

Maps and Spatial Databases: How to use them

Siva Ravada

Senior Director of Development Oracle Spatial and Graph

David Lapp

Senior Product Manager Oracle Spatial and Graph

Oracle Spatial Platform

Ubiquitous Spatial services in IT infrastructure Simplify application development Integrate operational systems

Allow Spatially-enabled solutions to focus on business context, not infrastructure services

Database and Application Server manage deployment infrastructure

Security

- Scalability
 Standards Compliance

- Load Balancing
 Failover
 HW/SW Dependencies

Support multiple application models with standard APIs

Java

• GML

Python, Node.js

.Net

Web Services/SOA

Oracle's Spatial Strategy

Enable Spatial use cases on every Oracle platform

Oracle Database Spatial and Graph

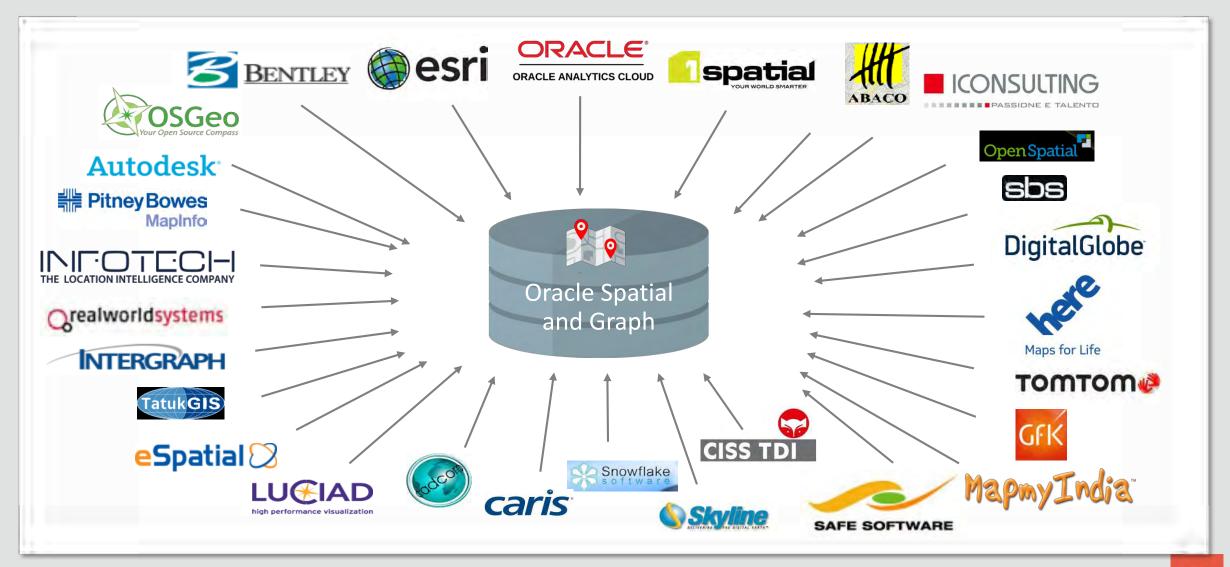
Database 19c:
Polyglot (Multi-model)
Data Store

Spatial and Graph in Cloud Offerings

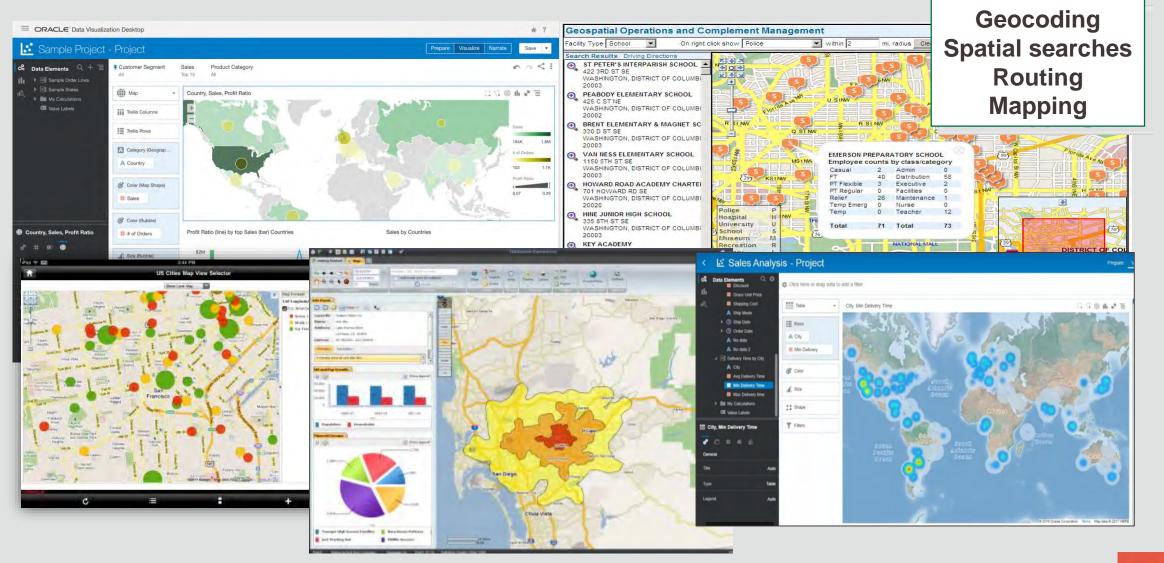
Oracle Big Data Cloud Service Oracle Database Cloud Service

- Enterprise Edition High Performance
- Enterprise Edition Extreme Performance
- All Autonomous DB offerings

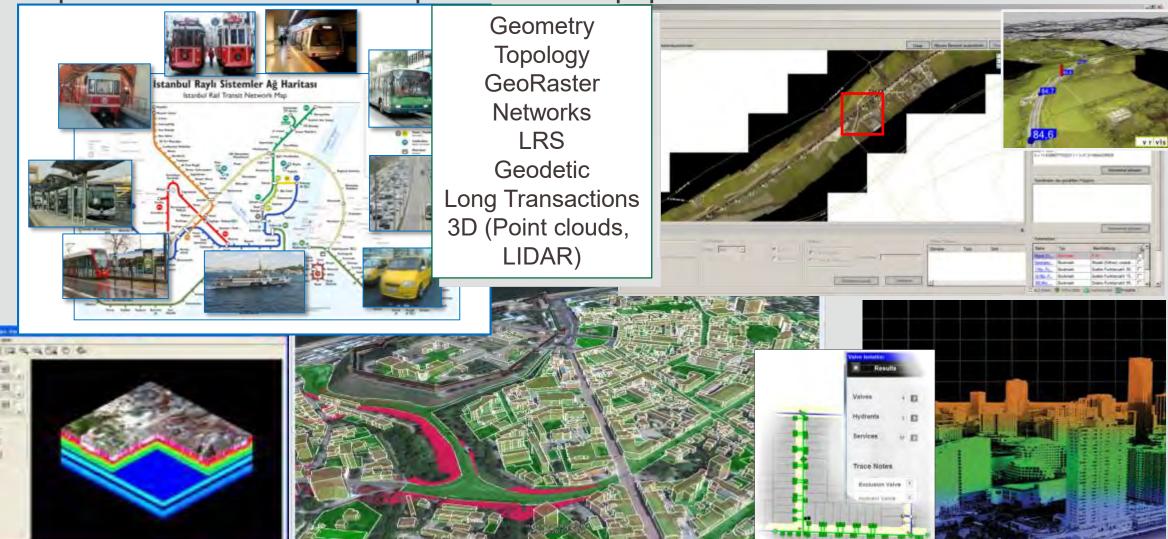
Oracle Big Data Spatial and Graph



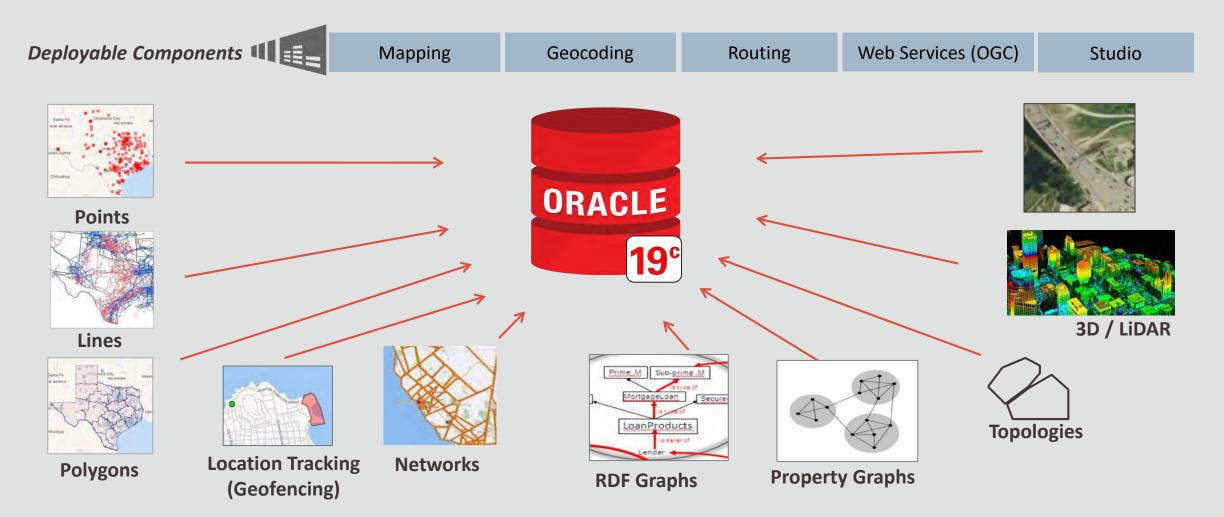
Big Data:Single Model Data Store



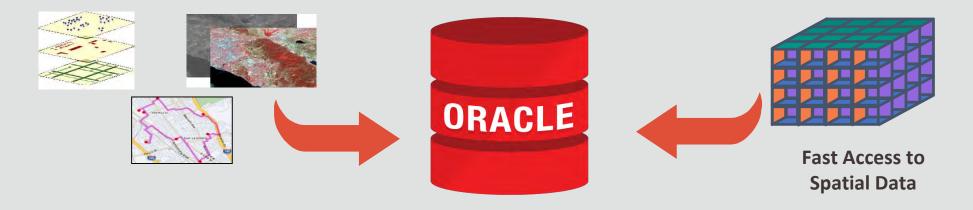
Open and Interoperable



Location-Enabled Business Applications



Specialist Geospatial Applications


Oracle Database - Spatial and Graph

Oracle Spatial and Graph

Native Geospatial Data Types

Spatial data type

```
SQL> desc countries
                                         SQL> SELECT geometry
         Null? Type
                                           2 FROM countries
Name
                                           3* WHERE name='Aruba';
I D
                NUMBER
I SO A3
                VARCHAR2(3)
                                         GEOMETRY
                VARCHAR2(26)
NAME
GEOMETRY
                MDSYS. SDO_GEOMETRY
                                         ----SDO_GEOMETRY(2003, 8307, NULL,
SOI >
                                         SDO_ELEM_INFO_ARRAY(1, 1003, 1),
                                         SDO_ORDI NATE_ARRAY(-69.8760919,
                                         12. 42720123, -69. 879425,
                                         12. 45340118, -69. 9150301,
                                         12. 49686106, -69. 9238926,
                                         12. 51903025, -69. 935649, 12. 5316393,
```

-69. 9961879, 12. 57737295, . . .

Spatial query

```
SQL> SELECT a. name
  2 FROM sales_regions a, countries b
  3 WHERE sdo_inside(a.geometry, b.geometry) = 'TRUE'
  4* and b. name='Belize';
NAME
El Cayo
Punta
Gorda
Bel mopan
Orange
. . .
```

Spatial query

GeoJSON support

- Extend JSON support in the database with Spatial operations
 - JSON_VALUE() to support GeoJSON and SDO_GEOMETRY
- SDO_GEOMETRY constructors extended to take JSON as input
- Support spatial index and spatial queries on JSON documents

Oracle Spatial and Graph

20 Spatial Operators 20.1 SDO ANYINTERACT 20.2 SDO_CONTAINS 20.3 SDO COVEREDBY 20.4 SDO COVERS 20.5 SDO EQUAL 20.6 SDO FILTER 20.7 SDO_INSIDE 20.8 SDO JOIN 20.9 SDO NN 20.10 SDO_NN_DISTANCE 20.11 SDO ON 20.12 SDO_OVERLAPBDYDISJOINT 20.13 SDO OVERLAPBDYINTERSECT 20.14 SDO OVERLAPS 20.15 SDO POINTINPOLYGON 20.16 SDO RELATE 20.17 SDO TOUCH 20.18 SDO WITHIN DISTANCE 21 Spatial Aggregate Functions 21.1 SDO AGGR CENTROID 21.2 SDO_AGGR_CONCAT_LINES 21.3 SDO AGGR CONCAVEHULL 21.4 SDO_AGGR_CONVEXHULL 21.5 SDO_AGGR_LRS_CONCAT 21.6 SDO_AGGR_MBR 21.7 SDO AGGR SET UNION 21.8 SDO AGGR UNION

⇒ 26 SDO_GEOM Package (Geometry) 26.1 SDO_GEOM.RELATE 26.2 SDO_GEOM.SDO_ALPHA_SHAPE 26.3 SDO_GEOM.SDO_ARC_DENSIFY 26.4 SDO GEOM.SDO AREA 26.5 SDO GEOM.SDO BUFFER 26.6 SDO_GEOM.SDO_CENTROID 26.7 SDO GEOM.SDO CLOSEST POINTS 26.8 SDO GEOM.SDO CONCAVEHULL

26.17 SDO GEOM.SDO MAX MBR ORDINATE

26.19 SDO_GEOM.SDO_MAXDISTANCE_LINE

26.24 SDO_GEOM.SDO_MIN_MBR_ORDINATE

26.25 SDO GEOM.SDO POINTONSURFACE

26.26 SDO GEOM.SDO SELF UNION

26.27 SDO GEOM.SDO TRIANGULATE

26.28 SDO_GEOM.SDO_UNION

26.29 SDO GEOM.SDO VOLUME

26.18 SDO GEOM.SDO MAXDISTANCE

26.21 SDO GEOM.SDO MBC CENTER

26.22 SDO GEOM.SDO MBC RADIUS

26.20 SDO GEOM.SDO MBC

26.23 SDO_GEOM.SDO_MBR

30 SDO PC PKG Package (Point Clouds) 30.1 SDO PC PKG.CLIP PC 30.2 SDO_PC_PKG.CLIP_PC_FLAT 30.3 SDO_PC_PKG.CREATE_CONTOUR_GEOMETRIES 30.4 SDO PC PKG.CREATE PC 30.5 SDO_PC_PKG.DROP_DEPENDENCIES 30.6 SDO PC PKG.GET PT IDS 30.7 SDO PC PKG.HAS PYRAMID 100's of spatial operators and functions

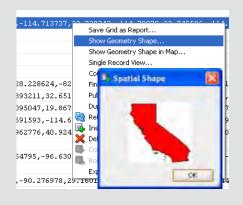
27 SDO LRS Package (Linear Referencing System) 27.1 SDO_LRS.CLIP_GEOM_SEGMENT 27.2 SDO LRS.CONCATENATE GEOM SEGMENTS 27.3 SDO_LRS.CONNECTED_GEOM_SEGMENTS 27.4 SDO LRS.CONVERT TO LRS DIM ARRAY 27.5 SDO LRS.CONVERT TO LRS GEOM 27.6 SDO_LRS.CONVERT_TO_LRS_LAYER 27.7 SDO LRS.CONVERT TO STD DIM ARRAY 27.8 SDO LRS.CONVERT TO STD GEOM 27.9 SDO LRS.CONVERT TO STD LAYER 27.10 SDO LRS.DEFINE GEOM SEGMENT 27.11 SDO LRS.DYNAMIC SEGMENT 27.12 SDO LRS.FIND LRS DIM POS 27.13 SDO LRS.FIND MEASURE 27.14 SDO LRS.FIND OFFSET 27.15 SDO_LRS.GEOM_SEGMENT_END_MEASURE 27.16 SDO LRS.GEOM SEGMENT END PT 27.17 SDO_LRS.GEOM_SEGMENT_LENGTH 27.18 SDO_LRS.GEOM_SEGMENT_START_MEASURE 27.19 SDO LRS.GEOM SEGMENT START PT

27.20 SDO_LRS.GET_MEASURE

27.21 SDO_LRS.GET_NEXT_SHAPE_PT

27.23 SDO LRS.GET PREV SHAPE PT

27.22 SDO LRS.GET NEXT SHAPE PT MEASURE

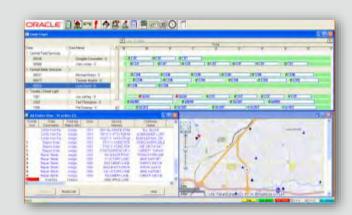

27.24 SDO LRS.GET PREV SHAPE PT MEASURE

From general purpose to specialized 31 SDO_SAM Package (Spatial Analysis and Mining) 31.1 SDO_SAM.AGGREGATES_FOR_GEOMETRY 31.2 SDO SAM.AGGREGATES FOR LAYER 31.3 SDO SAM.BIN GEOMETRY 31.4 SDO SAM.BIN LAYER 31.5 SDO SAM.COLOCATED REFERENCE FEATURES 31.6 SDO_SAM.SIMPLIFY_GEOMETRY 31.7 SDO SAM.SIMPLIFY LAYER 31.8 SDO SAM.SPATIAL CLUSTERS 31.9 SDO SAM.TILED AGGREGATES 31.10 SDO_SAM.TILED_BINS

From basic to advanced RG. PRESERVES LEVEL 1

Spatial Analysis and Maps in Oracle Applications, Tools & Bl

Development Tools (SQL Developer, APEX)



OAC and OBIEE

Applications

Mobile Apps

A Web Mapping Application

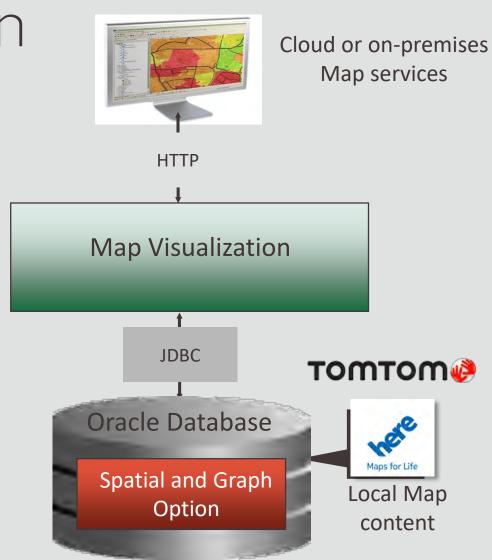
Oracle Database

Basic capabilities for spatial data management

Oracle Spatial and Graph

Priced option for Geocoding, Routing, High-Performance Query and Analytics, and more Includes RDF Graph capabilities (triple store, SPARQL queries, inferencing and ontology support, ...)

Mapping Technology


Java-based map rendering engine built on HTML5 Can consume cloud-based or local mapping services

Built on open standards

OGC, ISO 191xx, ...

Partnerships

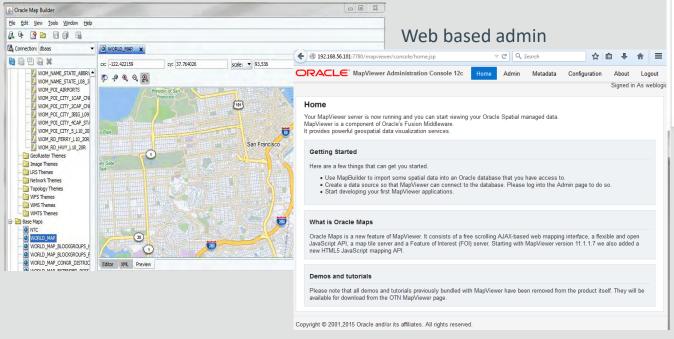
Partner ecosystem includes data providers, SIs, ISVs

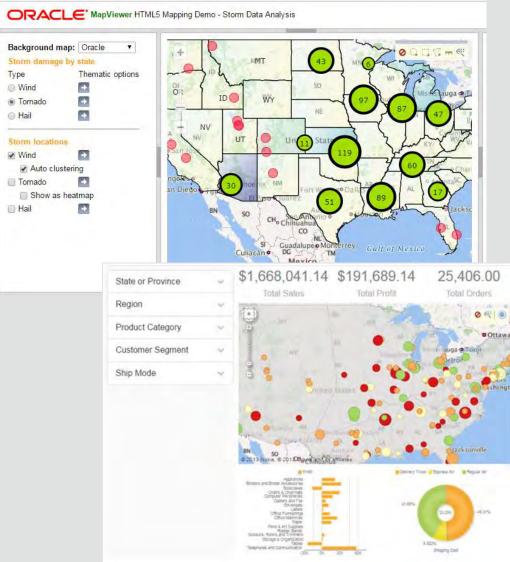
Oracle Map Visualization

HTML5-based mash-up component
Deployed in WebLogic Application Server

Enabling developers to incorporate interactive maps and spatial analysis into business apps

Integrating data from Oracle Spatial and Graph or other sources (WMS, WFS, GeoRSS, WMTS), and background maps from data providers or services


JavaScript, Java, and XML APIs for web mapping apps



Spatial Visualization

Map authoring tool

HTML5 mapping API

Georaster

A data type to store raster data

Aerial photographs, remote sensing, raster maps, grids, ...

Multi-band, multi-layer

An XML schema to store Metadata

Data source, layer information, ...

Geo Referencing information

Relates image pixels to a longitude/latitude on Earth's surface

Features

Storage and indexing of raster data

Generate resolution pyramid, blocking, mosaicking, compression, clipping

Raster algebra

Precision Farming Example

Goal: Build Predictive Analytical Model to increase the crop yield

Minimize water resources

Minimize fertilizer

Minimize the human capital cost

Use all available sensor based data sources Satellite imagery, ground based sensors, etc.

GeoRaster provides all the storage models and analytics required for building such an application

Spatial Networks

Network Data Model

A data model to store network (graph) structures in the database

Explicitly stores and maintains connectivity of the network


Attributes at link and node level

Network Analysis

Tracing and routing Network-based searches User-defined constraints

Supports very large networks

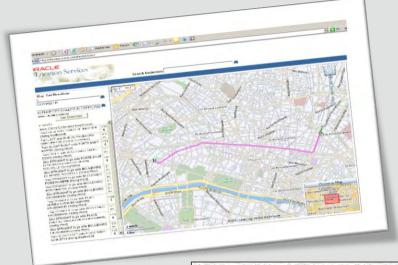
Network partitioning Hierarchical networks

Routing

Web service

XML requests and responses

Returns driving directions


Also route and maneuver geometries

Choose fastest / shortest routes

Open or closed routes

Choose vehicle type

Choose language for directions

	2
<pre><?xml version="1.0" encoding="UTF-8" ?></pre>	3
<route_response></route_response>	
<pre><route <="" distance="4.920671363811129" id="1" pre="" step_count="13"></route></pre>	4
distance_unit="mile" time="11.884710" time_unit="minute">	5
<pre></pre>	
distance="0.0016538867050869695" time="0.008871999382972718" />	6
<pre></pre>	7
distance="0.3730007146267496"	
time="0.6252812703450521" />	8
<pre></pre>	9
distance="0.5581769898495857" time="1.361023409664631" />	
	9.5

</route response>

	Distance:4.9 mi Estimated time:11 mins			
	1	Start out on ORACLE DR (Going South)	0 ft	
	2	Turn RIGHT onto SPIT BROOK RD (Going West)	0.3 mi	ı
>	3	Stay STRAIGHT to go onto E DUNSTABLE RD (Going Northwest)	2.8 mi	
	4	Turn SLIGHT LEFT onto DANIEL WEBSTER HWY/MAIN ST (Going North)	133 ft	ı
10	5	Stay STRAIGHT to go onto MAIN ST/DANIEL WEBSTER HWY (Going North)	0.1 mi	l
	6	Stay STRAIGHT to go onto DANIEL WEBSTER HWY/MAIN ST (Going North)	0.1 mi	ı
"1	7	Stay STRAIGHT to go onto MAIN ST/DANIEL WEBSTER HWY (Going North)	0.1 mi	
	8	Stay STRAIGHT to go onto DANIEL WEBSTER HWY/MAIN ST (Going North)	484 ft	
= ((9	Stay STRAIGHT to go onto MAIN ST/DANIEL WEBSTER HWY (Going North)	445 ft	
		Stay STRAIGHT to go onto DANIEL	0.1	÷

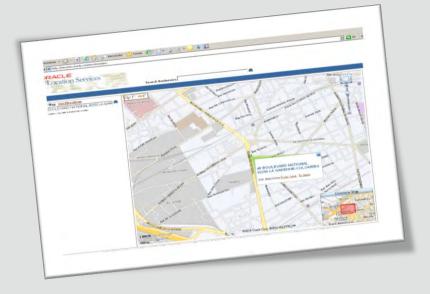
Geocoder

Generates latitude/longitude (points) from address

International addressing

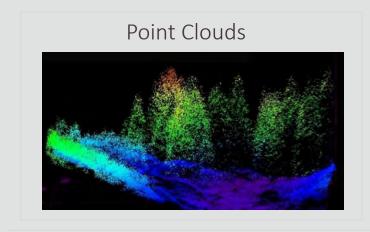
Formatted and unformatted addresses

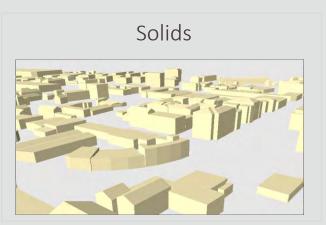
Tolerance parameters for fuzzy matching

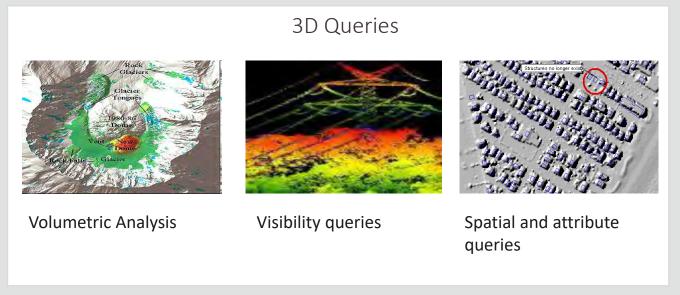

Address correction

PL/SQL and XML (web service) API

Record-level and batch processes

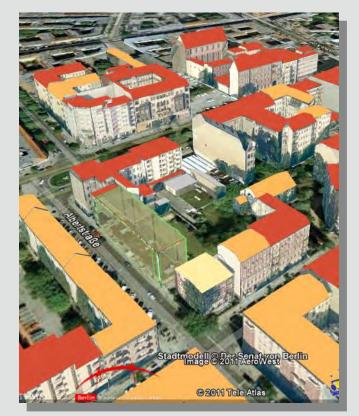

Data providers: Here (Navteq), Tom Tom ...




Oracle Spatial and 3D

City Modeling

- Many business cases have become economically viable Cost of 3D data collection has gone down significantly
- Leading to large scale projects, sometimes country-wide initiatives Eg. in Poland, the Netherlands (3D Pilot NL, AHN-2), Germany (AdV), UK, Ireland, ... Using LiDAR or Photogrammetry for data acquisition
- In Europe partly driven by EU mandates (eg. noise emission) Requiring 3D data for simulation
- Lots of use cases
 - City and urban planning, citizen participation, city marketing, ...
 Users in Local Government, Telco, Utilities, Public Transport, Public Safety, ...


City of Berlin – 3D City Model

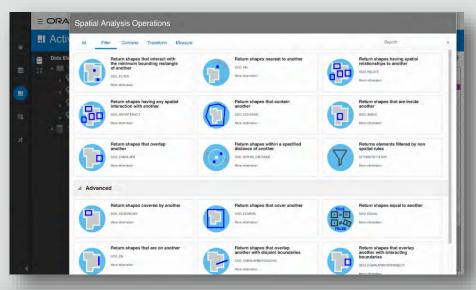
Implemented on Oracle with 3DCityDB

550000 buildings, reconstructed from 2D cadastre and LIDAR data

Textures extracted from oblique aerial photography

Oracle Spatial Excellence Award

Images courtesy of: TU Berlin, Institute for Geodesy and Geoinformation

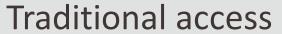

Spatial Studio

Self Service Spatial Analytics tool

Maps: Fast and Easy

No code environment for developing spatial analytics applications

Supports DB Cloud offerings and on-premises DBs



Spatial Studio

Spatial data management, analysis, and processing

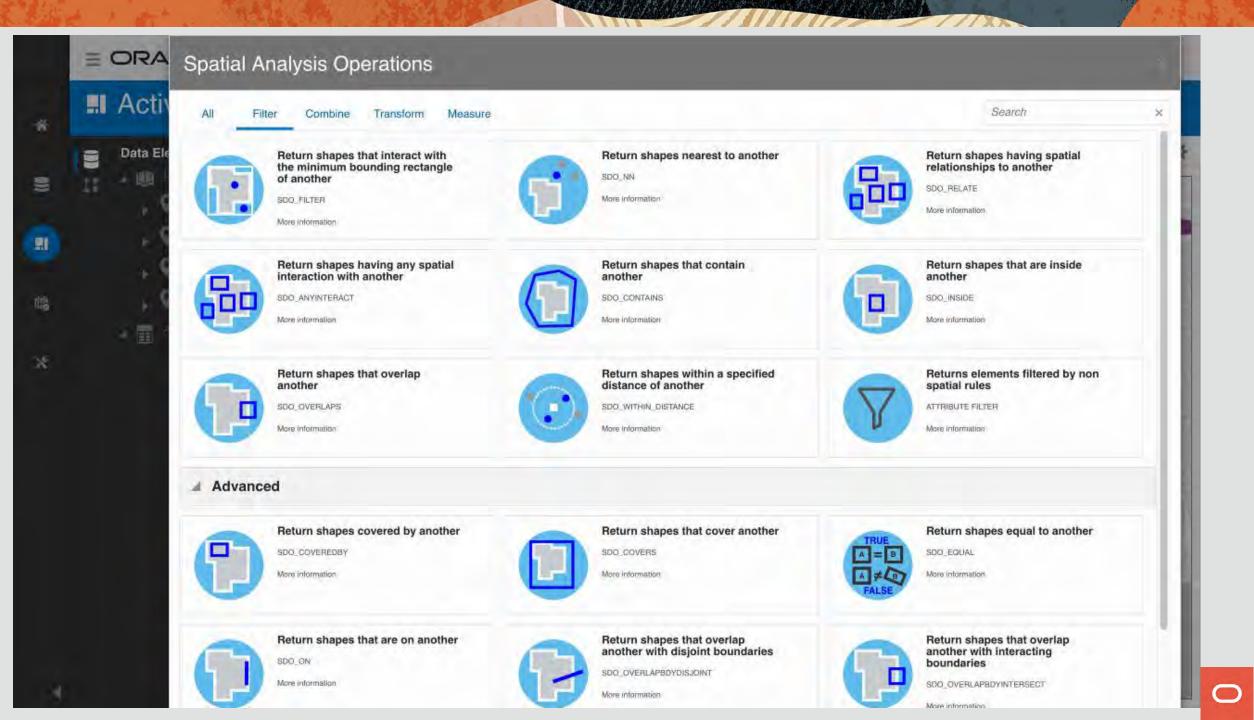
SQL, PLSQL, Java coding Some technical expertise

Spatial Studio

Self-service Drag and drop

Spatial Studio Features

Data


Access content from Oracle db Load Shapefiles, Spreadsheets, GeoJSON Geocode addresses Create longitude/latitude index Export as CSV, GeoJSON Pre-cache vector tiles

Developer Access analysis SQL Integrate published Project Access datasets and analyses via REST

Projects

Combine datasets
Create and configure visualizations
Perform Spatial analysis operations
Save and share results

Administration
Console UI
Configure proxy
Configure geocoding service endpoint
View system status and logs
Deeper admin outside UI i.e. WLS Console

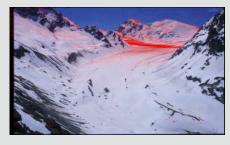
Performance

Oracle Database provides unparalleled performance for Spatial Applications

The Need for Performance

Manage huge volumes of machine generated data

Apply database benefits to fundamental data management challenges


No scalability boundaries

Massive Networks

National Topology Sets

TB to PB Raster Image Sets

Unified Geocoding, Routing, Mapping

Massive Point Clouds

Enable Integrated Operational Systems

Extreme Scalability

Process Millions of Spatial Objects

Spatial operations performed in parallel against partitioned and non-partitioned data sets

Can fully utilize multi-core Exadata platform

Millions of spatial objects evaluated in minutes

Point in polygon analysis

Polygon to polygon analysis

Deviations from route

Distance covered

Extreme Scalability

Massive Loading of Spatial Data

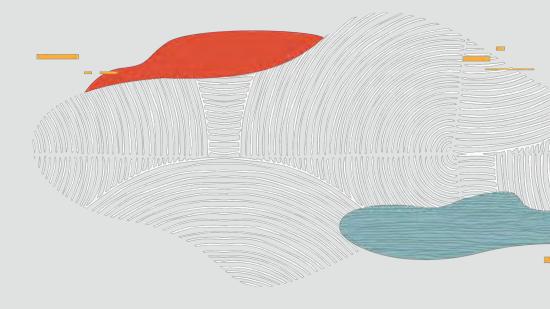
Millions of Spatial objects ingested in minutes

Weather readings

Traffic readings

Sensor readings

Loading of base data in parallel streams


Base maps

Satellite and aerial imagery

Point clouds

Ease of use

Provides industry standard APIs, including SQL, Java, REST, and many more

Standard APIs

SQL and PL/SQL APIs for database developers

Integrated with cx_Oracle driver for Python

REST enabled via ORDS

Integrated with Oracle Node driver for Node.js developers

Java API

Java API for developing client side spatial applications Useful for disconnected cases

Supports common spatial operations anyinteract, inside, buffer, distance, etc.

Supports conversions from well known formats GeoJSON, WKT, WKB

Client side R-tree index

Web Services

OGC is the standards body that defines several standards for publishing Spatial data on the web

WFS: Web Feature Service for vector data

WMS: Web Mapping Service for maps

WCS: Web coverage Service for raster data

WMTS: Web Map tile service for map tiles

CSW: Web Catalogue service for metadata

Oracle supports all of these services as deployable components

Oracle Locator

Support for all 2D geometry types Points, lines, polygons

All Spatial Searches for 2D data

Spatial processing: measurements, buffer, centroid, overlays, affine transforms,

Spatial aggregates

Utility, tuning and validation functions

Full Coordinate Systems support

Included in Oracle Database – All Editions

Oracle Spatial

Includes all Locator features +

Spatial Vector Accelerator

3D objects (points, lines, faces, solids)

3D types (point clouds, TINs)

Generic curves (NURBS)

Linear Referencing

Raster storage and processing

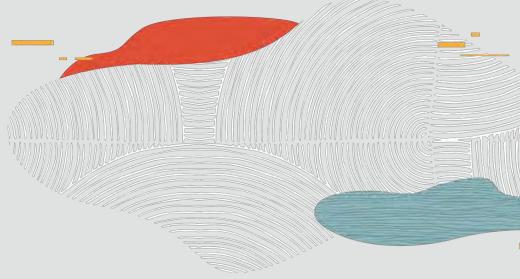
Geocoding and Routing

OGC Web Services (WFS, CSW)

Network tracing and searching

Persistent Topology

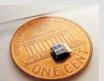
Map Visualization


Spatial Studio

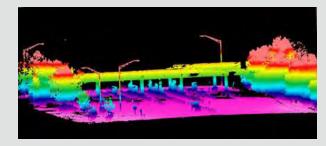
A cost option of Oracle Database Enterprise Edition

Spatial on Big Data Plaforms

Spatial support on Hadoop, Spark, and Big Data Cloud Service


Location Infused Technology

Java, Databases, Applications, Cloud



Spatial Big Data Challenges

Geo-tagging in the context of partial or indirect reference Minimize the time it takes to make the data available for analysis Discover Spatial and Temporal correlations between different data points

Data loading time should be minimal to make the data available for use

Load the data for immediate use, but create spatial indexes over time

Predictive Analytics for various applications

Use cases

- Prepare address and coordinate data for spatial analysis and mapping Geocode customer and competitor address lists
- Visualize data on interactive maps along with other contextual layers Navigate interactive map with customers, competitors, suppliers, sales regions...
- Associate data through spatial relationships

 Determine the competitors located within a proposed new sales region
- Enrich data with spatial attributes and metrics for downstream analytics Enrich customers with their associated sales region and distance form supplier
- Integrate spatial content and analysis results via REST

 Access customers with enrichments as GeoJSON and integrate using an open source mapping library

GeoSpatial Big Data Sources

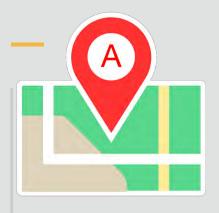
Traditional Data sources

Raster (satellite imagery, elevation models, images)

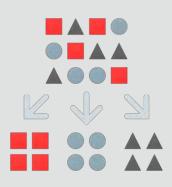
Vector (road networks, admin boundaries)

Machine generated

Internet of things


Social media

Sensors


In vehicle navigation systems (trajectories, traffic information)

Mobile phones

What problems can Big Data Spatial analysis address?

Preparation, validation and cleansing of Spatial and Raster data

Data Harmonization using any location attribute (address, postal code, lat/long, placename, etc).

Visualizing and displaying results on a map

Spatial querying and analysis of Hadoop data with SQL

Data Harmonization: Linking information by location

Are these data points related?

Tweet: sailing by #goldengate

Instagram image subtitle: 골든게이트 교*

Text message: Driving on 101 North, just reached border Marin County and San Francisco County

GPS Sensor: N 37°49′11" W 122°28′44"

Now find all data points around Golden Gate Bridge ...

^{*} Golden Gate Bridge (in Korean)

Oracle Spatial and Graph <u>www.oracle.com/database/technologies/spatialandgraph.html</u> Software downloads, white papers, case study presentations...

MapViewer <u>www.oracle.com/technetwork/middleware/mapviewer</u> Primers, Quickstart kit, software downloads

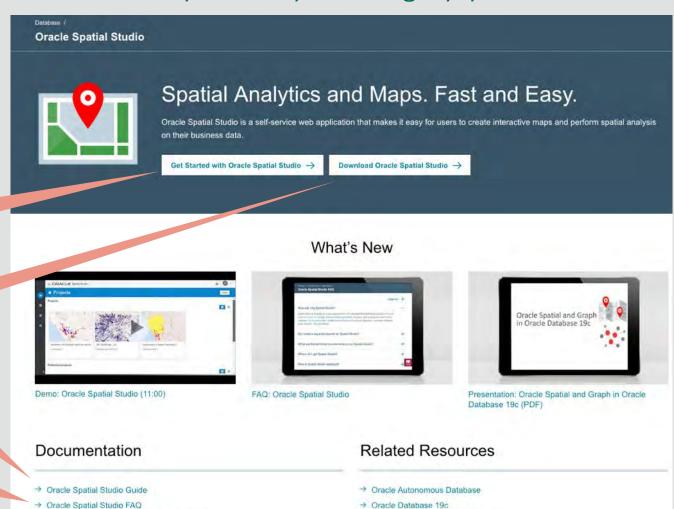
Blogs: https://blogs.oracle.com/oraclespatial

AskTom webcast series https://asktom.oracle.com/pls/apex/asktom.search?office=3084

Developer forums on OTN https://community.oracle.com/community/database/oracle-database-options/spatial

Communities: LinkedIn & worldwide user groups tinyurl.com/oraclespatialcommunity

Oracle Big Data Spatial and Graph www.oracle.com/technetwork/database/database-technologies/bigdata-spatialandgraph
White papers, software downloads, documentation and videos


Oracle Big Data Lite Virtual Machine - a free sandbox to get started: www.oracle.com/technetwork/database/bigdata-appliance/oracle-bigdatalite-2104726.html

Hands On Lab for Big Data Spatial: tinyurl.com/BDSG-HOL

Blog - examples, tips & tricks: blogs.oracle.com/bigdataspatialgraph

OracleBigData, @SpatialHannes

www.oracle.com/database/technologies/spatial-studio.html

FAQ

Get

started

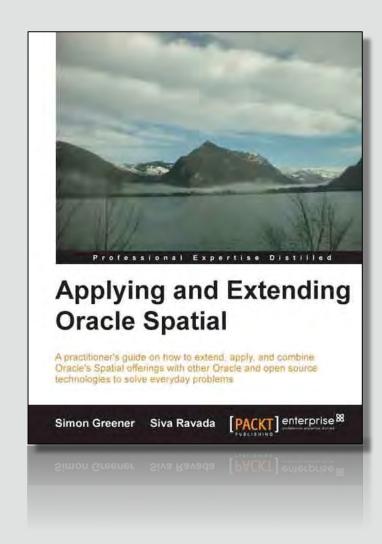
Download

Doc

Forum, Blog...

- → Oracle Spatial and Graph Developer's Guide
 → Oracle Database Cloud Service
- → Oracle Database 19c
 → Oracle Database Express Edition
 - → Oracle Fusion Middleware

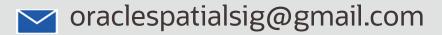
→ Oracle Database Products



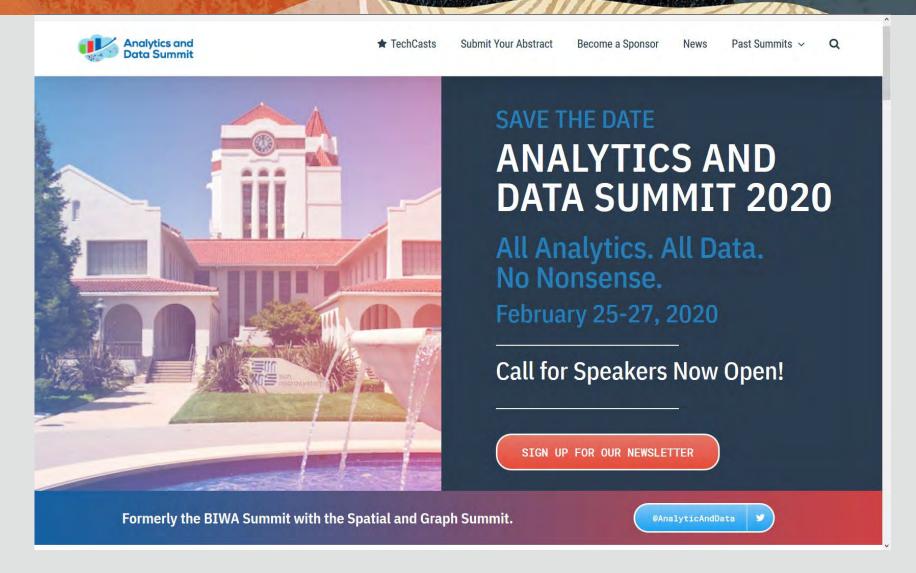
The Spatial & Graph SIG User Community Now part of BIWA User Group

We are a vibrant community of customers and partners that connects and exchanges knowledge online, and at conferences and events.

Meet us at OpenWorld! Monday-Wednesday


Moscone West, Level 3, User Group area

at the BIWA/Analytics Community table


Join us online tinyurl.com/oraclespatialcommunity

analyticsanddatasummit.org

Seeking customer use cases and technology sessions Dedicated Spatial & Graph track with 20+ sessions

A&Q

