Oracle Site Guard:
Automate Business Continuity

June, 2020
Safe Harbor

The preceding is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, timing, and pricing of any features or functionality described for Oracle’s products may change and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website at http://www.oracle.com/investor. All information in this presentation is current as of September 2019 and Oracle undertakes no duty to update any statement in light of new information or future events.
Challenges of Business Continuity

• Application data needs to be replicated to DR site
 • Database (using Data Guard)
 • Binaries/Configuration/Data for DB and App (using ZFS or other storage replication technologies)
• Different startup/shutdown procedures for each tier
• Infra stack dependencies and ordering required during role transitions
• Data center typically has multiple independent failover/switchover units
• Complete application failover involves failover of both Data Guard and file system storage replication

Solution: Oracle Site Guard that makes DR operations simple, reliable, testable, repeatable.
Oracle Site Guard

• End-to-End DR Automation for total site switchover or failover
 • Orchestrates coordinated failover of Oracle Fusion Middleware, Oracle Databases, Engineered systems
 • Extensible to integrate with 3rd party infrastructure components

• Integrates with underlying replication mechanisms that synchronize primary and standby environments and protect mission critical data
 • Oracle Data Guard for Oracle data, and storage replication for file system data external to the Oracle Database

• Employs Enterprise Manager capabilities:
 • Job System for distributed scripting, credential for access control, agents for remote execution, Systems for Site Definition, EMCLI for command line operations, Repository for schemas

• Licensed as a part of Enterprise Manager WebLogic Server Management Pack Enterprise Edition and the Oracle Database Lifecycle Management Pack

• Available as EM Cloud Control Plug-in
 • Shipped as part of FMW Plug-in
Oracle Site Guard – Blue Print
Business Continuity Automation for Engineered Systems

With Oracle Site Guard

- Automates DR operations between sites
 - Pre-integrated with the ZFSSA, Oracle FMW for Oracle Exalogic Elastic Cloud Machine
 - Pre-integrated with Oracle Data Guard for Oracle Exadata Database Machine
Oracle Site Guard – Key Features

- Simplified management for site level disaster recovery workflow
 - Provides for both planned switchover & failover
 - Role transitions triggered by administrators
- Integrates with Data Guard Broker for Oracle databases
 - Storage replication supported as well
- Integrates with storage replication for file system artifacts
 - Oracle binaries/configuration/data
 - Applications binary/configuration/data
- Out-of-the-box support for ZFS Storage Appliance
 - Well defined call outs to integrate with 3rd party storage replication
- Mechanism to integrate with other DR operations
 - Load balancer configuration, Initiate DNS push, etc
Oracle Site Guard – Key Features (Cont’d)

• Implemented as EM deployment procedures
 • Command line and graphical user interface
• Operations invoked via EMCLI
 • Scriptable as needed
 • Monitoring and error handling through EM console
• Supports all end-to-end DR scenarios supported by Oracle
 • Can be used for topologies with both DB & Middle Tier or Middle Tier alone
 • Runs operations in parallel where possible
 • Offers comprehensive logging and restartable operations
• Scales well as a site grows in terms of number of nodes/instances
Oracle Site Guard – Key Features (Cont’d)

• Standby Site Validation using Snapshot Database and ZFS Clones
 • Periodic assessment of DR site is extremely critical for any business continuity solution
 • Site Guard now provides an automated framework to open the entire standby site for validation by:
 • Converting physical standby database to snapshot database
 • Creating read/write copies of latest replication snapshot using ZFS clones
 • Existing DR infrastructure is leveraged to run the tests
 • Site Guard also provide framework to run automated tests after the site is open for validation
 • The solution also include required automation to convert the opened site back to standby

• Oracle VM DR
 • This solution is based on VM image replication using ZFS
 • Oracle VM recovery is built on top of OVM’s RESTful web service architecture

• DR Step Level Timeouts

• ZFS Replication Gap Analysis
 • Analyze replication SLA breach in any given time interval

• NetApp Data ONTAP MetroCluster Integration
Benefits of Oracle Site Guard

• Develop DR procedure once and Repeat many times
 • Makes DR operations simple, reliable and testable

• Minimize MTTR
 • Reduce Human Errors during failovers (execution and coordination)
 • No application, replication or infrastructure experts needed onsite when disaster happens

• Increased confidence
 • No need to rely on failover checklists
 • DR procedures planned and tested
Oracle Maximum Availability Architecture (MAA)

- **Oracle Enterprise Manager**
 - Monitoring & Diagnostics
 - Site Guard
 - Coordinated Site Failover

- **Customer Insights & Expert Recommendations**

- **Reference Architectures**

- **Production Site**
- **Replicated Site**

- **HA Features, Configurations & Operational Practices**

- **Deployment Choices**
 - Generic Systems
 - Engineered Systems
 - DBCS ExaCS/ExaCC
 - Autonomous DB

- **Continuous Availability**
 - Application Continuity
 - Global Data Services

- **Data Protection**
 - Flashback
 - RMAN + ZDLRA

- **Active Replication**
 - Active Data Guard
 - GoldenGate

- **Scale Out**
 - RAC
 - ASM
 - Sharding
Site Guard Operations

- Site Configuration
 - Site can include DB, Application Server, WebServer, Applications
 - Includes Site creation, EM System creation, Credentials association, Script association
- Start Site
 - Starts all the components of a site in correct order
 - Example of order dependency is DB must be started before Application Server
- Stop Site
 - Stops all the component of site in correct order
- Switchover
 - Reverses the role of the sites
 - Primary site becomes standby, standby site becomes primary
 - Planned operation typically done for Primary Site maintenance or testing
- Failover
 - Converts the standby site in to Primary
 - Performed when primary site is no longer available due to an unplanned outage
Site Switchover Example

- Switchover of entire site with a single command
- Includes switching over of DB, Storage, Application Server, WebServer
- Executed as EM Deployment Procedure
Example BI Switchover Plan Details

- **On Primary Site**
 - Stop BI Components
 - Stop Web Server
 - Stop Application Server

- **Switchover Storage**

- **Switchover Database**

- **On Standby Site**
 - Start Application Server
 - Start Web Server
 - Start BI Components

```bash
$ emcli get_operation_plan_details -name="switchover-to-BISystem2"
```

<table>
<thead>
<tr>
<th>Step No</th>
<th>Operation</th>
<th>Target</th>
<th>Target Host</th>
<th>Error Mode</th>
<th>Run Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Run Script</td>
<td>/sgscripts/stopBIComponents.sh</td>
<td>strec01-1</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>2</td>
<td>Run Script</td>
<td>/sgscripts/stopBIComponents.sh</td>
<td>strec01-2</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>3</td>
<td>Stop OracleInstance</td>
<td>/etc/obs/instance1</td>
<td>strec01-3</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>4</td>
<td>Stop OracleInstance</td>
<td>/etc/obs/instance2</td>
<td>strec01-4</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>5</td>
<td>Stop ManagedServer</td>
<td>/BISystem2/bidomain/bi_server1</td>
<td>strec01-1</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>6</td>
<td>Stop ManagedServer</td>
<td>/BISystem2/bidomain/bi_server2</td>
<td>strec01-2</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>7</td>
<td>Stop NodeManager</td>
<td>/etc/fmw/wls_server_1.0.3</td>
<td>strec01-1</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>8</td>
<td>Stop NodeManager</td>
<td>/etc/fmw/wls_server_1.0.3</td>
<td>strec01-2</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>9</td>
<td>Stop AdminServer</td>
<td>/BISystem2/bidomain/AdminServer</td>
<td>strec01-1</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>10</td>
<td>Run Script</td>
<td>/sgscripts/switchoverstorage.sh</td>
<td>strec02-2</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>11</td>
<td>Switchover Database</td>
<td>ClusterDatabaseHasun0708_racs1</td>
<td>hasun07</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>12</td>
<td>Start NodeManager</td>
<td>/etc/fmw/wls_server_1.0.3</td>
<td>strec02-2</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>13</td>
<td>Start NodeManager</td>
<td>/etc/fmw/wls_server_1.0.3</td>
<td>strec04-1</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>14</td>
<td>Start AdminServer</td>
<td>/etc/fmw/AdminServer</td>
<td>strec02-2</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>15</td>
<td>Start ManagedServer</td>
<td>/etc/fmw/bi_server1</td>
<td>strec02-2</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>16</td>
<td>Start ManagedServer</td>
<td>/etc/fmw/bi_server2</td>
<td>strec04-2</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>17</td>
<td>Start OracleInstance</td>
<td>/etc/obs/instance1</td>
<td>strec02-3</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>18</td>
<td>Start OracleInstance</td>
<td>/etc/obs/instance2</td>
<td>strec02-4</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>19</td>
<td>Run Script</td>
<td>/sgscripts/startBIComponents.sh</td>
<td>strec02-2</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
<tr>
<td>20</td>
<td>Run Script</td>
<td>/sgscripts/startBIComponents.sh</td>
<td>strec04-1</td>
<td>Stop</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Site Guard Key Functionality

- **Operations**
 - Stop/Start Site
 - Switchover/Failover Site
 - DR Readiness Checks (Health Checks)

- **Integration**
 - Loose integration with Storage
 - Oracle Database using Data Guard Broker

- **Supported Environment**
 - All FMW components
 - FMW Based Deployments – Fusion Apps and Customer Developed Apps
 - Commodity hardware
 - Engineered Systems
 - Oracle Sun ZFS Storage
 - Extensible to work with other Storage
Site Guard Pre Checks

- Site Guard runs comprehensive checks before DR operation
 - ZFS Replication health
 - ZFS lag checks
 - ZFS Replication package
 - Data Guard health
 - Data Guard lag (apply and transport) checks
 - Credential validation
 - Script validations
 - Topology checks
 - Agent and host availability
 - Support to include custom pre check scripts
Site Guard Key Differentiators

- Pre Checks
- Schedule Comprehensive Health Checks
- Centralized Logging, Monitoring and Error Management
- Restart able Options (Re run safe as well), Timeouts
- Secure Credential Access for Custom Scripts, Role Based Access control
- Parallel Executions (Can scale e.g. Oracle Public Cloud)
- Extensibility, No Staging Scripts on Remote Nodes
- Auto Discovery of Topology (doesn’t need any inputs)
- Dynamic Binding of Credentials
- Handle Topology Changes (Scale up, Scale down)
- HA Support for Critical Operations
Site Guard Best Practices

• Implement DR solution as per Oracle recommendation (Refer Fusion Middleware DR Guide)
• Configure Data Guard broker to manage Data Guard
• Single Enterprise Manager Cloud Control should monitor both primary and standby sites
• Implement EM as per Oracle recommended EM MAA and HA guidelines
• Run pre checks before performing any DR operation
• Schedule periodic health checks to assert DR readiness of standby site
• Upload all the custom scripts in EM software library and use them in Site Guard
• Configure SLA’s (Redo and Transport Lag) for all database instances
• Oracle Sun ZFS Storage Appliance
 • Configure to assert replication lag (based on SLA)
 • Configure to perform sync before attempting DR operation
Resources

- Site Guard Product Page in Oracle.com
- Site Guard Product Guide
- Video: Site Guard Based Disaster Recovery for Private Cloud Appliance (PCA)
- Video: Oracle VM Centric DR with Site Guard Through a Switch Over
- Fusion Middleware Disaster Recovery Guide
- White Paper: Automating DR using Oracle Site Guard for Oracle Exalogic/Exadata
Questions & Answers

http://www.oracle.com/goto/osg