Verizon Wireless - Fraud

Jan Shook, Principal
Oracle Open World 2012
Verizon Wireless Fraud

- Mitigate roaming (esp. international) usage fraud
- Problem: Proverbial needle-in-the-haystack
- Profile Call Detail Records (Billing)
- Billions of records / day
- Tens of thousands of records / sec
- Volumes drive IT Capital and Operational Expense
Legacy Footprint

• Oracle (Sun) SPARC III / IV
• 3 refrigerator-sized machines
• 6,000+ pounds, 100,000+ watts
• At 100% capacity (24x7)
• Oracle 10g, ~30 TB storage

← Pete (our Unix Admin)
Current Footprint

• Oracle (Sun) T5240
• 2 RU, 40 lbs, 1 kW
• At 20% capacity
• TimesTen, ~200 GB

← Pete’s hand
<table>
<thead>
<tr>
<th>Legacy / Vertical</th>
<th>Current / Horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store detail</td>
<td>Store summary</td>
</tr>
<tr>
<td>Storage drives design</td>
<td>Events drive design</td>
</tr>
<tr>
<td>Database drives performance</td>
<td>Latency drives performance</td>
</tr>
<tr>
<td>~30 TB storage</td>
<td>~200 GB storage</td>
</tr>
<tr>
<td>~100 billion of rows</td>
<td>~700 million rows</td>
</tr>
<tr>
<td>Oracle 11g, SAN, ETL</td>
<td>Oracle TimesTen, SSD, Real time</td>
</tr>
</tbody>
</table>
Focus on Throughput

• Pivot -> horizontal -> streaming -> throughput
• As throughput increases, latency must decrease
• Latency became a key design criterion
 – Application moved into a [soft] real time category
 – Problems: C++ operations failing at 180 to 200 us
 – Average op window < 100 us
Technology Stack

- Oracle (Sun) T-series processors
 - T1 (T2000), T2+ (T5240), … now T4 (T4-2)
 - 32 GB memory, then 256 GB, … now 512 GB
 - Direct attached storage, SAN, … now all flash
- Custom multithreaded, pipeline application
 - C/C++, ~400k LOC, ~52 stages (thread pools)
 - Memory maps (in-memory “database”)
Home-grown In-memory Solution

- Started with large memory maps (>50 GB)
- Success with fixed-size mmaps (Solaris is very efficient)
- Learned that growing the data set is very hard
 - Tried partitioning: Fixed + Variable
 - Large fixed partition (mmap) with binary search (no index)
 - Small variable partition with indexes, random I/O, SSDs, …
 - Worked for lower volumes, but failed at higher volumes
TimesTen In-memory Database

• Significant benefits
 – Persistence: Moves in-memory data to disk
 – Ops are within required tolerance (<100 us)
 – IMDB Cache: Replicating Oracle to TimesTen (vice versa)
 – OEM: Instrumentation

• Challenges
 – ODBC native interface
 – Transactional vs. throughput-oriented threading model
Throughput vs. Transactions

Oracle TimesTen

logs

Oracle 11g
data files
TimesTen Selects & Merges

- ~40k Selects / sec
- ~7k Merges / sec
Final Thoughts

• TimesTen does what it’s supposed to do
 – It’s a database: Application still responsible for design
• Design is critical: Threading, latency, replication
• We’re looking forward to HA and DR projects