Using Graph Analysis and Fraud Detection in the Fintech Industry

Stanka Dalekova Yavor I. Ivanov Dobroslav Hristov
@PlugIntoPaysafe
Who are Paysafe?

• Paysafe is leading specialized payments player in the world. We do the hard stuff better than our competition
• Global transactional volume of $85bn in 2018.
• Real-time Payments
• Two e-wallet services
 - Neteller
 - Skrill
Use Case – Fast Fraud Analytics

• ~ 500 000 payments per day
• Fines on any fraud payment
• Balance between fraud protection and negative customer experience
• Fraudsters bury their patterns in lots of data.
Online Fraud Screening

To PROCESS or NOT to PROCESS?
Manual Review Metrics

• Fraud Benchmark Report by Cybersouce from 2016
 – 83% of North Americans review 29% of the orders manually,
 – Fraud analysts can give insights about fraud patterns and customer behavior
 – After manual review, rule engines can be updated
 – Manual Review are costly and time-consuming
 – Decreasing customer experience by delaying the payment

• Fraud prevention industry benchmark by Kount.com from 2018
 – 93 percent of merchants perform manual reviews
 – nearly 30 percent have a manual review rate between 1 and 5 percent
 – 16 percent review between 5 and 10 percent
 – 20 percent review more than one-in-ten of their orders.
Data is our golden eggs, how to make it meaningful?
Q: A better way to analyze connected data?

A: The payments in Paysafe are actually a GRAPH!

Graph Databases are invented to solve the performance problems of connected data.
Graph Theory

- Study on mathematical structures used to model pairwise relations between objects
- 250+ years of history – the paper written by Leonhard Euler on the Seven Bridges of Königsberg and published in 1736 is regarded as the first paper in the history of graph theory
- Graphs are used to model many types of relations and process
- Graphs solve many real-life problems – in computer science, social sciences, biology, etc.
- Hundreds of graph algorithms – strongly connected components, paths algorithms, nearest neighbor, page rank, edge weight algorithms, etc.
What exactly is a graph?

These are all plots

And these are all graphs

A tree is a minimally connected graph having only one path between any two vertices.
Property Graph

{firstname: Stanka, lastname: Dalekova}

PART OF
\{team: skynet, direct manager: Vasil Gichev\}

WORKS IN
\{started on: 5 May 2003\}

Paysafe

PART OF
\{team: skynet, direct manager: Vasil Gichev\}

WORKS IN
\{started on: 3 Jan 2010\}

{firstname: Yavor, lastname: Ivanov}

COWORKER

Database Administration

PART OF

COWORKER

Software Development Department

WORKS IN
\{started on: 3 Oct 2005\}

{firstname: Dobroslav, lastname: Hristov}
Graph Database

Graph databases store data in terms of

- Entities (*nodes* or *vertices*)
- Relationships between entities (*edges* or *arrows*)

A better way to explore connected data.
Graphs are eating the world
Graphs are eating the world

Image courtesy DB-Engines
Graph databases go mainstream

- Pioneer graph databases are several years old
 - Neo4j [Cypher]
 - IBM Graph [SPARQL and Gremlin]
 - JanusGraph [Gremlin] (renamed from TitanDB)

- Gaining more traction recently – new players
 - Oracle Spatial And Graph by Oracle (Property Graph 3+ years) [PGQL]
 - AWS Neptune by Amazon announced on 30 May 2018 [SPARQL and GREMLIN]
 - Azure Cosmos DB by Microsoft Graph API announced on 7 Feb 2018
 - Apache Giraph 4+ years
 - GraphX by Spark 3+ years
 - RedisGraph
SQL vs PGQL

PGQL

```sql
PATH knows_path := () -[:knows]-> ()
SELECT s1.fname, s2.fname
WHERE (s1) -/:knows_path*-> (o) -/:knows_path*-(s2) ORDER BY s1, s2
```

SQL

```sql
SELECT T2.T AS "s1.fname$T", T2.V AS "s1.fname$V", T2.VN AS "s1.fname$VN", T2.VT AS "s1.fname$VT",
FROM (/*Path[*]*/SELECT DISTINCT SVID, DVID FROM ( SELECT VID AS SVID, VID AS DVID FROM "GRAPH1VT$" UNION
    ALL SELECT SVID,DVID FROM (WITH RW (ROOT, SVID, DVID, LVL) AS ( SELECT ROOT, SVID, DVID, LVL FROM (SELECT SVID ROOT,
        SVID, DVID, 1 LVL
    FROM (SELECT T0.SVID AS SVID, T0.DVID AS DVID FROM "GRAPH1GT$" T0 WHERE (T0.EL = n'knows'))
    UNION ALL SELECT DISTINCT RW.ROOT, R.SVID, R.DVID, RW.LVL+1 FROM (SELECT T1.SVID AS SVID,
        T1.DVID AS DVID FROM "GRAPH1GT$" T1 WHERE (T1.EL = n'knows')) R, RW WHERE RW.DVID = R.SVID )
    CYCLE SVID SET cycle_col TO 1 DEFAULT 0 SELECT ROOT SVID, DVID FROM RW ))/*]Path*/) T6,
    (/*Path[*]*/SELECT DISTINCT SVID, DVID FROM ( SELECT VID AS SVID, VID AS DVID FROM "GRAPH1VT$" UNION
    ALL SELECT SVID,DVID FROM (WITH RW (ROOT, SVID, DVID, LVL) AS ( SELECT ROOT, SVID, DVID, LVL FROM (SELECT SVID ROOT,
        SVID, DVID, 1 LVL
    FROM (SELECT T4.SVID AS SVID, T4.DVID AS DVID FROM "GRAPH1GT$" T4 WHERE (T4.EL = n'knows'))
    UNION ALL SELECT DISTINCT RW.ROOT, R.SVID, R.DVID, RW.LVL+1 FROM (SELECT T5.SVID AS SVID,
        T5.DVID AS DVID FROM "GRAPH1GT$" T5 WHERE (T5.EL = n'knows')) R, RW WHERE RW.DVID = R.SVID )
    CYCLE SVID SET cycle_col TO 1 DEFAULT 0 SELECT ROOT SVID, DVID FROM RW ))/*]Path*/) T7,
"GRAPH1VT$" T2, "GRAPH1VT$" T3
ORDER BY T6.SVID ASC NULLS LAST, T7.SVID ASC NULLS LAST
```

Find the pairs of people who are connected to a common person through the “knows” relation.
Parallel Graph AnalytiX (PGX) is a fast, parallel, in-memory graph analytic framework that allows users to load up their graph data, run analytic algorithms on them, and to browse or store the result.
PGX Architecture in Paysafe

Web User Interface

Vert.x Application Server

Vert.x Application Server

PGX Graph Analytics

Parallel In-Memory Graph Analytics/Graph Query (PGX)

PGX Graph Analytics

Parallel In-Memory Graph Analytics/Graph Query (PGX)

Graph storage management

Graph storage management

Java APIs/JDBC/SQL/PLSQL

Oracle RDBMS

REST

Java, Groovy, Python, ...

REST/Web Service/Notebooks
Hardware requirements & sizing

• PGX loads the *whole* graph and the properties needed for the analysis to be loaded into main memory

• **Compressed sparse row (CSR) format**, a data structure which has minimal memory footprint while providing very fast read access.

• More info on graph memory consumption can be found [here](#)
 - On heap memory only string properties
 - Off heap memory everything else – graph topology(edges and vertices) and properties

• Asynchronous Java API
Graph Database Performance

Q: Is user "9" connected to user “1“?

Relational Table

```
> SELECT * FROM friends;
+-------------+-------------+
<table>
<thead>
<tr>
<th>user_id</th>
<th>friend_id</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>
```

If you double the number of rows in the table, you've doubled the amount of data to search, and thus doubled the amount of time it takes to find what you are looking for.

Graph

You always walk the graph at most once. Conversely, a graph database looks only at records that are directly connected to other records. If it is given a limit on how many "hops" it is allowed to make, it can ignore everything more than that number of hops away.
Real-world example: is there a fraudster up to 4 hops away, on very active customer (worst case)?

- SQL created by Paysafe (32 lines)
 - 1 day: 50 min 20 sec
 - 1 week: (cancelled after 4 hours)
 - 1 month: (did not even try)

- SQL optimized by Oracle (62 lines)
 - 1 day: 20.3 sec
 - 1 week: 8 min 33 sec
 - 1 month: (cancelled after 6 hours)

- 4 PGQL queries (7 lines each)
 - 1 day: 0.547 sec
 - 1 week: 0.588 sec
 - 1 month: 0.597 sec
Cytoscape is an open source software platform for visualizing complex networks and integrating these with any type of attribute data.

There is a JS library supporting many different layouts.

Make asynchronous call for any hop, display up to 10 hops in seconds.
Typical customer behavior

Basic graph
Detected network (one send to many)
Bigger network (many send to one)
Placement, Layering, Integration
Multi-level network

More than one level
Multi-level network

A bit more complex
Network of networks
Graph Analytics

- Page rank
- Community detection
- Strongly connected components
- More built-in algorithms available
- Custom-defined algorithms with Green Marl
Strongly Connected Components

Subset of the graph where every vertex is reachable from every other vertex following the directions of the edges
Weakly Connected Components

Subset of the graph where every vertex is reachable from every other vertex (directions of the edges are ignored)
Community Detection

Finding sets of nodes such that each set of nodes is densely connected internally. Community structures are quite common in real networks. Social networks include community groups (the origin of the term, in fact) based on common location, interests, occupation, etc.
Page Rank

PageRank (PR) is an algorithm used by Google Search to rank websites in their search engine results. The PageRank algorithm outputs a probability distribution used to represent the likelihood that a person randomly clicking on links will arrive at any particular page.
Strongly Connected Components
SCC with 50 members
(always 19 EUR out)
Community detection
The right tool for the right job

• Payments are in the graph

• Deposits and Withdrawals are in the RDBMS
Money entering the system
Deposits and Withdrawals
Use Case Performance Results

• Finding all communities for a given day up to 3 minutes

 Community detection for 72-hour period: 7 sec

 SCC for the same period: 6 sec

 Top 10 Customers Page Rank: ~0.8 sec

• Memory statistics

 Total edges count: 70 M with 350M properties

 Edges size in DB: 72 GB (only the table)

 Total vertices count: 4M with 12M properties

 Vertices Size in DB: 2 GB (only the table)

 Graph in size in PGX memory – 10GB

• Visualizing customer graph, up to seconds, but still depending on the relations

• Performing PGQL query in milliseconds – can be used in real-time
New World of Opportunities

- Graph queries can be used as normal SQL queries to flag a risk transaction while the payment is being processed
 - If customer is linked with fraudster in range 2 hops, additional verification can be requested
- Graphs enhance AI by providing context by enabling connected features to ML. Relations or connected features tend to be highly predictive.
 - Is there a fraudster in range of 3 hops, 4 hops, etc. can be a highly predictive ML feature
 - Feed page rank in a machine learning model
- Detect fastest growing networks and examine community evolution
Fastest Growing Networks

- Generate Proactive Report for the Fastest Growing Networks in terms of money flow (edge property), number of payments (edge count) and number of customers (vertices) on a time series data from the graph.

- Influencer found by Page Rank calculation.

<table>
<thead>
<tr>
<th>Community Id</th>
<th>Sample Customer Id</th>
<th>Amount Growth Pct</th>
<th>Amount Growth Abs</th>
<th>Edge Count Growth Pct</th>
<th>Edge Count Growth Abs</th>
<th>Vertex Count Growth Pct</th>
<th>Vertex Count Growth Abs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2884</td>
<td>102966</td>
<td>71.773076</td>
<td>6521.553403</td>
<td>0.25</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Community Activity

Example for a fastest growing community by money flow and rolling period of five days and daily time series data.
Graphs are REALLY powerful

Image courtesy www.networkworld.com
Summary

- In a world of real-time payments, money processing becomes faster and more automated. Fraud checks upon payment should happen fast and the time to identify fraud patterns or networks is really narrow.

- Link analysis can enhance fraud detection by running queries using graph database during key stages in the application lifecycle
 - Upon money move
 - Account creation
 - During investigation
 - When some thresholds are hit

- Traditional technologies are not designed to detect fraud in real-time. Graph databases enable fast and effective real-time link queries.
Takeaways

• Graphs are useful for real-time decision making on connected data
• Powerful data analytics
• Go step further with machine learning models
• You can do so much AI with Graph
Question: What is the connection between B and C?
Question: What is the connection between B and C?
Resources

O’Reilly’s Graph Databases: New Opportunities for Connected Data
O’Reilly’s Graph Algorithms Book
Graph Databases: The Next Generation of Fraud Detection Technology
Cypher – graph query language
Oracle Property Graph Query Language
Link Prediction
Graph Theory with Applications

Very interesting talk:
How Graph Technology Is Changing Artificial Intelligence and Machine Learning