY
Temporary relation
Sort: 1.CITY(a)
Get Retrieval sequentially of relation 1:P

(continued on next page)

1–12 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2

Example 1–2 (Cont.) Example 2: Using the OPTIMIZE FOR HASH JOIN clause

S.SNUM S.CITY S.STATUS P.PNUM P.CITY P.WEIGHT
S5 Athens 30 NULL NULL NULL
S1 London 20 NULL NULL NULL
S4 London 20 NULL NULL NULL
S2 Paris 10 NULL NULL NULL
S3 Paris 30 NULL NULL NULL
5 rows selected

1.2 Obsolete Features
None for this release.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.2 1–13

2
Enhancements And Changes Provided in

Oracle Rdb Release 7.4.1.1

2.1 Enhancements
2.1.1 Optional Builtin Function RDB$$IS_ROW_FRAGMENTED

Oracle Rdb supports an optional builtin function that can determine if a row is
fragmented. The function, RDB$$IS_ROW_FRAGMENTED must be declared as
a function using the attributes and properties as shown below.

declare function RDB$$IS_ROW_FRAGMENTED
(in :dbk char(8) character set unspecified)
returns integer;

The following example shows the usage on the WORK_STATUS table in the
PERSONNEL database.

SQL> declare function RDB$$IS_ROW_FRAGMENTED
cont> (in :dbk char(8) character set unspecified)
cont> returns integer;
SQL>
SQL> select dbkey, RDB$$IS_ROW_FRAGMENTED (dbkey) from work_status;

DBKEY
99:10:12 0
99:10:13 0
99:10:14 0

3 rows selected

Usage Notes

• This routine may only be used from Interactive and Dynamic SQL.

• Only valid DBKEY values should be passed to the function.

• If the DBKEY passed is not the current row, then additional I/O may be
required to fetch the target row.

• If the DBKEY is for a vertically partitioned table, then only the fragmented
state of the primary segment is reported. There is currently no programmatic
method to determine fragmented secondary segments.

• Temporary table and information table rows are never fragmented as they
reside in virtual memory only.

• Fragmentation occurs when either the row is too large to fit entirely on a
page or an existing row was updated to a larger size and no space existed at
that time for the expanded row. The first case requires that the page size be
changed for the area. However, for the second case, a DELETE and INSERT
of the row might remove the fragmentation. In that case, this function allows
the DBA to identify candidate fragmented rows. Fragmentation may occur
when compression is enabled and the compressed row size changes due to
changed data, NULL values replaced with non-NULL values, or ALTER

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1 2–1

TABLE or ALTER DOMAIN statements that have increased the size of
columns.

2.1.2 WITH READ ONLY clause for CREATE and ALTER VIEW
This release of Oracle Rdb adds support for READ ONLY view definitions, using
CREATE VIEW, DECLARE LOCAL TEMPORARY VIEW or ALTER VIEW
statements.

Syntax

check-option-clause =

WITH CHECK OPTION
CONSTRAINT <check-option-name>

NO CHECK OPTION

READ ONLY

Under normal circumstances, views are considered to be READ ONLY and Rdb
will prevent INSERT, UPDATE and DELETE through those views when the
select expression uses one of these clauses:

* Includes the DISTINCT operator to eliminate duplicate rows from the result
table

* Names more than one table or view in the FROM clause

* Uses a derived table as the row source for a FROM clause

* Includes an aggregate function in the select list

* Contains a UNION, EXCEPT, MINUS, INTERSECT, GROUP BY, or HAVING
clause

With this release the database administrator can also force a view to be READ
ONLY by applying the WITH READ ONLY clause, even if the factors listed above
are not true; i.e. a view that would normally be updatable is considered read-only.

This clause (WITH READ ONLY) and the WITH CHECK OPTION clause are
mutually exclusive. Any CHECK OPTION constraint previously defined for the
view will be deleted when WITH READ ONLY is used. Conversely if the view is
altered to successfully add a CHECK OPTION then the READ ONLY attribute is
removed.

The following example shows creating a view on a base table and forcing the view
to be read-only.

SQL> create view SHOW_CURRENT_SALARY
cont> as
cont> select employee_id, salary_amount
cont> from salary_history
cont> where salary_end is null
cont> with read only
cont> ;

2–2 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1

2.1.3 Enhanced conversion of date/time string literals
In prior releases of Oracle Rdb, string literals assigned to DATE VMS columns,
or which were CAST to DATE VMS data types were translated by the SQL
interface prior to being passed to the Oracle Rdb Server for execution. This small
optimization could reduce or avoid the actual CAST operation.

This release of Oracle Rdb expands this support to string literals assigned to
DATE ANSI, TIME, TIMESTAMP and INTERVAL data types. If the format of
the string is invalid then an error is immediately reported. This is especially
a benefit when applications were compiled using the SQL Precompiler or SQL
Module Language which now reports the improper format during compile instead
of being deferred to runtime.

SQL> select cast (’1-Jan-2021’ as date ansi) from rdb$database;
%SQL-F-DATCONERR, Data conversion error for string ’1-Jan-2021’
-COSI-F-IVTIME, invalid date or time
SQL> select cast (’2021-1-1’ as date ansi) from rdb$database;

2021-01-01
1 row selected
SQL>

2.1.4 Support for OVERRIDING clause in INSERT and REPLACE statements
This release of Oracle Rdb supports the ANSI and ISO SQL Database Language
Standard OVERRIDING clause for the INSERT statement. Oracle Rdb also
extends this support to the REPLACE statement. The OVERRIDING USER
VALUE and OVERRIDING SYSTEM VALUE clauses affect the handling of
inserts to any generated columns during INSERT or REPLACE statements. The
OVERRIDING clause appears before the VALUES clause or before the SELECT
clause as part of the INSERT and REPLACE statements.

Syntax

INSERT INTO <table-name>
<view-name> AS <correlation-name>
CURSOR <cursor-name>

DEFAULT VALUES
returning-clause

(<column-name>)
,

OVERRIDING SYSTEM VALUE
OVERRIDING USER VALUE

value-clause
select-expr

optimize-clause

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1 2–3

REPLACE INTO <table-name>
<view-name> AS <correlation-name>
CURSOR <cursor-name>

DEFAULT VALUES
returning-clause

(<column-name>)
,

OVERRIDING SYSTEM VALUE
OVERRIDING USER VALUE

value-clause
select-expr

optimize-clause

* The OVERRIDING SYSTEM VALUE clause instructs Rdb that the
GENERATED, IDENTITY or AUTOMATIC AS columns will be updated
with user supplied values and therefore no generated values will be created.
Such a clause would be used if a table was being reloaded after maintenance
and the database administrator wanted to retain the saved generated values.

Note

The INSERT or REPLACE statements can use the DEFAULT keyword in
place of a column value. When the column being updated is a generated
or automatic column then the OVERRIDING clause has no effect on that
column as it will be the same in either case.

replace into SALES_EMPLOYEES (employee_id, last_name, first_name)
overriding system value
values (default, ’Myotte ’, ’Daniel’);

This clause is similar to the SET FLAGS ’AUTO_OVERRIDE’ feature.

The following example shows the use of OVERRIDING SYSTEM VALUE in
the case of propagating a daily sales table to the yearly accumulated sales
table. In this case we don’t want the new generated values for these columns
as that was already done by the INSERT into the daily sales table.

SQL> --> Now we want to perform end-of-day processing.
SQL> set transaction
cont> read write
cont> reserving DAILY_SALES for exclusive write,
cont> YEARLY_SALES for exclusive write;
SQL>
SQL> --> move daily sales
SQL> insert into YEARLY_SALES
cont> overriding system value
cont> select * from DAILY_SALES
cont> ;
7 rows inserted
SQL>
SQL> truncate table DAILY_SALES;
SQL>
SQL> commit;
SQL>

2–4 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1

* The OVERRIDING USER VALUE clause instructs Rdb that the
GENERATED, IDENTITY or AUTOMATIC AS columns will be generated
by the database system and that any user supplied values will be ignored.
Such a clause would be used when column names were wild carded by a
SELECT clause and therefore avoids enumerating all non-generated column
names.

The following example shows copying all daily sales to a log table which will
generate new sales_id values.

SQL> --> move daily sales and generate new column values for automatic columns
SQL> insert into SALES_LOG
cont> overriding user value
cont> select * from DAILY_SALES
cont> ;

2.1.5 RMU RECOVER /PROGESS_REPORT Qualifier and Ctrl-T Display
In this release a /PROGRESS_REPORT qualifier has been added to the RMU
RECOVER command. The /PROGRESS_REPORT=n qualifier, where n is the
time interval in seconds, displays the performance and progress of the database
RMU RECOVER operation at timed intervals to SYS$OUTPUT.

The same display can also be output whenever Ctrl-T is typed during the
RMU RECOVER operation. Ctrl-T must have been previously enabled at the
DCL level using SET CONTROL=T. SET CONTROL=T requires that SET
TERMINAL/BROADCAST is enabled for the display terminal.

The RMU/RECOVER performance and progress display has the following format.

• The first line is the file specification of the after image journal (AIJ) currently
being recovered.

• The second line displays the number of megabytes that have been read and
processed from the AIJ file during the current interval, the percentage of the
AIJ file that has been processed, the number of megabytes that are currently
being read per second, and the estimated completion time for the processing
of this AIJ file.

The PROGRESS_REPORT interval that has been specified in this case is 1
second.

DEVICE:[DIRECTORY]TEST_JOURNAL.AIJ;1
Read 21 MB (29%) at 21 MB/s, estimated completion time 11:50:29.80

The RMU/RECOVER performance and progress display will be different if the
/FORMAT=NEW_TAPE qualifier has been specified with the RMU/RECOVER
command. This is due to limitations caused by the way AIJ data in this format is
processed.

• The first line is the file specification of the current temporary AIJ work file
being recovered.

• The second line displays the number of megabytes that have been read and
processed from the AIJ work file during this interval, and the number of
megabytes that are currently being read per second.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1 2–5

The PROGRESS_REPORT interval that has been specified in this case is 1
second.

DEVICE:[DIRECTORY]AIJ_WORKG8V0RS6M99D1GJKG4I80.AIJ;
Read 36 MB at 36 MB/s

Syntax
The command line syntax for the RMU RECOVER command PROGRESS_
REPORT qualifier is

/PROGRESS_REPORT[=seconds]

This qualifier cannot be negated and is not the default. The default value for the
PROGRESS_REPORT display interval is 60 seconds. The minimal value for the
PROGRESS_REPORT display interval is 1 second.

Examples
The following example shows the recovery of one backed up AIJ file with a
progress report interval of 1 second. A zero value indicates no data was read
from the AIJ file during that interval. The completion time estimate is an
approximation not guaranteed to be exact.

$ SHOW TIME
11-AUG-2020 16:04:39

$ rmu/recover/LOG/root=DEVICE:[DIRECTORY]glory.rdb/PROGRESS_REPORT=1 -
DEVICE:[DIRECTORY]backup_after.baij

%RMU-I-LOGRECDB, recovering database file DEVICE:[DIRECTORY]GLORY.RDB;1
%RMU-I-LOGOPNAIJ, opened journal file DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1
at 11-AUG-2020 16:04:39.19
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 10 MB (7%) at 10 MB/s, estimated completion time 16:04:52.75
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 19 MB (13%) at 9 MB/s, estimated completion time 16:04:55.39
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 52 MB (35%) at 32 MB/s, estimated completion time 16:04:45.16
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 74 MB (49%) at 21 MB/s, estimated completion time 16:04:46.57
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 74 MB (49%) at 0 KB/s, estimated completion time 16:04:44.19
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 74 MB (49%) at 0 KB/s, estimated completion time 16:04:45.19
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 74 MB (49%) at 0 KB/s, estimated completion time 16:04:46.19
%RMU-I-LOGRECSTAT, transaction with TSN 225 committed
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 78 MB (52%) at 3 MB/s, estimated completion time 16:05:04.80
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 100 MB (68%) at 22 MB/s, estimated completion time 16:04:50.26
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 118 MB (79%) at 17 MB/s, estimated completion time 16:04:50.88
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 141 MB (95%) at 23 MB/s, estimated completion time 16:04:50.45
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 148 MB (99%) at 6 MB/s, estimated completion time 16:04:51.20
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 148 MB (99%) at 0 KB/s, estimated completion time 16:04:52.19
DEVICE:[DIRECTORY]BACKUP_AFTER.BAIJ;1

Read 148 MB (99%) at 0 KB/s, estimated completion time 16:04:53.19
%RMU-I-LOGRECSTAT, transaction with TSN 226 committed
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed

2–6 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1

%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence number
needed will be 1
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-LOGSUMMARY, total 2 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
%RMU-I-LOGSUMMARY, total 0 transactions ignored
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 1
%RMU-I-AIJNOENABLED, after-image journaling has not yet been enabled
$ SHOW TIME
11-AUG-2020 16:04:53

The following example shows the recovery of two AIJ files with a progress report
interval of 1 second. A zero value indicates no data was read from the AIJ file
during that interval. The completion time estimate is an approximation not
guaranteed to be exact.

$ SHOW TIME
11-AUG-2020 16:08:20

$ rmu/recover/root=DEVICE:[DIRECTORY]glory.rdb/PROGRESS_REPORT=1 -
DEVICE:[DIRECTORY]backup_after1.aij, -
DEVICE:[DIRECTORY]backup_after2.aij
%RMU-I-LOGRECDB, recovering database file DEVICE:[DIRECTORY]GLORY.RDB;1
%RMU-I-LOGOPNAIJ, opened journal file DEVICE:[DIRECTORY]BACKUP_AFTER1.AIJ;1
at 11-AUG-2020 16:08:20.90
DEVICE:[DIRECTORY]BACKUP_AFTER1.AIJ;1

Read 33 MB (44%) at 33 MB/s, estimated completion time 16:08:23.12
DEVICE:[DIRECTORY]BACKUP_AFTER1.AIJ;1

Read 64 MB (86%) at 30 MB/s, estimated completion time 16:08:23.23
DEVICE:[DIRECTORY]BACKUP_AFTER1.AIJ;1

Read 74 MB (99%) at 9 MB/s, estimated completion time 16:08:23.92
DEVICE:[DIRECTORY]BACKUP_AFTER1.AIJ;1

Read 74 MB (99%) at 0 KB/s, estimated completion time 16:08:24.90
DEVICE:[DIRECTORY]BACKUP_AFTER1.AIJ;1

Read 74 MB (99%) at 0 KB/s, estimated completion time 16:08:25.90
%RMU-I-LOGRECSTAT, transaction with TSN 225 committed
%RMU-I-LOGRECSTAT, transaction with TSN 227 committed
%RMU-I-AIJONEDONE, AIJ file sequence 0 roll-forward operations completed
%RMU-I-LOGRECOVR, 2 transactions committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJACTIVE, 1 active transaction not yet committed or aborted
%RMU-I-LOGRECSTAT, transaction with TSN 226 is active
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence number
needed will be 1
%RMU-I-LOGOPNAIJ, opened journal file DEVICE:[DIRECTORY]BACKUP_AFTER2.AIJ;1
at 11-AUG-2020 16:08:26.63
DEVICE:[DIRECTORY]BACKUP_AFTER2.AIJ;1

Read 32 MB (44%) at 32 MB/s, estimated completion time 16:08:28.90
DEVICE:[DIRECTORY]BACKUP_AFTER2.AIJ;1

Read 67 MB (90%) at 34 MB/s, estimated completion time 16:08:28.82
DEVICE:[DIRECTORY]BACKUP_AFTER2.AIJ;1

Read 73 MB (99%) at 6 MB/s, estimated completion time 16:08:29.68
DEVICE:[DIRECTORY]BACKUP_AFTER2.AIJ;1

Read 73 MB (99%) at 0 KB/s, estimated completion time 16:08:30.63
DEVICE:[DIRECTORY]BACKUP_AFTER2.AIJ;1

Read 73 MB (99%) at 0 KB/s, estimated completion time 16:08:31.63
%RMU-I-LOGRECSTAT, transaction with TSN 226 committed
%RMU-I-AIJONEDONE, AIJ file sequence 1 roll-forward operations completed

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1 2–7

%RMU-I-LOGRECOVR, 1 transaction committed
%RMU-I-LOGRECOVR, 0 transactions rolled back
%RMU-I-LOGRECOVR, 0 transactions ignored
%RMU-I-AIJNOACTIVE, there are no active transactions
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJNXTSEQ, to continue this AIJ file recovery, the sequence number
needed will be 2
%RMU-I-AIJALLDONE, after-image journal roll-forward operations completed
%RMU-I-LOGSUMMARY, total 3 transactions committed
%RMU-I-LOGSUMMARY, total 0 transactions rolled back
%RMU-I-LOGSUMMARY, total 0 transactions ignored
%RMU-I-AIJSUCCES, database recovery completed successfully
%RMU-I-AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 2
%RMU-I-AIJNOENABLED, after-image journaling has not yet been enabled
$ SHOW TIME
11-AUG-2020 16:08:31

2.1.6 Additional options for the RMU SET DATABASE command
This release of Oracle Rdb adds the following qualifiers to the RMU Set Database
statement. This command is an OFFLINE command and requires exclusive
access to the target database.

• /NODES_MAX

Sets the number of nodes that are permitted to attach to the database. This
command is equivalent to the SQL ALTER DATABASE ... NUMBER OF
CLUSTER NODES statement.

This qualifier can only be applied to multi-file databases. RMU will report an
error for single file databases. Use SQL EXPORT DATABASE and IMPORT
DATABASE to change this value for a single file database.

$ rmu/set data/node=1 personnel
%RMU-F-MFDBONLY, operation is not allowed on single-file databases
%RMU-F-FTL_RMU, Fatal error for RMU operation at 29-OCT-2020 13:55:55.33

• /RESERVE

This clause alters the reserve limit of the database. One or more of the
keywords AREAS, CACHES, JOURNALS, or SEQUENCES with new values
can be specified.

This qualifier can only be applied to multi-file databases. RMU will report an
error for single file databases. Use SQL EXPORT DATABASE and IMPORT
DATABASE to change this value for a single file database.

$ rmu/set data/res=area=10 personnel
%RMU-F-MFDBONLY, operation is not allowed on single-file databases
%RMU-F-FTL_RMU, Fatal error for RMU operation at 29-OCT-2020 13:59:19.94

AREAS

Reserves extra storage area entries to allow subsequent ALTER
DATABASE ... ADD STORAGE AREA statements.

CACHES

Reserves extra row cache entries to allow subsequent ALTER DATABASE
... ADD CACHE statements.

2–8 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1

JOURNALS

Reserves extra after image journal entries to allow subsequent ALTER
DATABASE ... ADD JOURNAL statements, or RMU Set After_Journal
command.

SEQUENCES

Reserves sequence entries. This action should be taken when a CREATE
TABLE with IDENTITY or a CREATE SEQUENCE statement fails due
to insufficient sequence table entries; RDMS-F-SEQTBLFUL, sequence
table is full.

SQL> create sequence NEW_PRODUCT_CODES;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-SEQTBLFUL, sequence table is full
SQL>

• /USERS_MAX

Sets the number of users that are permitted to attach to the database. This
command is equivalent to the SQL ALTER DATABASE ... NUMBER OF
USERS statement.

This qualifier can only be applied to multi-file databases. RMU will report an
error for single file databases. Use SQL EXPORT DATABASE and IMPORT
DATABASE to change this value for a single file database.

$ rmu/set data/users=11 personnel
%RMU-F-MFDBONLY, operation is not allowed on single-file databases
%RMU-F-FTL_RMU, Fatal error for RMU operation at 29-OCT-2020 13:58:29.03

2.1.7 SUMMARY_ONLY qualifier to RMU Dump Audit
This release of Oracle Rdb adds the SUMMARY_ONLY qualifier to RMU Dump
Audit. This allows the database administrator to see a list of databases that have
entries recorded in the named AUDIT$JOURNAL.

Neither the /FORMAT nor the /TYPE qualifiers are permitted with /SUMMARY_
ONLY. The database parameter is ignored.

The following example generates a file containing the database names used by
that version of the SECURITY.AUDIT$JOURNAL.

$ define/nolog RMU_AJ SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL;8398
$ rmu/dump/audit -

"" -
RMU_AJ -
/since=TODAY -
/log -
/summary_only -
/output=audit_dump.txt

$

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1 2–9

2.1.8 New RMU VERIFY /MINIMIZE_CONFLICTS feature
In this release of Oracle Rdb, a /MINIMIZE_CONFLICTS qualifier has been
added to the RMU Verify command. The /MINIMIZE_CONFLICTS qualifier
attempts to reduce database page lock conflicts at timed intervals during the
verify operation.

Syntax

/MINIMIZE_CONFLICTS[=n]

This qualifier requests that RMU Verify periodically attempt to reduce locks
on buffers during operation. The value of (n) is the time interval in seconds.
The minimal value that can be specified is 1 second. The default time interval
is 30 seconds.

/NOMINIMIZE_CONFLICTS

This qualifier requests that RMU Verify request that RMU not release locking
periodically. This returns RMU to prior default behavior.

If this qualifier is omitted then the default is assumed to be MINIMIZE_
CONFLICTS=30

Examples
The following example shows examples for using this new MINIMIZE_
CONFLICTS feature.

$!
$! Default - minimize database page lock conflicts at 30 second
$! intervals
$!
$ RMU/VERIFY/ALL/NOLOG TEST.RDB
$!
$! Default time interval - minimize database page lock conflicts
$! at 30 second intervals
$!
$ RMU/VERIFY/ALL/NOLOG/MINIMIZE_CONFLICTS TEST.RDB
$!
$! Minimize database page lock conflicts at 1 second intervals
$!
$ RMU/VERIFY/ALL/NOLOG/MINIMIZE_CONFLICTS=1 TEST.RDB
$!
$! Do not minimize page lock conflicts
$!
$ RMU/VERIFY/ALL/NOLOG/NOMINIMIZE_CONFLICTS TEST.RDB
$

2.1.9 New OPTION=GENERATED added to RMU Extract command
This release of Oracle Rdb includes a new GENERATED option for RMU
Extract. In prior releases RMU Extract ITEM=UNLOAD and ITEM=LOAD
would generate load commands that assumed all the columns were updatable.

2–10 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1

The option FULL can be used to generate syntax that loads every field by name
and includes virtual columns (AUTOMATIC AS, GENERATED, IDENTITY and
COMPUTED BY) as commented out names. Therefore, editing was required to
uncomment GENERATED column names so they could be reloaded. In addition
the /VIRTUAL=AUTOMATIC qualifier needed to be added to the RMU Load and
RMU Unload commands.

Now using OPTION=(GENERATED) will instruct RMU Extract to generate more
appropriate DCL commands for unloading and re-loading data in tables that
contain GENERATED columns.

The following example shows a portion of a generated DCL procedure when only
OPTION=FULL is used.

$ RMU/EXTRACT/ITEM=UNLOAD/OPTION=FULL SAMPLE_DB
.
.
.

$ CREATE SAMPLE0.COLUMNS
! Columns list for table SAMPLE0
! in ...
! Created by RMU Extract for Oracle Rdb ... on 29-JAN-2021 13:20:28.40
! Virtual: IDENT_COL
DETAILS
! Virtual: LAST_UPDATE
$ RMU/UNLOAD -

USER1:[TESTING.DATABASES]MF_PERSONNEL_SQL.RDB -
/FIELDS="@SAMPLE0.COLUMNS" -
SAMPLE0 -
SAMPLE0.UNL

$

The following example shows a portion of a generated DCL procedure when
OPTION=(GENERATED) is used.

$ RMU/EXTRACT/ITEM=UNLOAD/OPTION=GENERATED SAMPLE_DB
.
.
.

$ CREATE SAMPLE0.COLUMNS
! Columns list for table SAMPLE0
! in ...
! Created by RMU Extract for Oracle Rdb ... on 29-JAN-2021 13:23:27.76
IDENT_COL
DETAILS
LAST_UPDATE
$ RMU/UNLOAD -

USER1:[TESTING.DATABASES]MF_PERSONNEL_SQL.RDB -
/FIELDS="@SAMPLE0.COLUMNS" -
/VIRTUAL=AUTOMATIC -
SAMPLE0 -
SAMPLE0.UNL

$

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1 2–11

2.1.10 Changed behavior for the NOEDIT_FILENAME qualifier in RMU Backup
After_Journal command

In prior releases of Oracle Rdb the /NOEDIT_FILENAME qualifier on the RMU
Backup After_Journal was ignored. With this release it takes on a new meaning
as described below:

/EDIT_FILENAME

As with previous versions, this qualifier defines the editing to be performed
for the output backup file name. This editing is performed on the provided
backup filename, or if "" is specified the default backup filename defined in
the database.

This qualifier replaces any EDIT_FILENAME defined for the database.

/NOEDIT_FILENAME

This qualifier negates any prior usage on the command of the /EDIT_
FILENAME qualifier and also instructs RMU to ignore the EDIT_FILENAME
defined by the SQL ALTER DATABASE statement, or RMU Set After_Journal
command. This is a change of behavior from prior versions and supports the
enhancements made to the RMU Set After_Journal command which allows
the defaults to be defined for the MANUAL backup processing.

No editing is performed on the provided backup filename, or if "" is specified
the default backup filename defined in the database is used without changes.

Neither /EDIT_FILENAME nor /NOEDIT_FILENAME was used.

In this case RMU Backup After_Journal will use the default if defined in the
database by SQL ALTER DATABASE statement, or RMU Set After_Journal
command.

2.2 Obsolete Features
2.2.1 Comma Statement Separator in Trigger Body No Longer Supported

The syntax for trigger actions in the CREATE TRIGGER statement has, in
the past, supported the comma (,) as well as the semicolon (;) as statement
separators. The use of the comma separator has been problematic in Oracle Rdb
SQL because it conflicts in various places with the comma used as an element
separator within some statements. For example, the TRACE statement allows
a comma separated list of values and the INSERT INTO ... SELECT ... FROM
statement allows a comma separated list of table names in the FROM clause.
In these cases, a comma cannot be used as a statement separator because the
current statement appears to be continued.

Future versions of Oracle Rdb are expected to include enhancements to the
TRIGGER action syntax which will allow other statements to include comma
as an element separator. Therefore, the comma statement separator is now no
longer supported.

Any scripts or applications that include the CREATE TRIGGER statement must
now be modified to use only the semicolon (;) as a separator.

This change does not affect existing database triggers, only new triggers defined
using the CREATE TRIGGER statement. The RMU Extract Item=TRIGGER
command already generates semicolon separators in extracted CREATE
TRIGGER statements.

2–12 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.1 2–13

3
Enhancements And Changes Provided in

Oracle Rdb Release 7.4.1.0

3.1 Enhancements
3.1.1 PCSI Support for Rdb Kit Installation and Deinstallation

Whenever Oracle Rdb is installed or deinstalled, Oracle Rdb will be registered
in the PCSI software product database. This will allow users to use the PCSI
PRODUCT SHOW HISTORY and PRODUCT SHOW PRODUCT commands to
display information about releases of Oracle Rdb that have been installed or
deinstalled. This information will also be helpful as input whenever a Service
Request (SR) is submitted to Oracle Support.

The following lines will now be displayed during the installation of Oracle Rdb,
showing that the installation has been registered in the PCSI database.

The following product has been selected:
ORCL I64VMS RDB74 V7.4-100 Transition (registration)

The following product will be registered:
ORCL I64VMS RDB74 V7.4-100 DISK$NODE84_2:[VMS$COMMON.]

File lookup pass starting ...

Portion done: 0%
...100%

File lookup pass completed search for all files listed in the product’s PDF
Total files searched: 0 Files present: 0 Files absent: 0

The following product has been registered:
ORCL I64VMS RDB74 V7.4-100 Transition (registration)

%VMSINSTAL-I-MOVEFILES, Files will now be moved to their target directories...

Registration in the PCSI software product database allows a user to use
commands such as the following to track what Oracle Rdb releases are currently
installed and the history of any past product installations and deinstallations.

$ PRODUCT SHOW HISTORY/SINCE
------------------------------------ ----------- ----------- --- -----------
PRODUCT KIT TYPE OPERATION VAL DATE
------------------------------------ ----------- ----------- --- -----------
ORCL I64VMS RDB74 V7.4-100 Transition Reg Product (U) 10-JUN-2020
------------------------------------ ----------- ----------- --- -----------

1 item found

$ PRODUCT SHOW HISTORY RDB7*
------------------------------------ ----------- ----------- --- -----------
PRODUCT KIT TYPE OPERATION VAL DATE
------------------------------------ ----------- ----------- --- -----------
ORCL I64VMS RDB74 V7.4-100 Transition Reg Product (U) 10-JUN-2020
------------------------------------ ----------- ----------- --- -----------

1 item found

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–1

$ PRODUCT SHOW PRODUCT RDB7*
------------------------------------ ----------- ---------
PRODUCT KIT TYPE STATE
------------------------------------ ----------- ---------
ORCL I64VMS RDB74 V7.4-100 Transition Installed
------------------------------------ ----------- ---------

1 item found

The following lines will now be displayed during the deinstallation of Oracle
Rdb, showing that the removal of the release has been registered in the
PCSI database. Deinstallation is performed by executing the DCL procedure
SYS$MANAGER:RDB$DEINSTALL_DELETE.COM. Please refer to section
"Deleting Versions of Oracle Rdb" in the Oracle Rdb Installation Guide for further
details.

The following product has been selected:
ORCL I64VMS RDB74 V7.4-100 Transition (registration)

The following product will be removed from destination:
ORCL I64VMS RDB74 V7.4-100 DISK$CLYPPR84_2:[VMS$COMMON.]

Portion done: 0%...100%

The following product has been removed:
ORCL I64VMS RDB74 V7.4-100 Transition (registration)

The example below shows the additional information that will be displayed by the
PCSI PRODUCT commands as a result of the deinstallation of a release of Oracle
Rdb.

$ PRODUCT SHOW HISTORY/SINCE
------------------------------------ ----------- ----------- --- -----------
PRODUCT KIT TYPE OPERATION VAL DATE
------------------------------------ ----------- ----------- --- -----------
ORCL I64VMS RDB74 V7.4-100 Transition Remove - 10-JUN-2020
ORCL I64VMS RDB74 V7.4-100 Transition Reg Product (U) 10-JUN-2020
------------------------------------ ----------- ----------- --- -----------
2 items found

$ PRODUCT SHOW HISTORY RDB7*
------------------------------------ ----------- ----------- --- -----------
PRODUCT KIT TYPE OPERATION VAL DATE
------------------------------------ ----------- ----------- --- -----------
ORCL I64VMS RDB74 V7.4-100 Transition Remove - 10-JUN-2020
ORCL I64VMS RDB74 V7.4-100 Transition Reg Product (U) 10-JUN-2020
------------------------------------ ----------- ----------- --- -----------
2 items found

$ PRODUCT SHOW PRODUCT RDB7*
------------------------------------ ----------- ---------
PRODUCT KIT TYPE STATE
------------------------------------ ----------- ---------
0 items found

3.1.2 Some Aggregate Functions Inherit Source Column EDIT STRING
Oracle Rdb supports EDIT STRING inheritance for these functions when using
Interactive SQL.

• MAX, MEDIAN, MIN, FIRST_VALUE, LAST_VALUE

When the input type matches the output type, then the EDIT STRING from
the source column is inherited to improve the readability of the aggregate.

• CAST

When the datatype of the CAST includes a domain with the EDIT STRING.

3–2 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

The following example shows the EDIT STRING being used.

SQL> create domain DOM_TST integer(2) edit string ’$(9)9.99’;
SQL>
SQL> create table TST
cont> (a integer(2) edit string ’$(9)9.99’
cont> ,c char(10)
cont>);
SQL>
SQL> insert into TST
cont> values (100, 100, ’A’);
1 row inserted
SQL> insert into TST
cont> values (233, 233, ’B’);
1 row inserted
SQL>
SQL> --> column with explicit edit string
SQL> select min (a), max (a), cast (a as DOM_TST)
cont> from TST
cont> group by a
cont> ;
cont> ;

$100.00 $100.00 $100.00
$233.00 $233.00 $233.00

2 rows selected
SQL>
SQL> select first_value (a) within group (order by b desc),
cont> last_value (a) within group (order by b desc),
cont> median (a)
cont> from TST
cont> ;

$233.00 $100.00 $166.50
1 row selected
SQL>

Use the SET DISPLAY NO EDIT STRING statement to disable this behavior.

3.1.3 Enhanced LIKE Table Support in CREATE TABLE Statement
This release of Oracle Rdb introduces support for the ANSI and ISO SQL
Language Standard syntax for the LIKE table clause. It also adds new
EXCLUDING and INCLUDING clauses to the LIKE clause within the CREATE
TABLE statement.

In prior releases of Oracle Rdb, a table can be created using syntax similar to the
following:

SQL> create table RETIRED_EMPLOYEES
cont> like EMPLOYEES
cont> ;
SQL>

This statement copies the definitions of each column as well as DEFAULT values
defined for those source columns. SQL also allows additional columns and
constraints to be defined for the new table.

SQL> create table RETIRED_EMPLOYEES
cont> like EMPLOYEES
cont> (retirement_date DATE
cont> ,check (retirement_date > birthday) not deferrable
cont>);
SQL>

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–3

This syntax is retained for backward compatibility with prior releases of Oracle
Rdb.

The syntax for a similar feature in the ANSI/ISO SQL Database Language moves
the LIKE clause into the section that defines the columns and constraint. This
adds the ability to copy column definitions from more than one table, control
how GENERATED, AUTOMATIC, IDENTITY and COMPUTED columns are
inherited, as well as define the column ordering; this is determined by the order
of the listed columns and tables.

SQL> create table RETIRED_EMPLOYEES
cont> (retirement_date DATE
cont> ,like EMPLOYEES
cont> including COMPUTED
cont> excluding DEFAULTS
cont> ,check (retirement_date > birthday) not deferrable
cont> ,unique (employee_id)
cont> ,hr_authorizations LIST OF BYTE VARYING
cont>);
SQL>

By default, GENERATED, AUTOMATIC, IDENTITY and COMPUTED columns
are not copied but columns representing the same data types are created instead.

Syntax
column-constraint-list =

col-definition
ansi-like-table-clause
table-constraint

,

ansi-like-table-clause =

LIKE <other-table-name>
like-attributes

like-attributes =

EXCLUDING COMMENTS
INCLUDING COMPUTED

DEFAULTS
GENERATED
IDENTITY
PROTECTION

Usage Notes

• When using the LIKE clause to copy a table definition, the creator of the
new table must have REFERENCES or SELECT privilege granted for the
referenced table.

• By default, Rdb includes the column protections (access control lists) and
comments for any copied column. These new clauses allow the database
administrator to suppress the copying of that metadata.

3–4 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

• The LIKE clause can be used multiple times within a CREATE TABLE
statement. However, if the copied tables include any duplicate column names,
then an error will be reported. Only one IDENTITY column can be defined
or inherited. Use the INCLUDING IDENTITY clause, if necessary, to inherit
the attributes from the referenced table.

The default behavior is EXCLUDING COMPUTED, GENERATED,
IDENTITY column details. In this case, non-generated columns will be
created which contain the same data type attributes. Default values defined
for the source tables are not automatically inherited. Use the INCLUDING
DEFAULTS clause to control this behavior.

Note: For backward compatibility with previous versions of Oracle Rdb, the
LIKE clause used outside the column-constraint-list defaults to INCLUDING
GENERATED, INCLUDING IDENTITY, INCLUDING COMPUTED and
INCLUDING DEFAULTS. The like-attributes may not be specified in this
location and therefore these defaults may not be changed.

• The clauses EXCLUDING GENERATED or INCLUDING GENERATED apply
to columns defined using the GENERATED ... AS (expr) and AUTOMATIC ...
AS (expr) syntax. When EXCLUDING is used or implied, the generated (or
automatic) column is converted to a simple base column with the same data
types.

• The clauses EXCLUDING IDENTITY or INCLUDING IDENTITY apply to
columns defined using the GENERATED ... AS IDENTITY and IDENTITY
(...) syntax. When EXCLUDING is used or implied, the identity column is
converted to a simple base column with the same data types.

• The clauses EXCLUDING COMPUTED or INCLUDING COMPUTED
apply to columns defined using the COMPUTED BY expr syntax. When
EXCLUDING is used or implied, the computed by column is converted to
a simple base column with the same data types. Note that the column will
require space in the defined table, which isn’t true for COMPUTED BY
columns.

• When the LIKE clause is used within the column-constraint-list, then
EXCLUDING DEFAULTS is assumed. Use the INCLUDING DEFAULTS
if you wish the inherited columns to have DEFAULTS inherited from the
source table.

• The LIKE clause is only used to inherit the column definitions from the
referenced table. Once the table is created with LIKE clauses, subsequent
changes to the source table are not propagated to the created tables.

Examples
The following example shows the use of the LIKE clause to inherit columns from
various template tables.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–5

SQL> create table NAMES_REC
cont> (LAST_NAME LAST_NAME_DOM
cont> ,FIRST_NAME FIRST_NAME_DOM
cont> ,MIDDLE_INITIAL MIDDLE_INITIAL_DOM
cont>);
SQL>
SQL> create table ADDRESS_REC
cont> (ADDRESS_DATA_1 ADDRESS_DATA_1_DOM
cont> ,ADDRESS_DATA_2 ADDRESS_DATA_2_DOM
cont> ,CITY CITY_DOM
cont> ,STATE STATE_DOM
cont> ,POSTAL_CODE POSTAL_CODE_DOM
cont>);
SQL>
SQL> create table employees
cont> (EMPLOYEE_ID ID_DOM not null
cont> ,like NAMES_REC including DEFAULTS
cont> ,like ADDRESS_REC including DEFAULTS
cont> ,SEX SEX_DOM
cont> ,BIRTHDAY DATE_DOM
cont> ,STATUS_CODE STATUS_CODE_DOM
cont>);
SQL>

The resulting CREATE TABLE for the EMPLOYEES table is easier to read and
allows for consistency among similar definitions.

SQL> show table (column) EMPLOYEES;
Information for table EMPLOYEES

Columns for table EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM
Not Null constraint EMPLOYEES_EMPLOYEE_ID_NOT_NULL
LAST_NAME CHAR(14) LAST_NAME_DOM
FIRST_NAME CHAR(10) FIRST_NAME_DOM
MIDDLE_INITIAL CHAR(1) MIDDLE_INITIAL_DOM
ADDRESS_DATA_1 CHAR(25) ADDRESS_DATA_1_DOM
ADDRESS_DATA_2 CHAR(20) ADDRESS_DATA_2_DOM
CITY CHAR(20) CITY_DOM
STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(5) POSTAL_CODE_DOM
SEX CHAR(1) SEX_DOM
BIRTHDAY DATE VMS DATE_DOM
STATUS_CODE CHAR(1) STATUS_CODE_DOM

SQL>

3.1.4 RMU RECLAIM /FREE_PAGES Qualifier Frees Unused Data Page Clumps
There is an additional /FREE_PAGES qualifier for the RMU Reclaim command.
This qualifier is used to free unused data page clumps that are allocated in
uniform storage areas. It will free all unused page clumps in an entire uniform
storage area or all unused page clumps in one or more specified table or index
logical areas in uniform storage areas. Any deleted dbkeys and locked space on
pages will also be freed.

Command Qualifiers
/[NO]FREE_PAGES

Nofree_pages is the default.

Other qualifiers may be used in conjunction with the Free_pages qualifier.

/AREA[=storage-area-name-list]

3–6 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

Area is used to specify a list of uniform storage area names to process. The wild
card syntax AREA=* can be specified for processing all uniform storage areas in
the database.

The default for the Area qualifier is all uniform storage areas in the database.

/LAREA=logical-area-name-list

Larea is used to specify a list of individual table or index logical area names to
process.

There is no default for the Larea qualifier. A list of logical area names must
be specified. The logical area name will be used to determine the storage area
where the logical area is located. If the logical area is partitioned among multiple
storage areas, each logical area partition will be processed.

This qualifier can only be specified if the Free_pages qualifier is specified.

/LOCK_TIMEOUT=seconds

Lock_timeout is used to specify a lock timeout value that will be in effect during
the execution of the RMU/RECLAIM/FREE_PAGES command.

Lock_timeout can only be specified if Free_pages is also specified. The value
specified with this qualifier is the maximum time in seconds during which
the current RMU/RECLAIM/FREE_PAGES command will wait to acquire an
exclusive update lock on the current storage area or logical area to be processed
when accessing an on-line database with other users.

If Lock_timeout is not specified, one of the following values will be used, in the
specified order of precedence.

1. The value of the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL, if
it has been specified.

2. The "LOCK TIMEOUT INTERVAL" specified by the SQL CREATE or ALTER
DATABASE command is used.

3. The RMU/RECLAIM/FREE_PAGES command will wait indefinitely to acquire
an exclusive update lock on the current storage area or logical area to be
processed.

If /LOCK_TIMEOUT=0 is specified, the RMU/RECLAIM/FREE_PAGES command
will ignore any lock timeout defaults that may be in effect and wait indefinitely
to acquire an exclusive update lock on the current storage area or logical area to
be processed.

Usage Notes

• The Free_pages command can be used when the database is active. Please
note that RMU will lock affected areas during processing, which may reduce
concurrency.

• Free_pages is not a default qualifier for the RMU Reclaim command. If
the Free_pages qualifier is not specified, the RMU Reclaim command will
implement the default functionality of freeing deleted dbkeys and locked
space in mixed and uniform database storage areas.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–7

• RMU Reclaim Free_Pages can be interrupted at any time; any work in
progress will be rolled back. Actions that are completed will have each been
committed: if processing a list of logical area names (/LAREA), a commit
is performed after each logical area and if processing a list of storage areas
(/AREA), a commit is performed after each storage area. Note that tables and
indices which are partitioned have multiple logical areas that share the same
name as the table or index.

• If Free_pages is specified without either the Larea or Area qualifier, all the
uniform storage areas in the database will be processed.

• The Area and Larea qualifiers cannot both be specified in the same RMU
Reclaim command.

• If a mixed storage area name is specified with the Area qualifier or the name
of a logical area in a mixed storage area is specified with the Larea qualifier,
a warning message will be output and a warning status will be returned by
the Reclaim command. That storage or logical area will not be processed but
the Reclaim command will continue processing the next storage or logical
area in the specified list of storage areas or logical areas.

• If a lock wait timeout occurs, a warning message will be output and a warning
status will be returned by the Reclaim command. That storage or logical area
will not be processed but the Reclaim command will continue processing the
next storage area or logical area in the specified list of storage or logical
areas.

• The RMU Reclaim Free_pages functionality replaces that provided by RMU
REPAIR /INITIALIZE=FREE_PAGES. The main advantage of Reclaim is that
it can be run on an active database.

Examples
Examples using /AREA

The following examples show the Free_pages qualifier with the Area qualifier to
free unused page clumps for one or more named storage areas.

$ RMU/RECLAIM/LOG/AREA=ABM_AREA1/FREE_PAGES ABM_SAMPLE.RDB
%RMU-I-RCLMAREA, Reclaiming area ABM_AREA1
%RMU-I-RCLMPAGPRC, 2138 pages processed for area ABM_AREA1
%RMU-I-RCLMPAGFREED, 1992 clump pages freed for area ABM_AREA1
$
$ RMU/RECLAIM/FREE_PAGES/AREA=(MFDBA2,MFDBA1)/LOG MFDB
%RMU-I-RCLMAREA, Reclaiming area MFDBA2
%RMU-I-RCLMPAGPRC, 13 pages processed for area MFDBA2
%RMU-I-RCLMPAGFREED, 4 clump pages freed for area MFDBA2
%RMU-I-RCLMAREA, Reclaiming area MFDBA1
%RMU-I-RCLMPAGPRC, 13 pages processed for area MFDBA1
%RMU-I-RCLMPAGFREED, 4 clump pages freed for area MFDBA1
$
$ RMU/RECLAIM/FREE_PAGES/AREA=*/LOG MFDB
%RMU-I-RCLMAREA, Reclaiming area DISK:[DIRECTORY]MFDB.RDA;1
%RMU-I-RCLMPAGPRC, 701 pages processed for area
DISK:[DIRECTORY]MFDB.RDA;1
%RMU-I-RCLMPAGFREED, 220 clump pages freed for area
DISK:[DIRECTORY]MFDB.RDA;1
%RMU-I-RCLMAREA, Reclaiming area DISK:[DIRECTORY]MFDBA1.RDA;1
%RMU-I-RCLMPAGPRC, 13 pages processed for area
DISK:[DIRECTORY]MFDBA1.RDA;1
%RMU-I-RCLMPAGFREED, 0 clump pages freed for area
DISK:[DIRECTORY]MFDBA1.RDA;1
%RMU-I-RCLMAREA, Reclaiming area DISK:[DIRECTORY]MFDBA2.RDA;1

3–8 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

%RMU-I-RCLMPAGPRC, 13 pages processed for area
DISK:[DIRECTORY]MFDBA2.RDA;1
%RMU-I-RCLMPAGFREED, 0 clump pages freed for area
DISK:[DIRECTORY]MFDBA2.RDA;1
%RMU-I-RCLMAREA, Reclaiming area DISK:[DIRECTORY]MFDBA3.RDA;1
%RMU-I-RCLMPAGPRC, 13 pages processed for area
DISK:[DIRECTORY]MFDBA3.RDA;1
%RMU-I-RCLMPAGFREED, 0 clump pages freed for area
DISK:[DIRECTORY]MFDBA3.RDA;1
$
$ RMU/RECLAIM/FREE_PAGES/AREA/LOG MFDB
%RMU-I-RCLMAREA, Reclaiming area DISK:[DIRECTORY]MFDB.RDA;1
%RMU-I-RCLMPAGPRC, 701 pages processed for area
DISK:[DIRECTORY]MFDB.RDA;1
%RMU-I-RCLMPAGFREED, 220 clump pages freed for area
DISK:[DIRECTORY]MFDB.RDA;1
%RMU-I-RCLMAREA, Reclaiming area DISK:[DIRECTORY]MFDBA1.RDA;1
%RMU-I-RCLMPAGPRC, 13 pages processed for area
DISK:[DIRECTORY]MFDBA1.RDA;1
%RMU-I-RCLMPAGFREED, 0 clump pages freed for area
DISK:[DIRECTORY]MFDBA1.RDA;1
%RMU-I-RCLMAREA, Reclaiming area DISK:[DIRECTORY]MFDBA2.RDA;1
%RMU-I-RCLMPAGPRC, 13 pages processed for area
DISK:[DIRECTORY]MFDBA2.RDA;1
%RMU-I-RCLMPAGFREED, 0 clump pages freed for area
DISK:[DIRECTORY]MFDBA2.RDA;1
%RMU-I-RCLMAREA, Reclaiming area DISK:[DIRECTORY]MFDBA3.RDA;1
%RMU-I-RCLMPAGPRC, 13 pages processed for area
DISK:[DIRECTORY]MFDBA3.RDA;1
%RMU-I-RCLMPAGFREED, 0 clump pages freed for area
DISK:[DIRECTORY]MFDBA3.RDA;1
$

Examples using /LAREA

The following examples show the Free_pages qualifier with the Larea qualifier to
free unused page clumps for one or more named table and index logical areas.

$ RMU/RECLAIM/LOG/LAREA=SAMPLE_TABLE/FREE_PAGES ABM_SAMPLE.RDB
%RMU-I-RCLMLAREA, Reclaiming logical area SAMPLE_TABLE in physical
area DISK:[DIRECTORY]ABM_AREA1.RDA;1
%RMU-I-RCLMLPAGPRC, 2008 pages processed for logical area SAMPLE_TABLE
in physical area DISK:[DIRECTORY]ABM_AREA1.RDA;1
%RMU-I-RCLMLPAGFREED, 1992 clump pages freed for logical area
SAMPLE_TABLE in physical area DISK:[DIRECTORY]ABM_AREA1.RDA;1
$
$ RMU/RECLAIM/LOG/LAREA=(SAMPLE_TABLE,SAMPLE_TABLE2)/FREE_PAGES
ABM_SAMPLE.RDB
%RMU-I-RCLMLAREA, Reclaiming logical area SAMPLE_TABLE in physical
area DISK:[DIRECTORY]ABM_AREA1.RDA;1
%RMU-I-RCLMLPAGPRC, 2008 pages processed for logical area SAMPLE_TABLE
in physical area DISK:[DIRECTORY]ABM_AREA1.RDA;1
%RMU-I-RCLMLPAGFREED, 1992 clump pages freed for logical area
SAMPLE_TABLE in physical area DISK:[DIRECTORY]ABM_AREA1.RDA;1
%RMU-I-RCLMLAREA, Reclaiming logical area SAMPLE_TABLE2 in physical
area DISK:[DIRECTORY]ABM_AREA2.RDA;1
%RMU-I-RCLMLPAGPRC, 2008 pages processed for logical area
SAMPLE_TABLE2 in physical area DISK:[DIRECTORY]ABM_AREA2.RDA;1
%RMU-I-RCLMLPAGFREED, 1992 clump pages freed for logical area
SAMPLE_TABLE2 in physical area DISK:[DIRECTORY]ABM_AREA2.RDA;1
$
$ RMU/RECLAIM/LOG/LAREA=NDX_NAME/FREE_PAGES TEST_DATABASE.RDB
%RMU-I-RCLMLAREA, Reclaiming logical area NDX_NAME in
physical area DISK:[DIRECTORY]DB_DEFAULT.RDA;1
%RMU-I-RCLMLPAGPRC, 12 pages processed for logical area
NDX_NAME in physical area DISK:[DIRECTORY]DB_DEFAULT.RDA;1

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–9

%RMU-I-RCLMLPAGFREED, 3 clump pages freed for logical area
NDX_NAME in physical area DISK:[DIRECTORY]DB_DEFAULT.RDA;1
$

Examples using /LAREA and partitioned index logical area

The following example shows the Free_pages qualifier specified in an RMU
Reclaim command with the Larea qualifier to free unused page clumps in an
index logical area partitioned among different storage areas. Each index logical
area partition is processed separately.

$ RMU/RECLAIM/FREE_PAGES/LOG/LAREA=INDEXA TEST_DATABASE.RDB
%RMU-I-RCLMLAREA, Reclaiming logical area INDEXA in physical area
DISK:[DIRECTORY]INDEXA_1.RDA;1
%RMU-I-RCLMLPAGPRC, 8 pages processed for logical area INDEXA in
physical area DISK:[DIRECTORY]INDEXA_1.RDA;1
%RMU-I-RCLMLPAGFREED, 3 clump pages freed for logical area INDEXA in
physical area DISK:[DIRECTORY]INDEXA_1.RDA;1
%RMU-I-RCLMLAREA, Reclaiming logical area INDEXA in physical area
DISK:[DIRECTORY]INDEXA_2.RDA;1
%RMU-I-RCLMLPAGPRC, 8 pages processed for logical area INDEXA in
physical area DISK:[DIRECTORY]INDEXA_2.RDA;1
%RMU-I-RCLMLPAGFREED, 3 clump pages freed for logical area INDEXA in
physical area DISK:[DIRECTORY]INDEXA_2.RDA;1
%RMU-I-RCLMLAREA, Reclaiming logical area INDEXA in physical area
DISK:[DIRECTORY]INDEXA_3.RDA;1
%RMU-I-RCLMLPAGPRC, 8 pages processed for logical area INDEXA in
physical area DISK:[DIRECTORY]INDEXA_3.RDA;1
%RMU-I-RCLMLPAGFREED, 3 clump pages freed for logical area INDEXA in
physical area DISK:[DIRECTORY]INDEXA_3.RDA;1
%RMU-I-RCLMLAREA, Reclaiming logical area INDEXA in physical area
DISK:[DIRECTORY]INDEXA_4.RDA;1
%RMU-I-RCLMLPAGPRC, 8 pages processed for logical area INDEXA in
physical area DISK:[DIRECTORY]INDEXA_4.RDA;1
%RMU-I-RCLMLPAGFREED, 3 clump pages freed for logical area INDEXA in
physical area DISK:[DIRECTORY]INDEXA_4.RDA;1
$

Examples showing warnings

In the following examples, warning messages are output even if /LOG is not
specified in the RMU/RECLAIM/FREE_PAGES commands if a mixed storage area
is specified or a logical area could not be processed because of a lock conflict with
another user. The optional Lock_timeout qualifier is specified.

$ RMU/RECLAIM/LOG/AREA=DEPARTMENTS/FREE_PAGES MF_PERSONNEL.RDB
%RMU-W-RCLMMIXIGN, Mixed area DEPARTMENTS not processed if
RMU/RECLAIM/FREE_PAGES
$
$ RMU/RECLAIM/NOLOG/AREA=ABM_AREA1/FREE_PAGES/LOCK_TIMEOUT=600 -
$_ ABM_SAMPLE.RDB
%RMU-W-RCLMARNOTPRC, Area ABM_AREA1 could not be processed due to a
lock conflict
$
$ RMU/RECLAIM/LOG/LAREA=SAMPLE_TABLE/FREE_PAGES/LOCK_TIMEOUT=1200 -
$_ ABM_SAMPLE.RDB
%RMU-I-RCLMLAREA, Reclaiming logical area SAMPLE_TABLE in physical
area DISK:[DIRECTORY]ABM_AREA1.RDA;1
%RMU-W-RCLMLARNOTPRC, Logical area SAMPLE_TABLE could not be processed
due to a lock conflict
%RMU-I-RCLMLPAGPRC, 0 pages processed for logical area SAMPLE_TABLE in
physical area DISK:[DIRECTORY]ABM_AREA1.RDA;1
%RMU-I-RCLMLPAGFREED, 0 clump pages freed for logical area
SAMPLE_TABLE in physical area DISK:[DIRECTORY]ABM_AREA1.RDA;1
$

3–10 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

3.1.5 CREATE DEFAULT AUDIT Supports CREATE OR REPLACE Syntax and
Semantics

This release of Oracle Rdb enhances the CREATE DEFAULT AUDIT statement
by allowing the OR REPLACE clause.

CREATE DEFAULT AUDIT
OR REPLACE ALIAS alias-name

FOR object-type
audit-attributes

Arguments

• OR REPLACE

If the OR REPLACE clause is used and the referenced object-type exists,
then it will be modified using the specified audit flags and comment. Any
attributes that are not specified will assume their default values.

Note

Any protections granted to the object by the GRANT statement are not
replaced. They would need to be removed using the REVOKE statement.

If the referenced object-type does not exist, then it will be created as if the OR
REPLACE clause was not used.

Example
This example shows the CREATE DEFAULT AUDIT statement adding a new
table object (which is always named RDB$DEFAULT_AUDIT_TABLE).

SQL> create default audit
cont> for table
cont> all privileges
cont> comment is ’Add a default audit table so we can inherit an ACL’
cont> ;
SQL>
SQL> grant select, delete, update, insert, show on rdb$default_audit_table to
testuser2;
SQL> grant select, dbctrl on rdb$default_audit_table to testuser3;
SQL> grant show on rdb$default_audit_table to public;
SQL>
SQL> --> display the attributes for the default table
SQL> --> note: that TESTUSER1 was the executor of the CREATE statement
SQL> show protection on table rdb$default_audit_table;
Protection on Table RDB$DEFAULT_AUDIT_TABLE

(IDENTIFIER=[TEST,TESTUSER3],ACCESS=SELECT+DBCTRL)
(IDENTIFIER=[TEST,TESTUSER2],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW)
(IDENTIFIER=[TEST,TESTUSER1],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+

CREATE+ALTER+DROP+DBCTRL+REFERENCES)
(IDENTIFIER=[*,*],ACCESS=SHOW)

SQL> show audit on table rdb$default_audit_table;
Audit information for Table RDB$DEFAULT_AUDIT_TABLE
Audit Privileges:

ALL
Alarm Privileges:

ALL

SQL> show table (comment) rdb$default_audit_table;
Information for table RDB$DEFAULT_AUDIT_TABLE

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–11

Comment on table RDB$DEFAULT_AUDIT_TABLE:
Add a default audit table so we can inherit an ACL

A global temporary table.
On commit Delete rows

SQL>

At some later time, the table template object can be created or replaced using the
CREATE OR REPLACE DEFAULT AUDIT statement.

SQL> create or replace default audit
cont> for table
cont> type is (audit)
cont> privileges (success, failure)
cont> comment is ’Only audit SUCCESS and FAILURE’
cont> ;
SQL>
SQL> --> show that the protections are retained by OR REPLACE
SQL> show protection on table rdb$default_audit_table;
Protection on Table RDB$DEFAULT_AUDIT_TABLE

(IDENTIFIER=[TEST,TESTUSER3],ACCESS=SELECT+DBCTRL)
(IDENTIFIER=[TEST,TESTUSER2],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW)
(IDENTIFIER=[TEST,TESTUSER1],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW

+CREATE+ALTER+DROP+DBCTRL+REFERENCES)
(IDENTIFIER=[*,*],ACCESS=SHOW)

SQL> show audit on table rdb$default_audit_table;
Audit information for Table RDB$DEFAULT_AUDIT_TABLE
Audit Privileges:

SUCCESS,FAILURE

SQL> show table (comment) rdb$default_audit_table;
Information for table RDB$DEFAULT_AUDIT_TABLE

Comment on table RDB$DEFAULT_AUDIT_TABLE:
Only audit SUCCESS and FAILURE

A global temporary table.
On commit Delete rows

SQL>
SQL> commit;
SQL>

3.1.6 System Privileges Feature
This release of Oracle Rdb introduces Database System Privileges - an
enhancement for database security.

Introduction
A typical Oracle Rdb database will have a security policy defined by granting
privileges to users of the database and, when objects are created (tables,
sequences, and so on), granting access to those objects. In addition, roles (also
known as rights identifiers) may be granted specific access and any user assigned
that role may inherit its access rights.

These granted privileges are stored in an access control list (ACL) with an entry
for a user or role known as an access control entry (ACE).

Please refer to the SQL Reference Manual GRANT statement and REVOKE
statement sections for more detailed descriptions and examples.

3–12 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

Security Definitions
All objects are within the DATABASE security domain.

The primary security objects are: ASSERTION (an assertion is a form of
constraint defined independently of a table definition. This feature is currently
not available in SQL but maps to the standalone RDO constraints), CATALOG,
COLLATING SEQUENCE, DOMAIN, OUTLINE, PROCEDURE, PROFILE,
TABLE, ROLE, SCHEMA, SEQUENCE, SYNONYM, and USER.

For the purposes of system privileges, Oracle Rdb treats modules, functions and
procedures as a single class - namely PROCEDURE.

Some primary security objects have an associated ACL that protects that object
and controls access to sub-objects. TABLE includes the following sub-objects:
VIEW, STORAGE MAP, and TRIGGER.

When TABLE, SEQUENCE, and PROCEDURE objects are created, they are
implicitly given an ACL that grants ALL PRIVILEGES to the creator and NO
PRIVILEGES to the PUBLIC (also known as [*,*]). The database administrator
can override this default ACL for new primary objects:

1. For tables and views, the PUBLIC access control entry will be inherited
from the database access control entry for the DEFAULT user. Note: not
all OpenVMS systems have a DEFAULT user defined in the system user
authorization file (UAF) so that would be created by the system manager if
required.

SQL> grant show
cont> on database alias paysys
cont> to default
cont> ;
SQL>

.

.

.
SQL> create table paysys.CONTROL_TABLE
cont> (identifier_value integer generated by default as identity
cont>);
SQL>
SQL> show protection on table paysys.CONTROL_TABLE;
Protection on Table PAYSYS.CONTROL_TABLE

(IDENTIFIER=[ADMIN,DATABASE],ACCESS=SELECT+INSERT+UPDATE+DELETE+
SHOW+CREATE+ALTER+DROP+DBCTRL+REFERENCES)

(IDENTIFIER=[*,*],ACCESS=SHOW)
SQL>

2. Alternately, the CREATE DEFAULT AUDIT statement can be used to define
template security objects in the database. These special objects are used for
audit and protection inheritance. When an object (table, sequence, etc) is
created, then the access control list from the security template is inherited.
Note that choice (1) above will also be applied to the TABLE and VIEW
default audit templates.

This example shows the default audit object creation and then being granted
a default access for PUBLIC and specific access for users and roles.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–13

SQL> create default audit
cont> alias PAYSYS
cont> for table
cont> ;
SQL>
SQL> grant select
cont> on table PAYSYS.rdb$default_audit_table
cont> to m_smith, b_lee, s_jain
cont> ;
SQL>
SQL> grant select, insert, delete, update
cont> on table PAYSYS.rdb$default_audit_table
cont> to paysys_admin
cont> ;
SQL>
SQL> grant show
cont> on table PAYSYS.rdb$default_audit_table
cont> to PUBLIC
cont> ;
SQL>

.

.

.
SQL> create table paysys.CONTROL_TABLE
cont> (identifier_value integer generated by default as identity
cont>);
SQL>
SQL> show protection on table paysys.CONTROL_TABLE;
Protection on Table PAYSYS.CONTROL_TABLE

(IDENTIFIER=PAYSYS_ADMIN,ACCESS=SELECT+INSERT+UPDATE+DELETE)
(IDENTIFIER=[RDB,S_JAIN],ACCESS=SELECT)
(IDENTIFIER=[DEV,B_LEE],ACCESS=SELECT)
(IDENTIFIER=[AUDITOR,M_SMITH],ACCESS=SELECT)
(IDENTIFIER=[ADMIN,DATABASE],ACCESS=SELECT+INSERT+UPDATE+DELETE+
SHOW+CREATE+ALTER+DROP+DBCTRL+REFERENCES)
(IDENTIFIER=[*,*],ACCESS=SHOW)

SQL>

Database Vault Feature
The security policy implemented through ACLs can be overridden at runtime
by a suitably privileged OpenVMS user. That is, an OpenVMS power user
might be able to attach and select data from a table even if they do not have
database or table access granted by an access control entry. This override ability
can be limited on a per database level by enabling the DATABASE VAULT
attribute using ALTER DATABASE ... DATABASE VAULT IS ENABLED.
When DATABASE VAULT is enabled, only the access control lists and database
system privileges are used to determine access to database objects. This can
prevent accidental override of the security policy. See the SQL Reference Manual
DATABASE VAULT Appendix for further details.

Syntax

GRANT ALL PRIVILEGES TO
<system-privilege>

,

<username>
<role-name>
PUBLIC

,

3–14 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

REVOKE ALL PRIVILEGES FROM
<system-privilege>

,

<username>
<role-name>
PUBLIC

,

Arguments

• ALL PRIVILEGES

All privileges will be granted (or revoked) from the listed users and roles.

• system-privilege

Refer to Table 3–1, System Privileges for a list of supported system privileges.

• TO username
TO role-name
TO PUBLIC

Specifies the user name, role name, or the PUBLIC user to which you want
to grant the system privilege. The PUBLIC user is the user name associated
with all anonymous users who access the database.

Note

Oracle recommends that you only grant system privileges to trusted users.
If system privileges are granted to roles then only assign those roles to
trusted users.

If the database is defined as SECURITY CHECK IS INTERNAL and the
user or role name exists as an operating system user or rights identifier,
Oracle Rdb will automatically create the user or role name when you issue
the GRANT statement.

• FROM username
FROM role-name
FROM PUBLIC

Specifies the user, role, or the PUBLIC user from which the specified role is
to be revoked.

Database System Privileges
System privileges are associated with specific users (CREATE USER) and
roles (CREATE ROLE) within the database. They are assigned by a user with
SECURITY privilege on the database by the GRANT statement and removed by
the REVOKE statement.

For example,

SQL> create user J_JONES identified externally;
SQL> create role DB_PROGRAMMER identified externally;
SQL>
SQL> grant create any sequence, create any procedure,
cont> create any temporary table to DB_PROGRAMMER;
SQL> grant create any trigger, create any index to J_JONES;

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–15

In this example, the database uses the default SECURITY CHECKING IS
EXTERNAL therefore the granting of the rights identifier DB_PROGRAMMER
must be performed by OpenVMS. Use the AUTHORIZE utility to grant the rights
identifier to specific users.

$ run sys$system:authorize
UAF> GRANT/ID DB_PROGRAMMER J_JONES
UAF>

When J_JONES attaches to the database, they will receive the benefits of their
own granted system privileges (if any) as well as those granted to the assigned
role (DB_PROGRAMMER). This is true even for DATABASE VAULT protected
databases.

If a database is defined as SECURITY CHECKING IS INTERNAL, then the
GRANT statement is used to associate roles created by CREATE ROLE with
specific users.

SQL> grant DB_PROGRAMMER to J_JONES;
SQL>

Refer to the SQL Reference Manual GRANT Statement: Roles section for more
details and examples.

Implied System Privileges
In prior releases of Oracle Rdb, there were implied system privileges based on
the database level CREATE, ALTER, DROP and SECURITY privileges that may
have been granted to the user via the database ACL.

CREATE implies the permission to CREATE ANY object (except PROFILE,
ROLE, and USER), and ALTER implies the permission to ALTER any object
(except PROFILE, ROLE, and USER), DROP implies the permission to DROP
ANY object (except PROFILE, ROLE, and USER), and SECURITY implies the
permission to CREATE, ALTER, and DROP ANY PROFILE, ROLE or USER.

These implied system privileges can be displayed when attaching to a database
and performing a SHOW PRIVILEGE ON DATABASE command. The implied
system privileges (if any) are displayed. This is similar to the access privileges
shown by this command. They reflect the ACL on the database as well as
inherited access based on special privileges such as DBADM and OpenVMS
privileges.

SQL> show privileges on database rdb$dbhandle;
Privileges on Alias RDB$DBHANDLE

(IDENTIFIER=[RDB,RDBUSER2],ACCESS=SELECT+CREATE+ALTER+DROP)

Current system privileges:
Granted Create Any
COLLATING SEQUENCE, DOMAIN, ASSERTION, SESSION, OUTLINE, PROCEDURE,
TABLE, SEQUENCE, VIEW
Granted Alter Any
COLLATING SEQUENCE, DOMAIN, ASSERTION, DATABASE, OUTLINE
Granted Drop Any
COLLATING SEQUENCE, DOMAIN, ASSERTION, DATABASE, OUTLINE

SQL>

Note that ALTER and DROP for primary database objects are not implicitly
inherited from the database ALTER and DROP database privileges. This is
because these operations are controlled by the object’s own access control list.

3–16 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

Fine Tuning
Although system privileges are now available in Oracle Rdb, the database
administrator is not required to use them. The database will operate as it did in
previous releases.

Making use of this enhanced privilege system requires that the database
administrator perform these tasks.

• Use CREATE USER for each database user to which system privileges need
to be granted.

• Use CREATE ROLE for any rights identifiers used to fine tune access.

Not all users and roles that access the database need to be created in the
database as Rdb will still use them as in prior releases to select matching access
control entries. However, users and roles must be created to allow the database
administrator to grant system privileges as these objects are used to store the
current privilege set.

• Use the GRANT statement to manage the CREATE ANY, ALTER ANY, DROP
ANY, and TRUNCATE ANY privileges and assign them to users and roles.

• Use REVOKE on the DATABASE ALIAS to remove the CREATE, ALTER,
DROP or SECURITY privileges that were previously granted to those uses.
This step is required so that those database level privileges do not interfere
with the fine control of system privileges.

This change will limit those users according to the new security policy. The
SHOW USER and SHOW ROLE statements will display all the granted system
privileges. The SHOW PRIVILEGES ON DATABASE will show the augmented
system privileges based on:

• Database ACL entries,

• Granted system privileges for the attaching user,

• Granted system privileges for all rights (roles) assigned to the user,

• OpenVMS privileges (when DATABASE VAULT is enabled there will be none
used)

All access control is established at ATTACH time so changes made to the USER,
ROLE or DATABASE access will not have an effect until the next database
ATTACH.

Note

Oracle recommends that you only grant system privileges to trusted users.
If system privileges are granted to roles then only assign those roles to
trusted users.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–17

Table 3–1 System Privileges

Operation Type Object Type Description

ALL
PRIVILEGES

Can be used to GRANT or REVOKE all system
privileges to a USER or ROLE.

ALTER ANY ...

ASSERTION Permits the holder to execute the RDO CHANGE
CONSTRAINT command and the SQL ALTER
CONSTRAINT and COMMENT ON CONSTRAINT
statements.

CATALOG Permits the holder to execute the ALTER
CATALOG statement. The database must have
multischema enabled; ALTER DATABASE ...
MULTISCHEMA IS ON;

COLLATING
SEQUENCE

Permits the holder to execute the ALTER
COLLATING SEQUENCE statement.

DOMAIN Permits the holder to execute the ALTER DOMAIN
statement.

DATABASE Permits the holder to execute the ALTER
DATABASE and COMMENT ON DATABASE
statements.

INDEX Permits the holder to execute the ALTER INDEX
statement.

OUTLINE Permits the holder to execute the ALTER OUTLINE
statement.

PROCEDURE Permits the holder to execute the ALTER
FUNCTION, ALTER MODULE and ALTER
PROCEDURE statements.

PROFILE Permits the holder to execute the ALTER PROFILE
and ALTER DEFAULT PROFILE statements.
When the profile exists, the holder can also
execute the CREATE OR REPLACE PROFILE
and CREATE OR REPLACE DEFAULT PROFILE
statements.

ROLE Permits the holder to execute the ALTER ROLE
statement.

SEQUENCE Permits the holder to execute the ALTER
SEQUENCE statement. When the sequence
exists, the holder can also execute the CREATE
OR REPLACE SEQUENCE statement.

SCHEMA Permits the holder to execute the ALTER SCHEMA
statement. The database must have multischema
enabled: ALTER DATABASE ... MULTISCHEMA
IS ON;

STORAGE MAP Permits the holder to execute the ALTER
STORAGE MAP statement.

(continued on next page)

3–18 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

Table 3–1 (Cont.) System Privileges

Operation Type Object Type Description

SYNONYM Permits the holder to execute the ALTER
SYNONYM statement. When the synonym exists,
the holder can also execute the CREATE OR
REPLACE SYNONYM statements. The database
must have synonyms enabled: ALTER DATABASE
... SYNONYMS ARE ENABLED;

TABLE Permits the holder to execute the ALTER TABLE
statement.

TEMPORARY
TABLE

Permits the holder to execute the ALTER
TEMPORARY TABLE statement or CREATE
INFORMATION TABLE statement when CREATE
ANY TABLE privilege is not granted.

TRIGGER Permits the holder to execute the ALTER TRIGGER
statement.

USER Permits the holder to execute the ALTER USER
statement.

VIEW Permits the holder to execute the ALTER VIEW
statement. When the view exists, the holder can
also execute the CREATE OR REPLACE VIEW
statement.

CREATE ...

SESSION Permits the holder to execute ATTACH,
CONNECT, DECLARE ALIAS, SET SESSION
AUTHORIZATION, and other session starting
statements.

CREATE ANY ...

ASSERTION Permits the holder to execute the RDO DEFINE
CONSTRAINT command. The SQL equivalent to
DEFINE CONSTRAINT would be a table level
constraint. Such definitions are managed by
TABLE privileges, therefore this privilege does
not apply to SQL.

CATALOG Permits the holder to execute the CREATE
CATALOG statement. The database must have
multischema enabled: ALTER DATABASE ...
MULTISCHEMA IS ON;

COLLATING
SEQUENCE

Permits the holder to execute the CREATE
COLLATING SEQUENCE statement.

DOMAIN Permits the holder to execute the CREATE
DOMAIN statement.

INDEX Permits the holder to execute the CREATE INDEX
statement.

OUTLINE Permits the holder to execute the CREATE
OUTLINE statement.

(continued on next page)

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–19

Table 3–1 (Cont.) System Privileges

Operation Type Object Type Description

PROCEDURE Permits the holder to execute the CREATE
FUNCTION, CREATE MODULE and CREATE
PROCEDURE statements.

PROFILE Permits the holder to execute the CREATE
PROFILE and CREATE DEFAULT PROFILE
statements.

ROLE Permits the holder to execute the CREATE ROLE
statement.

SEQUENCE Permits the holder to execute the CREATE
SEQUENCE statement.

SCHEMA Permits the holder to execute the CREATE
SCHEMA statement. The database must have
multischema enabled: ALTER DATABASE ...
MULTISCHEMA IS ON;

STORAGE MAP Permits the holder to execute the CREATE
STORAGE MAP statement.

SYNONYM Permits the holder to execute the CREATE
SYNONYM statement. The database must
have synonyms enabled: ALTER DATABASE ...
SYNONYMS ARE ENABLED;

TABLE Permits the holder to execute the CREATE TABLE
statement.

TEMPORARY
TABLE

Permits the holder to execute the CREATE
TEMPORARY TABLE and CREATE
INFORMATION TABLE statements when CREATE
ANY TABLE privilege is not granted.

TRIGGER Permits the holder to execute the CREATE
TRIGGER statement.

USER Permits the holder to execute the CREATE USER
statement.

VIEW Permits the holder to execute the CREATE VIEW
statement.

DROP ANY ...

ASSERTION Permits the holder to execute the RDO DELETE
CONSTRAINT command or the SQL DROP
CONSTRAINT statement.

CATALOG Permits the holder to execute the DROP CATALOG
statement. The database must have multischema
enabled: ALTER DATABASE ... MULTISCHEMA
IS ON;

COLLATING
SEQUENCE

Permits the holder to execute the DROP
COLLATING SEQUENCE statement.

DOMAIN Permits the holder to execute the DROP DOMAIN
statement.

DATABASE Permits the holder to execute the DROP
DATABASE statement.

(continued on next page)

3–20 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

Table 3–1 (Cont.) System Privileges

Operation Type Object Type Description

INDEX Permits the holder to execute the DROP INDEX
statement.

OUTLINE Permits the holder to execute the DROP OUTLINE
statement.

PROCEDURE Permits the holder to execute the DROP
FUNCTION, DROP MODULE and DROP
PROCEDURE statements.

PROFILE Permits the holder to execute the DROP PROFILE
and DROP DEFAULT PROFILE statements.

ROLE Permits the holder to execute the DROP ROLE
statement.

SEQUENCE Permits the holder to execute the DROP
SEQUENCE statement.

SCHEMA Permits the holder to execute the DROP SCHEMA
statement. The database must have multischema
enabled: ALTER DATABASE ... MULTISCHEMA
IS ON;

STORAGE MAP Permits the holder to execute the DROP STORAGE
MAP statement.

SYNONYM Permits the holder to execute the DROP SYNONYM
statement. The database must have synonyms
enabled: ALTER DATABASE ... SYNONYMS ARE
ENABLED;

TABLE Permits the holder to execute the DROP TABLE
statement.

TEMPORARY
TABLE

Permits the holder to execute the DROP
TEMPORARY TABLE statement or DROP
INFORMATION TABLE statement when DROP
ANY TABLE privilege is not granted.

TRIGGER Permits the holder to execute the DROP TRIGGER
statement.

USER Permits the holder to execute the DROP USER
statement.

VIEW Permits the holder to execute the DROP VIEW
statement.

TRUNCATE ...

ANY TABLE Permits the holder to execute the TRUNCATE
TABLE statement. This privilege effectively allows
the user to temporarily disable triggers during the
TRUNCATE operation and assume DELETE access
to the table.

TABLE This privilege is similar to the TRUNCATE ANY
TABLE privilege but requires that the user also be
granted DELETE access to the table. Permits the
user to execute the TRUNCATE TABLE statement
without further privilege checking for BEFORE and
AFTER DELETE triggers.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–21

Usage Notes

You must have the SECURITY privilege on the database to grant a system
privilege to a user or a role.

You must have the SECURITY privilege on the database to revoke a system
privilege from a user or a role.

The TEMPORARY TABLE class of privileges is considered a subset of TABLE
and allows the database administrator to grant privileges to a user but only
for logical tables not physical (base) tables.

If the user has CREATE ANY TABLE, then the CREATE ANY TEMPORARY
TABLE privilege is not required. Similarly, ALTER ANY TEMPORARY
TABLE and DROP ANY TEMPORARY TABLE are not used if ALTER ANY
TABLE or DROP ANY TABLE is granted.

The SHOW PRIVILEGES ON DATABASE statement displays the current
active system privileges. This is based on the current user system privileges,
system privileges inherited from granted roles, inherited privileges from the
database access control list and OpenVMS process privileges.

It does not display any privileges for features which are not enabled for
the database. CATALOG and SCHEMA privileges will not be displayed if
MULTISCHEMA is not enabled. SYNONYM privileges will not be displayed
if SYNONYMS are not enabled. However, the SHOW USER and SHOW
ROLE statements will display all granted privileges even if that privilege has
no application in the current database configuration.

3.1.7 Database Vault Feature
This release of Oracle Rdb introduces the DATABASE VAULT functionality.

The goal of DATABASE VAULT is to avoid accidental database access by an
OpenVMS privileged user when the database security policy (ACL) should
prevent such access.

This feature allows the database administrator to enforce an access policy for all
attached database users by disabling the use of OpenVMS privileges as overrides
to the database access control list.

DATABASE VAULT can be enabled by any of these commands.

• The SQL CREATE DATABASE ... DATABASE VAULT IS ENABLED
statement.

• The SQL ALTER DATABASE ... DATABASE VAULT IS ENABLED
statement.

• The SQL IMPORT DATABASE ... DATABASE VAULT IS ENABLED
statement.

Note

If a database with DATABASE VAULT enabled is exported, then an
IMPORT DATABASE will implicitly execute the DATABASE VAULT IS
ENABLED action without that clause being required on the statement.

• RMU/SET DATABASE/DATABASE_VAULT=ENABLED command

3–22 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

DATABASE VAULT can be disabled by any of these commands.

• The SQL ALTER DATABASE ... DATABASE VAULT IS DISABLED
statement.

• The SQL IMPORT DATABASE ... DATABASE VAULT IS DISABLED
statement.

• RMU/SET DATABASE/DATABASE_VAULT=DISABLED command

Before executing any of these commands, the user must be granted (at least
temporarily) the rights identifier RDBVMS$DATABASE_VAULT_MANAGER that
is added to the system during installation.

For example, the SET RIGHTS_LIST DCL command can be used to temporarily
enable it.

$ SET RIGHTS_LIST /ENABLE RDBVMS$DATABASE_VAULT_MANAGER
$
$ rmu/set database mf_personnel/database_vault=enable
%RMU-I-MODIFIED, Database state modified
%RMU-W-DOFULLBCK, full database backup should be done to ensure future
recovery
$
$ SET RIGHTS_LIST /DISABLE RDBVMS$DATABASE_VAULT_MANAGER

Please refer to the Oracle Rdb SQL Reference Manual, Appendix J for more
details. This includes a description of the new DBVAULT audit class that can be
used to audit changes to the DATABASE VAULT settings of a database.

3.1.8 SET FLAGS Keyword for Hash Join Feature - HASHING
This release of Oracle Rdb has added a flag to control the HASH JOIN feature
of the Rdb optimizer. The HASHING flag can be used with the SET FLAGS
statement or the RDMS$SET_FLAGS logical name to enable this feature. When
enabled, the optimizer will attempt to engage the HASH JOIN feature during
query solution. The default is NOHASHING(JOINS).

The following example shows the HASHING flag in use.

SQL> set flags ’strategy,detail(2)’;
SQL> set flags ’hashing(joins)’;
SQL>
SQL> select e.employee_id, e.birthday, jh.job_start
cont> from employees e, job_history jh
cont> where e.employee_id = jh.employee_id
cont> and jh.job_end is null
cont> ;
Tables:
0 = EMPLOYEES
1 = JOB_HISTORY

Conjunct: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
Hash Q1
Outer Build
Match_Key:0.EMPLOYEE_ID
Get Retrieval by index of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

Inner Probe
Match_Key:1.EMPLOYEE_ID
Conjunct: MISSING (1.JOB_END)
Get Retrieval by index of relation 1:JOB_HISTORY
Index name JH_EMPLOYEE_ID [0:0]

Table=0:EMPLOYEES #Buckets=131 #Hits=61 #Collisions=39 #Dups=0 #Dups_Chain=0
Load_Factor= 4.656488549618321E-001
E.EMPLOYEE_ID E.BIRTHDAY JH.JOB_START

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–23

00164 28-Mar-1947 21-Sep-1981
00165 15-May-1954 8-Mar-1981
.
.
.
100 rows selected
SQL>

To disable the flag, use ’NOHASHING(JOINS)’. The setting is displayed by the
SHOW FLAGS statement.

See also the new logical name RDMS$ENABLE_HASH_JOIN. Defining this
logical name to true ("T", "t", "Y", "y" or "1") instructs the Rdb optimizer to try to
use in-memory HASH JOIN to solve queries.

3.1.9 JOIN BY HASH Clause in CREATE OUTLINE Statement
This release of Oracle Rdb adds a new JOIN BY HASH clause to the CREATE
OUTLINE statement and the OPTIMIZE OUTLINE clause of the select
statement.

The following example shows the new syntax and the resulting query strategy.

SQL> create outline QO_1
cont> id ’352E2736F133A6A322A3C935DB2CBE12’
cont> mode 0
cont> as (
cont> query (
cont> subquery (
cont> EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
cont> join by hash to
cont> SALARY_HISTORY 1 access path index SH_EMPLOYEE_ID
cont>)
cont>)
cont>)
cont> compliance optional;
SQL>
SQL> set flags ’strategy,detail(2)’;
SQL>
SQL> select
cont> e.employee_id, sh.salary_start, sh.salary_amount
cont> from
cont> employees e
cont> inner join
cont> salary_history sh on (e.employee_id = sh.employee_id
cont> and sh.salary_end is null)
cont> optimize using QO_1
cont> ;
~S: Outline "QO_1" used
Tables:
0 = EMPLOYEES
1 = SALARY_HISTORY

Conjunct: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
Hash Q1
Outer Build
Match_Key:0.EMPLOYEE_ID
Index only retrieval of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:0]

Inner Probe
Match_Key:1.EMPLOYEE_ID
Conjunct: MISSING (1.SALARY_END)
Get Retrieval by index of relation 1:SALARY_HISTORY
Index name SH_EMPLOYEE_ID [0:0]

Table=0:EMPLOYEES #Buckets=131 #Hits=61 #Collisions=39 #Dups=0 #Dups_Chain=0
Load_Factor= 4.656488549618321E-001

3–24 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

E.EMPLOYEE_ID SH.SALARY_START SH.SALARY_AMOUNT
00164 14-Jan-1983 $51,712.00
00165 1-Jul-1982 $11,676.00
.
.
.

Note

This syntax, JOIN BY HASH, cannot be applied remotely to an older
version of Oracle Rdb. An error such as this will be returned.

SQL> create outline QO_1
cont> id ’352E2736F133A6A322A3C935DB2CBE12’
cont> mode 0
cont> as (
cont> query (
cont> subquery (
cont> EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
cont> join by hash to
cont> SALARY_HISTORY 1 access path index SH_EMPLOYEE_ID
cont>)
cont>)
cont>)
cont> compliance optional;
%SQL-F-UNSUPVER, Operation is unsupported for version of database
-SQL-F-UNSUPFEATURE, feature JOIN BY HASH is not supported

3.1.10 Hash Join Feature
Status: BETA

This release of Oracle Rdb includes a new optimization method known as Hash
Join. A Hash Join is performed by hashing (mapping) one set of data into virtual
memory based on the join columns and reading the other table to probe into the
hash table to locate matching rows.

Typically, a Hash Join has a lower cost compared to the alternate of sorting when
the hash table can be held entirely in memory, with the total cost amounting to
very little other than the cost of reading the data sets. The cost rises if the hash
table has to be spilled over to a temporary file.

Hash Join is only used for equi-joins. In general, Hash Join is a better solution
for joining large numbers of rows in an equi-join.

Applications that in the past used Match Join might (unknowingly) rely on the
implicit use of SORT during the query solution. However, as no implicit SORT is
performed, the data might appear in a different order with Hash Join. Adding an
ORDER BY will sort the result data but no longer sort the inputs to the join.

Note

Not all queries will be solved using HASH JOIN if this optional feature is
enabled. Use the SET FLAGS ’STRATEGY,DETAIL(3)’ to see a report of the
current restrictions which cause the HASH JOIN method to be rejected.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–25

Enabling HASH JOIN
The optimizer, by default, does not try the HASH JOIN method in solutions. This
action must be enabled by the programmer in one of the following ways. The
optimizer will then include HASH JOIN as part of its solution matching, but it
may be rejected for various reasons.

• Define the logical name RDMS$ENABLE_HASH_JOIN.

Defining this logical name to true ("T", "t", "Y", "y" or "1") instructs the Rdb
optimizer to try to use in-memory HASH JOIN to solve queries.

• Defining the logical name RDMS$SET_FLAGS or using the SET FLAGS
statement with the string ’HASHING(JOINS)’. See Section 3.1.8 for more
details.

• The new JOIN BY HASH clause in CREATE OUTLINE statement and the
OPTIMIZE OUTLINE clause of the select statement. See Section 3.1.9 for
more details.

• Specifying the OPTIMIZE FOR HASH JOIN on the select statement.

SQL> select e.employee_id, (sh.salary_end - sh.salary_start) month (3)
cont> from employees e, salary_history sh
cont> where e.employee_id = sh.employee_id
cont> and e.employee_id <= ’00164’
cont> and sh.salary_end is not null
cont> optimize for hash join
cont> ;
.
.
.

Example
This example shows the strategy used by the optimizer when HASH JOIN is
enabled.

SQL> set flags ’STRATEGY,DETAIL(2)’;
SQL> set flags ’HASHING(JOINS)’;
SQL>
SQL> select e.employee_id, (sh.salary_end - sh.salary_start) month (3)
cont> from employees e, salary_history sh
cont> where e.employee_id = sh.employee_id
cont> and e.employee_id <= ’00164’
cont> and sh.salary_end is not null
cont> ;
Tables:
0 = EMPLOYEES
1 = SALARY_HISTORY

Conjunct: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
Hash Q1
Outer Build
Match_Key:0.EMPLOYEE_ID
Index only retrieval of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:1]
Keys: 0.EMPLOYEE_ID <= ’00164’

Inner Probe
Match_Key:1.EMPLOYEE_ID
Conjunct: NOT MISSING (1.SALARY_END)
Conjunct: 1.EMPLOYEE_ID <= ’00164’
Get Retrieval by index of relation 1:SALARY_HISTORY
Index name SH_EMPLOYEE_ID [0:1]
Keys: 1.EMPLOYEE_ID <= ’00164’

Table=0:EMPLOYEES #Buckets=47 #Hits=1 #Collisions=0 #Dups=0 #Dups_Chain=0

3–26 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

Load_Factor= 2.127659574468085E-002
E.EMPLOYEE_ID
00164 008
00164 006
00164 016
3 rows selected
SQL>

Now try the same query with NOHASHING.

SQL> set flags ’NOHASHING(JOINS)’;
SQL>
SQL> select e.employee_id, (sh.salary_end - sh.salary_start) month (3)
cont> from employees e, salary_history sh
cont> where e.employee_id = sh.employee_id
cont> and e.employee_id <= ’00164’
cont> and sh.salary_end is not null
cont> ;
Tables:
0 = EMPLOYEES
1 = SALARY_HISTORY

Conjunct: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
Match Q1
Outer loop (zig-zag)
Match_Key:0.EMPLOYEE_ID
Index_Key:EMPLOYEE_ID
Index only retrieval of relation 0:EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:1]
Keys: 0.EMPLOYEE_ID <= ’00164’

Inner loop (zig-zag)
Match_Key:1.EMPLOYEE_ID
Index_Key:EMPLOYEE_ID
Conjunct: NOT MISSING (1.SALARY_END)
Conjunct: 1.EMPLOYEE_ID <= ’00164’
Get Retrieval by index of relation 1:SALARY_HISTORY
Index name SH_EMPLOYEE_ID [0:1]
Keys: 1.EMPLOYEE_ID <= ’00164’

E.EMPLOYEE_ID
00164 008
00164 006
00164 016
3 rows selected
SQL>

3.1.11 ALTER DATABASE ... LOAD ACL IDENTIFIERS Clause
In this release of Oracle Rdb, the database administrator can automatically
and simply create users and roles in the database. This clause, LOAD ACL
IDENTIFIERS, is part of the ALTER DATABASE statement and can be run as
often as necessary to add new users and roles derived from the existing access
control lists (ACLs) granted to the database and database objects.

The following example shows this clause on a sample database:

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–27

SQL> attach ’filename WAREHOUSE’;
SQL>
SQL> show roles;
Roles in database with filename WAREHOUSE
No roles found
SQL> show users;
Users in database with filename WAREHOUSE
No users found
SQL>
SQL> disconnect all;
SQL>
SQL> alter database
cont> filename WAREHOUSE
cont>
cont> load acl identifiers
cont> ;
SQL>
SQL> attach ’filename WAREHOUSE’;
SQL>
SQL> show roles;
Roles in database with filename WAREHOUSE

CDD$EXTENDER
CDD$SYSTEM
STORES_CUST_READABLE
STORES_EXTRACT_TEXT
STORES_MAIL_TEXT
STORES_PRINT_TEXT
STORES_USER

SQL> show users;
Users in database with filename WAREHOUSE

FLEE
ISMITH
JJONES
KSTJOHN
WH_QUERY_1
WH_QUERY_2
WH_QUERY_3
WH_QUERY_4
WH_QUERY_5

SQL>
SQL> disconnect all;
SQL>

When the database administrator uses the GRANT statement to give access to
users and OpenVMS rights identifiers (aka roles), they are recorded in the access
control lists for each object; database, table, view, column, sequence, module, and
routine. This clause of the ALTER DATABASE statement reads every ACL in the
database and creates USER and ROLE definitions if necessary.

Note

Some access control entries (ACEs) may use OpenVMS group identifiers
(PUBLIC, [*,*], [ADMIN,*], [*], etc), or special modifier rights identifiers
(BATCH, DIALUP, INTERACTIVE, LOCAL, NETWORK, REMOTE)
which are not valid users and roles - these will be ignored by the LOAD
ACL IDENTIFIERS clause.

In addition to the DBADM privilege required to use ALTER DATABASE, this
clause also requires SECURITY on the database. Alternately, the user must be
granted the ALTER ANY DATABASE, CREATE ANY USER and CREATE ANY
ROLE database system privilege.

3–28 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

3.1.12 ALTER TABLE Actions for READ ONLY Table
This release of Oracle Rdb adds the ability to change a table to READ ONLY
access. Once committed, no other application or interactive SQL session may
modify rows in the table. You can issue database definition statements (DDL)
as long as they do not modify any table data. Operations on indices associated
with the table are allowed when the table is in READ ONLY mode. To revert to a
read-write table, the clause READ WRITE can be applied.

While the table is READ ONLY the following restrictions apply:

• The data manipulation statements INSERT, UPDATE, DELETE may not
modify rows in the table.

• Table updates via LIST cursor may fail during the OPEN or CLOSE
statement depending on the cursor declaration.

• The SELECT statement using the FOR UPDATE clause may fail because it
tries to apply UPDATE semantics.

SQL> select * from SAMPLE_TABLE for update;
%RDB-E-READ_ONLY_REL, relation SAMPLE_TABLE was reserved for read access;
updates not allowed

• The TRUNCATE TABLE statement is not permitted to truncate rows from
the table.

• ALTER TABLE ... ADD COLUMN is permitted unless a DEFAULT is added
for the new column (either explicitly or implicitly from a domain reference).
In this case, Rdb would normally execute an UPDATE statement to include
the default into each pre-existing row.

• Most other database definition statements are permitted. For instance,
CREATE INDEX, ALTER INDEX ... REBUILD ALL PARTITIONS, DROP
INDEX, can all be performed while the table is in this state.

The following example shows the diagnostic reported by Oracle Rdb.

SQL> alter table SAMPLE_TABLE
cont> read only
cont> ;
SQL>
SQL> show table (comment) SAMPLE_TABLE;
Information for table SAMPLE_TABLE

Comment on table SAMPLE_TABLE:
Samples table

Table is set READ ONLY

SQL> truncate table SAMPLE_TABLE;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-READ_ONLY_REL, relation SAMPLE_TABLE was reserved for read access;
updates not allowed
SQL> commit;
SQL>

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–29

3.1.13 NULLS FIRST and NULLS LAST Options for ORDER BY Clause
This release of Oracle Rdb adds the NULLS FIRST and NULLS LAST options
to the ORDER BY clause. These options control the ordering of the NULL
values relative to the ordering of the key data. This is demonstrated by the four
examples shown below.

SQL> select employee_id, salary_start, salary_end, salary_amount
cont> from salary_history sh
cont> where employee_id = ’00164’
cont> order by salary_end asc nulls first
cont> ;
EMPLOYEE_ID SALARY_START SALARY_END SALARY_AMOUNT
00164 14-Jan-1983 NULL $51,712.00
00164 5-Jul-1980 2-Mar-1981 $26,291.00
00164 2-Mar-1981 21-Sep-1981 $26,291.00
00164 21-Sep-1981 14-Jan-1983 $50,000.00
4 rows selected
SQL>
SQL> select employee_id, salary_start, salary_end, salary_amount
cont> from salary_history sh
cont> where employee_id = ’00164’
cont> order by salary_end asc nulls last
cont> ;
EMPLOYEE_ID SALARY_START SALARY_END SALARY_AMOUNT
00164 5-Jul-1980 2-Mar-1981 $26,291.00
00164 2-Mar-1981 21-Sep-1981 $26,291.00
00164 21-Sep-1981 14-Jan-1983 $50,000.00
00164 14-Jan-1983 NULL $51,712.00
4 rows selected
SQL>
SQL> select employee_id, salary_start, salary_end, salary_amount
cont> from salary_history sh
cont> where employee_id = ’00164’
cont> order by salary_end desc nulls first
cont> ;
EMPLOYEE_ID SALARY_START SALARY_END SALARY_AMOUNT
00164 14-Jan-1983 NULL $51,712.00
00164 21-Sep-1981 14-Jan-1983 $50,000.00
00164 2-Mar-1981 21-Sep-1981 $26,291.00
00164 5-Jul-1980 2-Mar-1981 $26,291.00
4 rows selected
SQL>
SQL> select employee_id, salary_start, salary_end, salary_amount
cont> from salary_history sh
cont> where employee_id = ’00164’
cont> order by salary_end desc nulls last
cont> ;
EMPLOYEE_ID SALARY_START SALARY_END SALARY_AMOUNT
00164 21-Sep-1981 14-Jan-1983 $50,000.00
00164 2-Mar-1981 21-Sep-1981 $26,291.00
00164 5-Jul-1980 2-Mar-1981 $26,291.00
00164 14-Jan-1983 NULL $51,712.00
4 rows selected
SQL>

3–30 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

3.1.14 Enhancements to RMU Unload After_Image (LogMiner) Interface
This release of Oracle Rdb adds support for the following new options for the
RMU Unload After_Image (aka LogMiner) command.

The RMU Unload After_Image command can now output an XML script
containing the updates to the selected table or tables.

When the FORMAT qualifier specifies one of DELIMITED_TEXT, DUMP or
XML, the TRIM option can also be used to trim leading and/or trailing spaces.

The SYMBOLS qualifier now accepts the keyword LOCAL (default) or
GLOBAL. The default behavior is to generate local scope DCL symbols. When
Symbols=GLOBAL is used, these symbols have global scope.

3.1.14.1 XML Option to FORMAT Qualifier
When using FORMAT=XML, the following options can also be specified:

• CHARACTER_ENCODING_XML

When using RMU Unload After_Image Format=XML, the XML header record
will, by default, use the character encoding "ISO-8859-1". For example, this
will appear in the header of the XML file.

<?xml version="1.0" encoding="ISO-8859-1"?>

This encoding (ISO-8859-1) is Latin 1 and covers encoding of many European
character sets. However, this encoding is not adequate if you use other
character encoding for Asian languages, or languages not covered by this ISO
Standard.

This release of Oracle Rdb adds an option, CHARACTER_ENCODING_
XML, that allows the command procedure to specify an alternate character
encoding. For example, if you wish to have the XML header describe UTF8,
then specify the qualifier /FORMAT=(XML,CHAR="utf-8").

<?xml version="1.0" encoding="utf-8"?>

• DATA_XML_NULL

This option accepts one of the following keywords which control the output of
NULL column values: DROP, NIL_ATTRIBUTE, or EMPTY. If this option is
not specified, the default is EMPTY as shown in the following example.

This is a fragment of the XML data generated by RMU Unload After_Image
with the qualifier /FORMAT=(XML,TRIM=TRAILING) defaulting to DATA_
XML_NULL=EMPTY.

<ROW>
<RDB_LM_ACTION>M</RDB_LM_ACTION>
<RDB_LM_RELATION_NAME>SAMPLE2</RDB_LM_RELATION_NAME>
<RDB_LM_RECORD_TYPE>32</RDB_LM_RECORD_TYPE>
<RDB_LM_DATA_LEN>65254</RDB_LM_DATA_LEN>
<RDB_LM_NBV_LEN>3</RDB_LM_NBV_LEN>
<RDB_LM_DBK>60:14417:0</RDB_LM_DBK>
<RDB_LM_START_TAD>2020-05-11T10:20:50.88</RDB_LM_START_TAD>
<RDB_LM_COMMIT_TAD>2020-05-11T10:20:50.89</RDB_LM_COMMIT_TAD>
<RDB_LM_TSN>712</RDB_LM_TSN>
<RDB_LM_RECORD_VERSION>1</RDB_LM_RECORD_VERSION>
<IDENT>101</IDENT>
<COMMENT/>
<DETAILS/>
</ROW>

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–31

If DATA_XML_NULL is specified as DROP, then that column’s value is
omitted from the XML record. If DATA_XML_NULL is specified as NIL_
ATTRIBUTE, then the XML tag attribute for the column is output as
xsi:nil="true".

• TRIM

This option allows the data values for the columns to have trailing and
leading spaces and horizontal tab characters removed from the columns.

3.1.14.2 TRIM Option
When the FORMAT selected is one of DELIMITED_TEXT, DUMP or XML, then
RMU can be instructed to trim trailing and/or leading spaces and horizontal tab
characters from the columns.

• The default when FORMAT is XML or DELIMITED_TEXT is no trimming.
The default when FORMAT is DUMP is TRIM_TRAILING.

• The TRIM option is not compatible with FORMAT=BINARY and
FORMAT=TEXT.

• One of the following keywords can be specified for TRIM: TRAILING,
LEADING and BOTH. If TRIM is specified without qualification, then
TRAILING is assumed.

The following example shows the use of format XML with the TRIM=BOTH
option.

$ RMU/UNLOAD-
/AFTER_IMAGE -
/INCLUDE=ACTION:(COMMIT,DELETE,NOMODIFY)-
/LOG-
/TABLE=(name=SAMPLE2, output=SAMPLE3.DAT)-
/FORMAT=(XML,TRIM=BOTH)-
/ORDER_AIJ_FILES-

USER1:[TESTER.LOGMINER]LOGMINER_DB -
USER1:[TESTER.LOGMINER]AIJ_BU_*.BAIJ

$

Usage Notes

• When unloading rows with columns that have many trailing spaces, then
using FORMAT=(XML,TRIM) or FORMAT=(DELIMITED_TEXT,TRIM) can,
in some cases, reduce the size of the output file without loss of significant
data.

• When dumping rows with long columns that have many trailing spaces,
then using /FORMAT=(DUMP,TRIM) can significantly reduce the size of
the output file. Therefore, RMU Unload After_Image implicitly enables
TRIM=TRAILING.

3.1.14.3 SYMBOLS Qualifier
The SYMBOLS qualifier now accepts the keyword LOCAL (default) or
GLOBAL. The default behavior is to generate local scope DCL symbols. When
Symbols=GLOBAL is used, these symbols have global scope.

3–32 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

Arguments
Symbols
Symbols=LOCAL
Symbols=GLOBAL
NoSymbols

Specifies whether DCL symbols are to be created, indicating information about
records extracted for each table.

The default is Symbols, which causes local symbols to be created. Use
Symbols=GLOBAL to have RMU define global symbols. Use NoSymbols to
prevent creation of any DCL symbols.

If a large number of tables are being unloaded, too many associated symbols may
be created and the CLI symbol table space can become exhausted. The error
message "LIB-F-INSCLIMEM, insufficient CLI memory" is returned in this case.
Specify the Nosymbols qualifier to prevent creation of the symbols.

3.1.15 Named Partition Support for RESERVING Clause
This release of Oracle Rdb adds the ability to use named partitions in the
RESERVING clause of the SET TRANSACTION or DECLARE TRANSACTION
statements. In prior versions, only partition numbers were allowed.

The partition names might be system generated (as shown below for the
EMPLOYEES_MAP from the MF_PERSONNEL database) or they can be defined
as part of the CREATE STORAGE MAP statement.

The following example shows the partition numbers as well as the system
generated partition names under the Partition information for storage map
output.

SQL> show storage map employees_map
EMPLOYEES_MAP

For Table: EMPLOYEES
Placement Via Index: EMPLOYEES_HASH
Partitioning is: UPDATABLE

Partition information for storage map:
Compression is: ENABLED
Partition: (1) SYS_P00079
Storage Area: EMPIDS_LOW
Partition: (2) SYS_P00080
Storage Area: EMPIDS_MID
Partition: (3) SYS_P00081
Storage Area: EMPIDS_OVER

SQL>

Usage Notes

The PARTITION clause accepts a list of partition names or a list of partition
ordinal values. You may not mix numeric and named notations.

Duplicate partition names in the RESERVING clause will cause an exception.
Review the RESERVING clause and correct the partition names.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–33

set transaction
read write
evaluating

job_history_foreign1 at verb time
,salary_history_foreign1 at verb time

reserving
employees partition (SYS_P00080, SYS_P00080) for exclusive write

;
%RDB-E-BAD_TPB_CONTENT, invalid transaction parameters in the transaction
parameter block (TPB)
-RDMS-E-DUPPARTNAME, partition SYS_P00080 for table EMPLOYEES already used

Unknown partition names in the RESERVING clause (which might occur due
to a change in the storage map definition) will cause an exception. Use the
SHOW STORAGE MAP statement to review the partition names.

create module mod_testing1a
language sql
procedure proc_xa ();
begin not atomic
set transaction

read write
evaluating salary_history_foreign1 at verb time
reserving employees partition (SYS_P00080, "UNKNOWN", SYS_P00081)

,departments for protected write;
commit;

end;
end module;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-BAD_TPB_CONTENT, invalid transaction parameters in the transaction
parameter block (TPB)
-RDMS-F-PARTNEXTS, partition "UNKNOWN" does not exist in this map or index
"EMPLOYEES_MAP"

3.2 Obsolete Features
3.2.1 RMU Backup No Longer Supports HUFFMAN or LZSS Compression, Use

ZLIB Instead
This release of Oracle Rdb removes the compression options HUFFMAN and
LZSS from the RMU Backup and RMU Backup After_Journal commands.

These older compression algorithms are much slower than the default ZLIB
compression. Orders of magnitude more CPU is required in some cases. If you
receive a diagnostic as shown in the following example, then Oracle recommends
accepting the default, changing the DCL command procedure, or RMU PLAN
file to explicitly state ZLIB. Additionally, ZLIB compression allows the database
administrator to determine levels of compression efficiency, from less time to
more effective compression. Refer to Oracle Rdb RMU Reference Manual for more
details.

The following example shows the new diagnostic reported by RMU.

3–34 Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0

$ rmu/backup-
/disk_file-
/list_plan=plan_l.plan-
/execute-
/compress=lzss-
/parallel=Executor_Count=3 -
sql$database -
sav_l1.rbf,sav_l2.rbf,sav_l3.rbf

%RMU-E-NOTSUPFORVER, The function COMPRESSION.LZSS is not supported for Oracle
Rdb V7.4-100
-RMU-I-COMPUSEZLIB, use the default, or specify ZLIB compression
%RMU-F-FTL_BCK, Fatal error for BACKUP operation at 18-JUN-2020 15:45:23.27
$

Also note that neither HUFFMAN nor LZSS are accepted by the RMU Set After_
Journal Backups qualifier. That command has always required the preferred
ZLIB algorithm for compression.

Enhancements And Changes Provided in Oracle Rdb Release 7.4.1.0 3–35

A
Optimizer Enhancements

A.1 Optimizer Enhancements
A.1.1 Changes and Improvements to the Rdb Optimizer and Query Compiler

These features fall generally under the title query rewrite, and allow the query
compiler to present a simplified query for optimization and execution.

• CAST function elimination

In most cases, CAST actions must be executed at runtime to convert from the
source data type to that specified by the CAST function. However, in some
cases, the Rdb query compiler can eliminate or replace the CAST function
with a literal value during query compile. This saves CPU time as the action
is performed just once rather than once per row processed.

This replacement includes the following:

When CAST of DATE (ANSI), DATE (VMS) or TIMESTAMP data types is
performed to a compatible type of DATE or TIMESTAMP, then in many
cases the CAST operator is not required.

CAST of string literals to DATE (ANSI), DATE (VMS), TIME,
TIMESTAMP and INTERVAL can be processed at compile time. For
example, CAST(’2013-1-1’ AS DATE ANSI) is implicitly converted to a
DATE literal DATE’2013-1-1’.

CAST of small integer values is now done by the compiler. For example,
CAST(1 AS SMALLINT) can be performed at compile time.

CAST of fixed length (CHAR) literal strings to varying length strings
(VARCHAR) is now processed by the compiler if the character set is the
same and the target VARCHAR is long enough to hold the source string,
as seen in the following example:

CAST(’TABLE’ AS VARCHAR(31))

• Constant Folding

Simple arithmetic expressions involving integer or floating point literals are
evaluated by the query compiler. The overall effect is smaller executable
code and some reduced CPU time for queries. FLOAT, REAL, and DOUBLE
PRECISION values are combined to produce DOUBLE PRECISION results.
Integer literals (with no fractional component) are combined to produce
BIGINT results.

The side effect is that some expressions may now return DOUBLE
PRECISION or BIGINT results where in prior versions they produced smaller
precision results. This should not affect applications which fetch values into
different data types as Oracle Rdb will perform an implicit conversion.

Optimizer Enhancements A–1

This optimization includes the following:

* Addition (+)

* Subtraction (-)

* Multiplication (*)

* Division (/)

Note that division is not performed at compile time if the divisor is a
literal zero (0). Operations which are coded to explicitly divide by zero
are probably expected to produce an error at runtime. Although using the
SQL SIGNAL statement is now preferred, this technique has been used to
terminate procedures when an incorrect input is encountered.

• Algebraic Rules

Additive identity (zero) can be added to an expression without changing
the value. The query compiler will eliminate the literal zero (0) from the
expression.

Multiply by zero will result in zero if the other operand is a not nullable
expression. In this case, the expression will be replaced by zero.

Multiplicative identity (one) can be multiplied by an expression without
changing the value. The query compiler will eliminate the literal one (1) from
the expression.

The side effect is that some expressions may now return slightly different
data types because the literal is no longer considered as part of the data type
computation.

• Simple Predicate Elimination

When predicates include comparison of simple expressions, then the query
compiler will attempt to eliminate them from the query predicate. For
example, WHERE (’A’ = ’A’) will be replaced by TRUE, WHERE (2 <> 2) will
be replaced with FALSE, and so on.

• Not Nullable Aware

The query compiler is now aware of which columns have a NOT NULL NOT
DEFERRABLE constraint enabled. Additionally, this attribute is also implied
from any PRIMARY KEY NOT DEFERRABLE constraints.

Using this knowledge, the query compiler can reduce (prune) the query
expression. This list defines the ways in which this can occur:

* When IS NULL is applied to a not nullable column or expression, then
this predicate is replaced with FALSE.

* When IS NOT NULL is applied to a not nullable column or expression,
then this predicate is replaced with TRUE.

The side effect is that constraints for a table are now loaded for SELECT
statements.

This optimization can be disabled using the SET FLAGS statement, or the
RDMS$SET_FLAGS logical name with the value NOREWRITE(IS_NULL).
The default is REWRITE(IS_NULL).

• Replace comparisons with NULL

A–2 Optimizer Enhancements

Queries that erroneously compare value expressions with NULL will now be
replaced with a simplified UNKNOWN value. For example, a query that uses
WHERE EMPLOYEE_ID = NULL will never find matching rows, because the
results of the comparison (equals, not equals, greater than, less than, and so
on) are always UNKNOWN.

This optimization can be disabled using the SET FLAGS statement, or the
RDMS$SET_FLAGS logical name with the value NOREWRITE(UNKNOWN).
The default is REWRITE(UNKNOWN).

• Predicate Pruning

The AND, OR and NOT operators can be simplified if the logical expressions
have been reduced to TRUE, FALSE or UNKNOWN expressions. Depending
on the operation, the Rdb query compiler might be able to eliminate the
Boolean operator and part of the expression.

This optimization can be disabled using the SET FLAGS statement, or the
RDMS$SET_FLAGS logical name with the value NOREWRITE(BOOLEANS).
The default is REWRITE(BOOLEANS).

• CASE Expression Pruning

The prior transformation will also be applied to the Boolean WHEN
expressions of a conditional expression (CASE, DECODE, NULLIF,
COALESCE, NVL, NVL2, SIGN, ABS, and so on).

In some cases, the resulting conditional expression might resolve to an
equivalent conditional expression with fewer branches (some WHEN ...
THEN clauses being eliminated) or a simple expression with no conditional
expression (all WHEN ... THEN clauses are eliminated).

• IN Operator Simplification

The IN operator using a subquery looks similar to the EXISTS boolean
expression but it differs in its handling of NULL values. If the query compiler
knows that neither source field nor the value set contains NULL, then the
EXISTS expression can replace the IN operator. The EXISTS expression
generates a better query solution in almost all cases.

This optimization can be disabled using the SET FLAGS statement, or the
RDMS$SET_FLAGS logical name with the value NOREWRITE(IN_CLAUSE).
The default is REWRITE(IN_CLAUSE).

In most cases, the results of these optimizations will be transparent to
the application. However, database administrators that use SET FLAGS
’STRATEGY,DETAIL’ will notice new notations in the displayed strategy.

The following examples show the types of likely results.

In this example, the logical expression (1 = 2) is replaced with FALSE, the logical
expression (1 = 1) is replaced with TRUE and the predicate is reduced to just the
IS NULL (aka MISSING) check.

SQL> select last_name
cont> from employees
cont> where ((1 = 1) and employee_id is null)
cont> or
cont> ((1 = 2) and employee_id = ’00164’);
Tables:
0 = EMPLOYEES

Conjunct: MISSING (0.EMPLOYEE_ID)
Get Retrieval sequentially of relation 0:EMPLOYEES
0 rows selected

Optimizer Enhancements A–3

If there existed a NOT NULL NOT DEFERRABLE constraint on the
EMPLOYEE_ID column, the expression can be further reduced because the
NOT NULL constraint means the IS NULL test is always FALSE.

SQL> alter table EMPLOYEES
cont> alter column EMPLOYEE_ID
cont> constraint NN_EMPLOYEE_ID
cont> NOT NULL
cont> NOT DEFERRABLE
cont> ;
SQL>
SQL> select last_name
cont> from employees
cont> where ((1 = 1) and employee_id is null)
cont> or
cont> ((1 = 2) and employee_id = ’00164’);
Tables:
0 = EMPLOYEES

Conjunct: FALSE
Get Retrieval sequentially of relation 0:EMPLOYEES
0 rows selected
SQL>

REWRITE Flag
The SET FLAGS statement and the RDMS$SET_FLAGS logical name can be
used to enable or disable some of these rewrite actions. This flag primarily exists
for Oracle to test the behavior of the query rewrite changes. It can be used by
programmers to revert to pre-V7.3 behavior.

REWRITE enables each rewrite setting and NOREWRITE disables them.
Additionally, keywords can be added to REWRITE and NOREWRITE to disable
selective rewrite actions.

The following new keywords are added for this release of Oracle Rdb.

• BOOLEANS

• IN_CLAUSE

• IS_NULL

• UNKNOWN

A.1.2 Optimized NOT NULL Constraint Execution
This release of Oracle Rdb introduces a new mechanism to verify NOT NULL
constraints which are executed immediately at statement end (that is NOT
DEFERRABLE). This new mechanism is more efficient (uses less code and virtual
memory) than mechanisms used in prior releases. The cost of the constraint
check in these cases is a fixed cost with a very small incremental cost for each
extra NOT NULL constraint. The NOT NULL requirement of PRIMARY KEY
constraints are also checked in the same way.

In prior releases of Oracle Rdb, each NOT NULL constraint would require its
own internal query and each would be evaluated serially against the row just
inserted or updated.

The following example shows an INSERT into a simple table with STRATEGY
flags enabled. As can be observed, the absence of the strategy display indicates
that no optimized query was used to validate these constraints.

A–4 Optimizer Enhancements

SQL> set flags ’strategy,detail(2),internal,request_name’;
SQL>
SQL> insert into SAMPLE
cont> default values;
%RDB-E-INTEG_FAIL, violation of constraint SAMPLE_PK caused operation to fail
-RDB-F-ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> insert into SAMPLE (iden)
cont> values (0);
%RDB-E-INTEG_FAIL, violation of constraint SAMPLE_DAT_NOT_NULL caused operation
to fail
-RDB-F-ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> insert into SAMPLE
cont> values (1, ’A’);
~Sn: Constraint "SAMPLE_PK" evaluated (verb)
Tables:
0 = SAMPLE
1 = SAMPLE

Cross block of 2 entries Q1
Cross block entry 1
Conjunct: 0.DBKEY = <var0>
Firstn: 1
Get Retrieval by DBK of relation 0:SAMPLE

Cross block entry 2
Conjunct: <agg0> <> 1
Aggregate-F2: 0:COUNT-SINGLE (<subselect>) Q2
Index only retrieval of relation 1:SAMPLE
Index name SAMPLE_NDX [1:1]
Keys: 0.IDEN = 1.IDEN

1 row inserted
SQL>

Note that any DEFERRABLE constraints will be executed as in prior versions.

A.1.3 New BITMAPPED SCAN Clauses Added to OPTIMIZE Clause
This release of Oracle Rdb allows the programmer to specify the clause
OPTIMIZE FOR BITMAPPED SCAN as part of a query. This clause requests
that the query optimizer attempt to use BITMAPPED SCAN if there exists
multiple supporting indices in the query. The Rdb query optimizer may ignore
this request if only one index is used or if no SORTED RANKED indices would be
used to solve the query.

The following example shows the effect of using this new clause.

Optimizer Enhancements A–5

SQL> set flags ’strategy,detail(2)’;
SQL>
SQL> select count(*)
cont> from car
cont> where make = ’holden’
cont> and cyear = 1979
cont> and colour = ’blue’
cont> and (ctype = ’sedan’ or ctype = ’wagon’)
cont> optimize for bitmapped scan
cont> ;
Tables:
0 = CAR

Aggregate: 0:COUNT (*) Q2
Leaf#01 BgrOnly 0:CAR Card=6047 Bitmapped scan
Bool: (0.MAKE = ’holden’) AND (0.CYEAR = 1979)

AND (0.COLOUR = ’blue’)
AND ((0.CTYPE = ’sedan’) OR (0.CTYPE = ’wagon’))

BgrNdx1 IYEAR [1:1] Fan=97
Keys: 0.CYEAR = 1979

BgrNdx2 ICOLOUR [1:1] Fan=79
Keys: 0.COLOUR = ’blue’

BgrNdx3 IMAKE [1:1] Fan=79
Keys: 0.MAKE = ’holden’

BgrNdx4 ITYPE [(1:1)2] Fan=79
Keys: r0: 0.CTYPE = ’wagon’

r1: 0.CTYPE = ’sedan’

1
1 row selected
SQL>

In previous releases, the programmer would need to define the logical
name RDMS$ENABLE_BITMAPPED_SCAN as 1, RDMS$SET_FLAGS as
"BITMAPPED_SCAN", or use the SET FLAGS ’BITMAPPED_SCAN’ statement
in the application.

A.1.4 Query Optimization Improvements for IN Clause
The EXISTS and IN predicates can often be used interchangeably in queries to
check for the existence of values in another result set. If possible, the EXISTS
query should be the first preference because its structure allows for the best
query optimization. However, the semantics of these predicates are not identical
when NULL values are present in one or both tables, especially when used with
the NOT operator. Care should be taken to ensure correct query behavior in such
cases.

With this release of Oracle Rdb, the optimizer will attempt to transform the IN
predicate to an EXISTS predicate when the source columns are known to be not
nullable. Such a transformation will return the same results and additionally
present a better query for optimization.

The following example shows the strategy selected for NOT IN when the
optimization is not (or cannot be) applied.

A–6 Optimizer Enhancements

SQL> select s.badge_number
cont> from STAFF s
cont> where s.badge_number NOT IN (select kb.badge_number from KNOWN_BADGES kb)
cont> ;
Tables:
0 = STAFF
1 = KNOWN_BADGES

Cross block of 2 entries Q1
Cross block entry 1
Index only retrieval of relation 0:STAFF
Index name STAFF_I [0:0]

Cross block entry 2
Conjunct: <agg0> = 0
Aggregate-F1: 0:COUNT-ANY (<subselect>) Q2
Conjunct: MISSING (0.BADGE_NUMBER) OR MISSING (1.BADGE_NUMBER) OR (

0.BADGE_NUMBER = 1.BADGE_NUMBER)
Index only retrieval of relation 1:KNOWN_BADGES
Index name KNOWN_BADGES_I [0:0]

BADGE_NUMBER
4

1 row selected
SQL>

When the target columns (for example BADGE_NUMBER) in each table have a
NOT DEFERRABLE constraint of the type PRIMARY KEY or NOT NULL, then
the following strategy is used. The resulting strategy will likely result in faster
query execution.

SQL> select s.badge_number
cont> from STAFF s
cont> where s.badge_number NOT IN (select kb.badge_number from KNOWN_BADGES kb)
cont> ;
Tables:
0 = STAFF
1 = KNOWN_BADGES

Conjunct: <agg0> = 0
Match (Agg Outer Join) Q1
Outer loop
Match_Key:0.BADGE_NUMBER
Index only retrieval of relation 0:STAFF
Index name STAFF_I [0:0]

Inner loop (zig-zag)
Match_Key:1.BADGE_NUMBER
Index_Key:BADGE_NUMBER
Aggregate-F1: 0:COUNT-ANY (<subselect>) Q2
Index only retrieval of relation 1:KNOWN_BADGES
Index name KNOWN_BADGES_I [0:0]

BADGE_NUMBER
4

1 row selected
SQL>

This transformation is enabled by default but can be disabled using SET FLAGS
’NOREWRITE(IN_CLAUSE)’ and re-enabled using SET FLAGS ’REWRITE(IN_
CLAUSE)’.

This new feature was actually introduced in Oracle Rdb Release 7.3.1 but was
inadvertently left out of the release notes.

Optimizer Enhancements A–7

A.1.5 Query Optimization Improvements for DATE ANSI Queries
In prior releases of Oracle Rdb, a query such as the following would not use the
index on the source column because the CAST function obscured the column
reference from the optimizer.

The following example shows a query that is required to select all the transaction
records that appeared on a specific date. That is, the query wants to ignore the
time portion during the query.

SQL> select posting_timestamp
cont> from TRANSACTION_LOG
cont> where cast (posting_timestamp as DATE ANSI) = date ansi’2015-3-19’
cont> ;
Tables:
0 = TRANSACTION_LOG

Index only retrieval of relation 0:TRANSACTION_LOG
Index name TRANS_NXD [1:1]
Keys: (0.POSTING_TIMESTAMP >= DATE ’2015-03-19’) AND (0.POSTING_TIMESTAMP <

(DATE ’2015-03-19’ + INTERVAL ’1’ DAY))
POSTING_TIMESTAMP
19-MAR-2015 00:25:21.73
1 row selected
SQL>

The Oracle Rdb optimizer now detects that an index column is within the CAST
function and rewrites such queries to expose the index column. As can be seen,
this query now performs an index range retrieval for all values in the specified
date/time range.

A.1.6 New "Index Counts" Optimization for SORTED Indices
In prior releases of Oracle Rdb, a special optimization was applied to SORTED
RANKED indices that reduced the I/O and CPU overhead for counting values
within an index. In this release of Oracle Rdb, a similar optimization has been
implemented for SORTED indices. The main benefit of this optimization is to
greatly reduce the CPU overhead for processing SORTED indices with duplicate
values.

The following example shows the new strategy applied for COUNT(*),
COUNT(column), and COUNT(DISTINCT column). Here the column being
referenced is the leading segment of a SORTED index.

SQL> select count(*) from employees;
Tables:
0 = EMPLOYEES

Aggregate: 0:COUNT (*) Q2
Index only retrieval of relation 0:EMPLOYEES
Index name MI_NDX [0:0] Index counts

100
1 row selected
SQL> select count(middle_initial)
cont> from employees where middle_initial = ’A’;
Tables:
0 = EMPLOYEES

Aggregate: 0:COUNT (0.MIDDLE_INITIAL) Q2
Index only retrieval of relation 0:EMPLOYEES
Index name MI_NDX [1:1] Index counts
Keys: 0.MIDDLE_INITIAL = ’A’

A–8 Optimizer Enhancements

4
1 row selected
SQL> select count(distinct middle_initial)
cont> from employees where middle_initial = ’A’;
Tables:
0 = EMPLOYEES

Aggregate: 0:COUNT (DISTINCT 0.MIDDLE_INITIAL) Q2
Index only retrieval of relation 0:EMPLOYEES
Index name MI_NDX [1:1] Index distinct counts
Keys: 0.MIDDLE_INITIAL = ’A’

1
1 row selected
SQL>

This optimization is enabled by default and controlled by the flag COUNT_SCAN.
Use the SET FLAGS ’NOCOUNT_SCAN’ statement to disable this optimization,
if necessary.

Optimizer Enhancements A–9

B
RDO, RDBPRE and RDB$INTERPRET Features

B.1 RDO, RDBPRE and RDB$INTERPRET Features
This section describes additions to the RDO and RDBPRE interfaces to Oracle
Rdb. Please refer to the Rdb/VMS RDO Reference Manual which contains the
latest definition of the RDO language.

B.1.1 New Request Options for RDO, RDBPRE and RDB$INTERPRET
Two new keywords were added to the handle-options for the DECLARE_
STREAM, the START_STREAM (undeclared format) and FOR loop statements.

The altered statements are shown below.

DECLARE_STREAM Format

DECLARE_STREAM <declared-stream-name>
handle-options

USING rse

START_STREAM Format

START_STREAM
handle-options

<stream-name> USING rse
on-error

FOR Format

FOR rse
handle-options on-error

statement END_FOR

Each of these statements references the syntax for the HANDLE-OPTIONS which
has been revised and is shown below.
handle-options =

(REQUEST_HANDLE <variable>)
TRANSACTION_HANDLE <variable>
MODIFY
PROTECTED

,

The following options are available for HANDLE-OPTIONS:

RDO, RDBPRE and RDB$INTERPRET Features B–1

• REQUEST_HANDLE specifies the request handle for this request. This
option is only valid for RDBPRE and RDML applications. It cannot be used
with RDB$INTERPRET, nor interactive RDO.

• TRANSACTION_HANDLE specifies the transaction handle under which
this request executes. This option is only valid for RDBPRE and RDML
applications. It cannot be used with RDB$INTERPRET, nor interactive RDO.

• MODIFY specifies that the application will modify all (or most) records
fetched from the stream or for loop. This option can be used to improve
application performance by avoiding lock promotion from SHARED READ
for the FETCH to PROTECTED WRITE access for the nested MODIFY or
ERASE statement. It can also reduce DEADLOCK occurrence because lock
promotions are avoided.

This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO.
This option is not currently available for RDML.

For example:

RDO> FOR (MODIFY) E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00164"
cont> MODIFY E USING E.MIDDLE_INITIAL = "M"
cont> END_MODIFY
cont> END_FOR

This FOR loop uses the MODIFY option to indicate that the nested MODIFY
is an unconditional statement and so aggressive locking can be undertaken
during the fetch of the record in the FOR loop.

• PROTECTED specifies that the application may modify records fetched by
this stream by a separate and independent MODIFY statement. Therefore,
this stream should be protected from interference (aka Halloween affect). The
optimizer will select a snapshot of the rows and store them in a temporary
relation for processing, rather than traversing indexes at the time of the
FETCH statement. In some cases, this may result in poorer performance
when the temporary relation is large and overflows from virtual memory to a
temporary disk file, but the record stream will be protected from interference.
The programmer is directed to the documentation for the Oracle Rdb logical
names RDMS$BIND_WORK_VM and RDMS$BIND_WORK_FILE.

This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO.
This option is not currently available for RDML.

The following example creates a record stream in a BASIC program using
Callable RDO:

RDMS_STATUS = RDB$INTERPRET (’INVOKE DATABASE PATHNAME "PERSONNEL"’)

RDMS_STATUS = RDB$INTERPRET (’START_STREAM (PROTECTED) EMP USING ’ + &
’E IN EMPLOYEES’)

RDMS_STATUS = RDB$INTERPRET (’FETCH EMP’)

DML_STRING = ’GET ’ + &
’!VAL = E.EMPLOYEE_ID;’ + &
’!VAL = E.LAST_NAME;’ + &
’!VAL = E.FIRST_NAME’ + &

’END_GET’

RDMS_STATUS = RDB$INTERPRET (DML_STRING, EMP_ID, LAST_NAME, FIRST_NAME)

In this case, the FETCH needs to be protected against MODIFY statements
which execute in other parts of the application.

The problem was corrected in Oracle Rdb Release 7.0.1.

B–2 RDO, RDBPRE and RDB$INTERPRET Features

B.1.2 New Language Features for RDO and Rdb Precompiler
The following new language enhancements have been made to RDO, the Rdb
Precompiler (RDBPRE), and the RDO Interpreter (RDB$INTERPRET).

• LIKE operator

--> <value_expr> LIKE <value_expr> ->

The rse WITH clause can now specify a LIKE relational operator, which is
similar in action to the MATCHING operator. The LIKE operator returns
TRUE if the second expression pattern matches the first value expression.
LIKE is case sensitive. LIKE uses these special characters:

% Matches any string

_ Matches any character

\ an escape character. Use \\ to represent a single \, \% to represent a
literal "%", and _ to represent a literal "_".

This example is looking for any names starting with one character followed
by an apostrophe.

RDO> for e in employees
cont> with e.last_name like ’_’’%’
cont> print e.last_name
cont> end_for
LAST_NAME
D’Amico
O’Sullivan
RDO>

• FIRST VIA ... FROM sub-query expression

RDO includes a FIRST ... FROM sub-query expression. It returns the value
from the matching row. However, if no rows are found, then the query will be
aborted with a returned exception.

The following example wishes to list each relation and its associated storage
map (if it exists), and shows the reported RDB-E-FROM_NO_MATCH error.

RDO> for r in rdb$relations
cont> with r.rdb$system_flag = 0
cont> sorted by r.rdb$relation_name
cont> print r.rdb$relation_name,
cont> first sm.rdb$map_name from sm in rdb$storage_maps with
cont> sm.rdb$relation_name = r.rdb$relation_name
cont> end_for
RDB$RELATION_NAME SM.RDB$MAP_NAME
CANDIDATES CANDIDATES_MAP
%RDB-E-FROM_NO_MATCH, no record matched the RSE in a "from" expression
RDO>

RDO now supports an alternative to the FIRST ... FROM sub-query
expression which modifies the behavior when no matching rows were selected
by the sub-query. Adding the VIA keyword requests that a MISSING value
be returned in such cases, and the query is no longer aborted.

RDO, RDBPRE and RDB$INTERPRET Features B–3

RDO> for r in rdb$relations
cont> with r.rdb$system_flag = 0
cont> sorted by r.rdb$relation_name
cont> print r.rdb$relation_name,
cont> first via sm.rdb$map_name from sm in rdb$storage_maps with
cont> sm.rdb$relation_name = r.rdb$relation_name
cont> end_for
RDB$RELATION_NAME SM.RDB$MAP_NAME
CANDIDATES CANDIDATES_MAP
COLLEGES COLLEGES_MAP
CURRENT_INFO
CURRENT_JOB
CURRENT_SALARY
DEGREES DEGREES_MAP
DEPARTMENTS DEPARTMENTS_MAP
EMPLOYEES EMPLOYEES_MAP
EMPS
JOBS JOBS_MAP
JOB_HISTORY JOB_HISTORY_MAP
RESUMES RESUMES_MAP
SALARY_HISTORY SALARY_HISTORY_MAP
WORK_STATUS WORK_STATUS_MAP
RDO>

• New special functions: RDO$CURRENT_USER, RDO$SESSION_USER and
RDO$SYSTEM_USER

These functions return the user identification of the current, session and
system users. They can appear in any place that a field (aka column) can be
used. These functions simplify view and trigger definitions created through
RDO.

Any view, computed by field, or trigger created by RDO but executed by a
SQL session may return different values for each function. However, RDO
sessions will typically return the same value from each function.

This query uses the RDO$CURRENT_USER function to select the tables and
views created by a user.

RDO> for r in rdb$relations
cont> with r.rdb$relation_creator = rdo$current_user
cont> print r.rdb$relation_name, r.rdb$created
cont> end_for
RDB$RELATION_NAME RDB$CREATED
EMKP 23-JUN-2014 12:53:26.28
PICK_HISTORY_REC 31-JUL-2015 15:11:47.46
TEST_TABLE 8-AUG-2014 08:21:25.96
CUSTOMER_REC 8-AUG-2014 08:17:16.34
TAB1 8-AUG-2014 08:17:17.88
TAB2 8-AUG-2014 08:17:17.88
JOB_HIST 15-AUG-2014 13:49:07.39
SAL_HIST 15-AUG-2014 13:49:07.39
EMP_NAMES 14-OCT-2014 21:18:49.03
CAND_NAMES 14-OCT-2014 21:18:49.03
ACTION_CODES 14-OCT-2014 21:18:49.23
.
.
.

B–4 RDO, RDBPRE and RDB$INTERPRET Features

B.1.3 RDO Interface Now Supports Synonym References
This release of Oracle Rdb adds minimal support for synonyms to RDO and
RDBPRE. In prior versions, a synonym to a table (or view) was not recognized by
the RDO interfaces. For instance, an application built against table names which
were subsequently renamed using SQL would no longer compile because the
synonyms established by the RENAME TABLE or ALTER TABLE ... RENAME
TO statements were not recognized by RDBPRE or RDO.

This support allows queries that reference table or view synonyms to be processed
by the RDBPRE precompiler and RDO interactive utility. In addition, most
SHOW commands in RDO will recognize a table or view synonym.

Data definition (DDL) commands, such as DROP RELATION or DEFINE
CONSTRAINT, do not accept a synonym name as input. For such operations,
Oracle recommends using the Interactive SQL interface.

This problem has been corrected in Oracle Rdb Release 7.3.2.0. Synonyms
for tables and views created using any of the following statements are now
recognized by RDO.

• RENAME TABLE ...

• RENAME VIEW ...

• ALTER TABLE ... RENAME TO ...

• ALTER VIEW ... RENAME TO ...

• CREATE SYNONYMS ... FOR TABLE ...

• CREATE SYNONYMS ... FOR VIEW ...

RDO, RDBPRE and RDB$INTERPRET Features B–5

