
Deploying TimesTen Scaleout On Oracle Cloud
Infrastructure

Quickstart White Paper

O R A C L E W H I T E P A P E R | V 4 J U N E 2 0 1 9

DEPLOYING ORACLE TIMESTEN SCALEOUT DATABASE ON ORACLE CLOUD INFRASTRUCTURE

Disclaimer

The following is intended to outline our general product direction. It is intended for information

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any

material, code, or functionality, and should not be relied upon in making purchasing decisions. The

development, release, and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

1 | ENTER TITLE OF DOCUMENT HERE

Table of Contents

Disclaimer 1

Introduction 3

TimesTen Scaleout on OCI 3

Planning Your TimesTen Scaleout Deployment 4

Preparing For Your TimesTen Scaleout Deployment 5

Software Downloads and Installation Steps 6

Setting Required Variables 8

Deploying Cloud Resources and TimesTen Scaleout 9

Running Terraform 9

Running Ansible 12

Accessing The Database 13

Client Connectivity 14

OCI Connectivity Options 14

Customizing the Configuration 16

Oracle Linux Operating System Images 16

Availability Domains 16

K-Safety 16

Data Instances 17

Block Volumes 18

Management Instances 18

ZooKeeper Servers 19

Bastion Hosts 19

2 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Managing Your Configuration 19

Systemd 19

ZooKeeper 20

Management instances 20

Data Instances 20

Stop 21

Scaleout 21

Recreating the Database 24

Clients 24

Future Work 25

3 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

“We are proud to announce the release of TimesTen Scaleout, a new scaleout in-memory database for OLTP workloads. Since it

is based on a mature and time-tested TimesTen In-Memory Database, TimesTen Scaleout has both extensive sophisticated

functionality, as well as incredible performance. This scaleout architecture is designed for extreme performance OLTP workloads

and further extends Oracle’s in-memory database technology leadership.”

ANDREW MENDELSOHN

EXECUTIVE VICE PRESIDENT, ORACLE DATABASE

ORACLE CORP

Introduction

Oracle TimesTen In-Memory Database is the industry-leading in-memory database for OLTP applications, with

thousands of customers across many industries. In release 18.1 TimesTen evolves into a fully transparent, shared-

nothing, scale-out database with a new architecture called TimesTen Scaleout. This architecture now enables

TimesTen to scale across dozens of hosts, reach many terabytes in size and support near-linear scaling of

transaction throughput to hundreds of millions per second. All of this is possible using standard SQL without the

need for manual database sharding or application partitioning.

Oracle Cloud Infrastructure provides high performance compute, network and storage ideal for deploying TimesTen

Scaleout. This paper describes a set of Terraform and Ansible1 scripts that can be used to provision TimesTen

Scaleout on Oracle Cloud Infrastructure (OCI). For detailed information on the TimesTen Scaleout please see the

documentation.

TimesTen Scaleout on OCI

A set of scripts provide an example of provisioning TimesTen Scaleout on OCI. They are modeled on the examples

for the Terraform Provider for OCI. At a high level, the following operations are performed:

» Using Terraform provision cloud resources including a Virtual Compute Network (VCN), security lists, public
and private subnets, Bare Metal or VM compute instances

» Using Ansible configure the resources to prepare them for TimesTen Scaleout deployment.

» Using Ansible then deploy the ZooKeeper servers, management and data instances that comprise a single
database.

The following diagram shows deployment possibilities. Bastion hosts run on a regional public subnet allowing

ssh access. ZooKeeper (ZK), management (MG) and data (DI) compute instances run on a regional private

subnet. All servers use a NAT gateway configuration so the outside world can be reached from the hosts,

1 Hashicorp Terraform and Ansible Core Project are available in Oracle Linux 7 yum repositories

http://www.oracle.com/technetwork/database/database-technologies/timesten/documentation/index.html
https://github.com/oracle/terraform-provider-oci
https://github.com/oracle/terraform-provider-oci
https://www.terraform.io/
https://docs.ansible.com/#project

4 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

however only Bastion hosts are reachable from the public internet. Customers can add OCI VPN or DRG

Gateways, use VCN Peering, FastConnect or any other OCI supported method to access the database from

outside the compartment. The deployment diagram is explained in more detail below.

Oracle TimesTen Scaleout Deployment Possibilities. Dark shading indicates default host deployment.

In the diagram above, the dark boxes represent the default configuration produced by the scripts, consisting of a

bastion host and four hosts for data instances. The lighter boxes depict optional components. In the default

configuration shown with the dark boxes, the ZooKeeper servers and two management instances configured as an

active / standby pair are co-located with the data instances. The compute instances comprise an N x K TimesTen

Scaleout configuration where N represents the number of replica sets of the database and K is the K-safety or

number of replicas. The default is to create a 2x2 configuration, where there are 2 replica sets and 2 copies of the

data (2 dataspaces).

Through script variables, the configuration can be changed to offload ZooKeeper and management instances to

their own hosts (as depicted using lighter boxes in the diagram). Further larger values of N can be used to

distribute the database across more hosts. K-safety values of 1 and 2 are supported.

Planning Your TimesTen Scaleout Deployment

The discussion below assumes that you are familiar with Oracle Cloud Infrastructure and TimesTen Scaleout. A

good introduction to OCI can be found in the, “OCI Getting Started Guide”. A good introduction for TimesTen

Scaleout is available, here.

https://docs.us-phoenix-1.oraclecloud.com/Content/Network/Concepts/fastconnect.htm?Highlight=FastConnect
https://docs.us-phoenix-1.oraclecloud.com/pdf/gsg/OCI_Getting_Started.pdf
https://www.oracle.com/database/timesten-in-memory-database/index.html

5 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

To get started in planning, you need to choose the number of replica sets in the database (N in NxK) and the

compute instance shape based on your workload. The default data instance compute shape uses VM.DenseIO2.8

shapes, with 8 cores (OCPUs), 120 GB RAM, 8.2 Gbps network bandwidth and 6.4 TB NVMe SSD. It is

recommended to leave about 10 GB memory for file system and other operating systems overhead. For example,

the shared memory used for the database on the VM.DenseIO2.8 should not exceed 110 GB. For direct linked

applications, it is necessary to plan to use shapes with sufficient memory for both application and database

requirements.

It is recommended to use K-safety = 2 and shapes with NVMe storage for the data instances. DenseIO or HighIO

shapes are more performant than standard shapes with block storage. Standard shapes require block storage. On

shapes with more than 4 NVMe devices only up to 4 devices are configured. On shapes with fewer devices, all the

disk is used. With 4 devices you can choose an mdraid, RAID 10 striped and mirrored configuration. By default,

the disks are striped using LVM in a RAID 0 configuration. With a value of K-safety = 2, and an NVMe shape, data

loss in the event of a failed disk is avoided as there is a redundant copy of the data on another host. When K-

safety = 1, transactions are durably committed to disk, but loss of an host shape with NVMe storage will result in

loss of data.

The shapes chosen affect the network bandwidth available to the database as shown in the OCI Components For

Launching Images table. TimesTen Scaleout workloads with lots of connections that do not consider locality of

reference can use up the network bandwidth. Generally, improving network bandwidth can improve peak

throughput. The utiltity dstat is installed on the data instances so that network bandwidth (along with other

resources) can be easily monitored.

If ZooKeeper and management instances are offloaded to their own compute instances, the default shape for those

instances is chosen to be a VM.Standard2.1 shape. Larger shapes can be chosen by setting script variables if

customer applications are to be co-located on these compute hosts.

Preparing For Your TimesTen Scaleout Deployment

Terraform is a tool for managing infrastructure in code. It allows for provisioning, modifying, versioning and

managing infrastructure components. Terraform examines the existing state of the infrastructure based on

configuration files and generates an execution plan. The plan can then be executed to achieve the desired state,

here, provisioning, deleting or modifying the networking components and server hosts for deploying TimesTen

Scaleout. For basic information about Terraform, see the following sites:

https://docs.cloud.oracle.com/iaas/Content/Compute/References/computeshapes.htm
https://docs.cloud.oracle.com/iaas/Content/Compute/References/computeshapes.htm

6 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

» https://github.com/oracle/terraform-provider-oci 

» https://community.oracle.com/community/oracle-cloud/cloud-infrastructure/blog/2017/02/15/terraform-and-

oracle-bare-metal-cloud-services

The scripts described here are intended to follow other Terraform examples for OCI located in the examples folder

of the terraform-provider-oci GitHub repository at

 https://github.com/oracle/terraform-provider-oci/tree/master/examples

Ansible is a tool, similar to Chef or Puppet, used for automating system management operations (DevOps). Ansible

core project scripts are used to configure the operating system, software and install the database. The ansible

binary is installed on the OCI Linux servers by the provided scripts using yum from Oracle repositiories. Ansible

was chosen since it doesn’t require access to external servers nor repositories.

Software Downloads and Installation Steps

The components you must download and installation steps are described below. You must be able to access your

tenancy and the compartment in the Oracle Cloud from the host where you wish to run the scripts to deploy your

service. The host can be on premises or in the Oracle Cloud. Running the scripts requires an Oracle Linux 6 or 7

system or a system running MacOS High Sierra 10.13.4, with python version 2.6 or greater.

If you already have a compute instance provisioned in your tenancy, then a script, provisionScaleoutOCI, is

provided that eliminates the need for the manual software installation and download steps described in this

section. Please see the QUICKSTART.md file.

The following components are necessary.

» Terraform Binary and Provider for Oracle Cloud Infrastructure (OCI)

» OCI Credentials and OCIDs

» TimesTen Scaleout OCI Deployment Scripts

» TimesTen Scaleout Distribution

» Optional JDK/JRE 8 Distribution

Each of these is described in more detail below.

» Terraform binary and Terraform Provider for Oracle Cloud Infrastructure.

The Terraform Provider for OCI is a plugin created by the Oracle Cloud team to operate directly with OCI

REST and native control plane endpoints. The Terraform binary is the command line utility that uses the

OCI plugin and the configuration scripts to plan, create or destroy the cloud infrastructure.

https://github.com/oracle/terraform-provider-oci
https://community.oracle.com/community/oracle-cloud/cloud-infrastructure/blog/2017/02/15/terraform-and-oracle-bare-metal-cloud-services
https://community.oracle.com/community/oracle-cloud/cloud-infrastructure/blog/2017/02/15/terraform-and-oracle-bare-metal-cloud-services
https://github.com/oracle/terraform-provider-oci/tree/master/examples

7 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

The terraform-provider-oci installation documentation describes how to download and install both the

terraform provider for OCI and the terraform binary, but only downloading the binary is required. The

provider is downloaded when terraform is first run.

The terraform binary is downloaded from: https://www.terraform.io/downloads.html

The documentation can be found here: https://github.com/oracle/terraform-provider-oci.

 To install the terraform binary,

 # your version may be different than 0.11.10

% curl -O https://releases.hashicorp.com/terraform/0.11.10/terraform_0.11.10_linux_amd64.zip

 % mkdir -p ~/.oci

 % unzip terraform_0.11.10_linux_amd64.zip # your version may be different than 0.11.10

 % cp terraform ~/.oci

 The terraform-provider-oci will be installed when terraform init is run as described below.

» OCI Credentials and OCIDs.

If you haven’t done so already, it’s necessary to upload a public key in PEM format for the user that will run the

scripts to provision the cloud infrastructure and TimesTen Scaleout. For detailed instructions, please see:

https://docs.us-phoenix-1.oraclecloud.com/Content/API/Concepts/apisigningkey.htm

A brief outline of the steps necessary would be to run the following (note these instructions may be

superceded by those at the link above)

 % mkdir -p ~/.oci/keys

% cd ~/.oci/keys

 # generate keys that do not require a passphrase

 % openssl genrsa -out oci_api_key.pem 2048

 # remove potential group or other user promiscuity

 % chmod go-rwx oci_api_key.pem

 # generate public key in PEM format

 % openssl rsa -pubout -in oci_api_key.pem -out oci_api_key_public.pem

The public key in PEM format generated above, oci_api_key_public.pem, needs to be uploaded to OCI.

This is done through the OCI Console under Menu->Identity->Users or by clicking on your user account link

at the top center right of the console and navigating to User Settings.

Resources in the Oracle Cloud are described by identifiers known as OCIDs. For use with the scripts, you’ll

need the OCIDs for the tenancy and user, and the key fingerprint2. Also required is the OCID for the

compartment where resources are to be created. Use the compartment assigned by your cloud

administrator. The OCID can be found in the OCI console under Menu->Identity->Compartments.

2 Users provisioning from a host within OCI can use Instance Principal Authorization instead.

https://www.terraform.io/downloads.html
https://github.com/oracle/terraform-provider-oci
https://docs.us-phoenix-1.oraclecloud.com/Content/API/Concepts/apisigningkey.htm
https://console.us-phoenix-1.oraclecloud.com/
https://docs.cloud.oracle.com/iaas/Content/API/SDKDocs/terraformconfig.htm?Highlight=%20Principals

8 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

» TimesTen Scaleout BYOL Scripts

The Terraform and Ansible scripts are included with the TimesTen example samples available on GitHub.

Download the oracle-timesten-samples.zip file available at:

https://github.com/oracle/oracle-timesten-samples/

Once downloaded, unzip the samples so that the components below can be put in place.

 curl -OL https://github.com/oracle/oracle-timesten-samples/archive/master.zip

unzip -q oracle-timesten-samples-master.zip

cd oracle-timesten-samples-master/cloud/ottscaleout

The top level directory is named ottscaleout.

» TimesTen Scaleout Distribution

This is a bring-your-own-license (BYOL) solution. A TimesTen Scaleout distribution can be downloaded for

evaluation from OTN. For production use, please download the most recent patch release from ARU or

eDelivery. The zip file should be placed in the ottscaleout/service/packages directory.

» JDK/JRE 8 Distribution.

TimesTen Scaleout supports JDK8/JRE8 which can be downloaded from

http://www.oracle.com/technetwork/java/javase/downloads/ or

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Please select the linux-x64.tar.gz file placing it in the ottscalout/service/packages directory.

At this point the necessary components have been gathered, and it’s time to set the variables necessary to launch

the scripts.

Setting Required Variables

Variables that control the cloud and database provisioning are located in two files found in the top level ottscaleout

directory, env-vars and variables.tf. The env-vars file contains environment variables that set access to OCI, while

variables related to TimesTen Scaleout and the desired database configuration are found in variables.tf file.

Modify the env-vars file using the credentials and OCIDs gathered in the Installation section above.

Region assigned by your cloud administrator (drawdown menu on OCI Console page)

export TF_VAR_region="us-phoenix-1"

Tenancy (Menu->Administration-Tenancy Details)

export TF_VAR_tenancy_ocid="ocid1.tenancy. … "

User OCID (Menu->Identity->Users-><cloud-user-login>)

export TF_VAR_user_ocid="ocid1.user… "

API Key Fingerprint (Menu->Identity->Users-><cloud-user-login>->API Keys)

export TF_VAR_fingerprint="1f:2b:…"

Private key corresponding to public key uploaded to console

export TF_VAR_private_key_path="~/.oci/keys/oci_api_key.pem"

http://www.oracle.com/technetwork/database/database-technologies/timesten/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

9 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Compartment OCID assigned by your cloud administrator from Menu-> Identity->Compartments

export TF_VAR_compartment_ocid="ocid1.compartment… "

The credentials above allow access to the OCI resources for provisioning cloud resources. Users provisioning from

a compute instance in the OCI cloud can use Instance Principal Authorization instead, however that approach is not

described here.

For ssh access to the bastion hosts provisioned, credentials in regular rsa format are required. For example,

 export TF_VAR_ssh_public_key=$(cat ${HOME}/.ssh/id_rsa.pub)

 export TF_VAR_ssh_private_key=$(cat ${HOME}/.ssh/id_rsa)

Beyond the above, there are no other required variables, rather everything else has default values that result in

provisioning an NxK (2x2) database named ttimdb1.

Deploying Cloud Resources and TimesTen Scaleout

Running Terraform

Once variables have been set, it’s time to run the scripts. The user running the scripts should be the one for whom

the OCI credentials were established above.

% cd ottscaleout

Before using terraform, to plan, apply or destroy, make sure to source the environment file. Following other

terraform examples a bash compatible shell is required.

% . ./env-vars

When run the first time, Terraform may need to use a proxy server to bypass local firewalls in order to download the

“oci”, “null_resource” and “template” providers from the internet.

initialize terraform

% terraform init

Initializing provider plugins...

- Checking for available provider plugins on https://releases.hashicorp.com...

- Downloading plugin for provider "oci" (3.4.0)...

- Downloading plugin for provider "null" (1.0.0)...

…

The terraform-provider-oci will not be downloaded if a provider with versions >= 3.24.0 and < 4.0 exists under

directories ~/.terraform.d or ./.terraform.

https://docs.cloud.oracle.com/iaas/Content/API/SDKDocs/terraformconfig.htm?Highlight=%20Principals

10 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

An optional step is view the resources terraform will provision. After provisioning, it is always a good idea to view

the plan to understand what terraform will create or more importantly, what it may destroy.

% terraform plan

Refreshing Terraform state in-memory prior to plan...

…

Plan: 50 to add, 0 to change, 0 to destroy.

The output is extensive so you may wish to save it in a file. If the plan looks OK, then deploy the cloud resources.

Adding the –auto-approve option (two dashes --) avoids having to type ‘yes’ at a confirmation prompt.

% terraform apply --auto-approve

data.oci_identity_availability_domains.ADs: Refreshing state...

…

11 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Allocating the default 2x2 cloud infrastructure takes about 4 minutes when the speedtest shows latency of 80 ms3.

Again there is extensive output. When complete, the output provides the address(es) of the Bastion host(s).

Apply complete! Resources: 23 added, 0 changed, 0 destroyed.

Outputs:

InstanceIPAddresses = [
 bastion host instances (public addresses):
 ssh opc@129.213.134.5 ,
 database [mgmt|zookeeper] hosts (private addresses):
 ttimdb1-di-001 172.16.32.4
 ttimdb1-di-002 172.16.32.4
 ttimdb1-di-003 172.16.32.2
 ttimdb1-di-004 172.16.32.2
 ,

 client host instances (private addresses):

Terraform uses a file, ‘terraform.tfstate’ by default, to keep track of the state of allocated resources. The file is

necessary to destroy the configuration with terraform or to make changes. It’s a good idea to make a copy and

save it in a safe place. The configuration file can be used to destroy the resources via terraform.

At this point cloud resources have been provisioned, however, the systems have not been configured and the

database is not yet running. If there has been a problem along the way, assuming you can correct the issue, you

can rerun terraform and it will correct any changes along the way, continuing where it left off.

To destroy your configuration, run:

% terraform destroy -force

which frees all resources. Destroy can also be used if there was a failure along the way and you want to start over.

Assuming you want to use what’s been created, the next step is to ssh to the Bastion host as user opc to configure

the hosts and TimesTen Scaleout.

3 Latency is only one metric. It doesn’t completely explain how long the operations will take.

https://cloudharmony.com/speedtest-for-oracle

12 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Running Ansible

It is possible to have Terraform run the ansible scripts, however, Terraform may timeout completing the installation

with a large configuration. Instead, cut and paste the ssh string from the terraform output to login to the Bastion

host to run the scripts.

% ssh opc@129.213.40.166

…

Are you sure you want to continue connecting (yes/no)? yes

% cd service/ansible

% ansible-playbook -i ./hosts rollout.yaml

PLAY [bastion-hosts] ***

…

It takes several minutes to run through the playbooks (~15 mins when speedtest shows 80 ms latency). Output is

extensive, especially with the optional -v option. When complete, the output shows the TimesTen Scaleout

configuration and access information. The host names for the different compute images use a prefix based on the

service-name, a 2 letter indicator [zk|mg|di|cl] depending on the host usage, and a 3 digit suffix, e.g. ttimdb1-di-001.

TASK [datainstances : dbstatus output **

ok: [ttimdb1-di-001] => {

 "msg": [

 "Database ttimdb1 Replica Set status as of Fri Apr 27 17:15:34 GMT 2018",

 "",

 "RS DS Elem Host Instance Status Date/Time of Event Message ",

 "-- -- ---- ------------- --------- ------ ------------------- ------- ",

 " 1 1 1 ttimdb1-di-001 instance1 opened 2018-04-27 17:15:20 ",

 " 2 2 ttimdb1-di-002 instance2 opened 2018-04-27 17:15:20 ",

 " 2 1 3 ttimdb1-di-003 instance3 opened 2018-04-27 17:15:20 ",

 " 2 4 ttimdb1-di-004 instance4 opened 2018-04-27 17:15:20 "

]

}

Above the output shows a 2x2 database running on ttimdb1-di-001 through ttimdb1-di-004. The database has four

instances, instance1 through instance 4 that are open and ready for use. Database access information follows.

TASK [datainstances : ttgridrollout output] ***

ok: [ttimdb1-di-001] => {

 "msg": [

 "Management Instance Locations",

 "-----------------------------",

 "- ttimdb1-di-001:/u10/TimesTen/ttimdb1/iron_mgmt",

https://cloudharmony.com/speedtest-for-oracle

13 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

 "- ttimdb1-di-002:/u10/TimesTen/ttimdb1/iron_mgmt2",

 "",

 "Please source ttenv script under Management Instances for grid management via\"ttGridAdmin\" commands.",

 "",

 " For example, to use the first management instance, on ttimdb11-di-001:",

 " sh: . /u10/TimesTen/ttimdb1/iron_mgmt/bin/ttenv.sh",

 " csh: source /u10/TimesTen/ttimdb1/iron_mgmt/bin/ttenv.csh",

 "",

 "",

 "Data Instance Locations",

 "-----------------------",

 "- ttimdb1-di-001.instance1 ==> ttimdb1-di-001:/u10/TimesTen/ttimdb1/instance1",

 "- ttimdb1-di-002.instance2 ==> ttimdb1-di-002:/u10/TimesTen/ttimdb1/instance2",

 "- ttimdb1-di-003.instance1 ==> ttimdb1-di-003:/u10/TimesTen/ttimdb1/instance1",

 "- ttimdb1-di-004.instance2 ==> ttimdb1-di-004:/u10/TimesTen/ttimdb1/instance2",

 "",

 "Please source ttenv script under Data Instances for database operations.",

 "",

 " For example, to use instance1, on ttimdb1-di-001:",

 " sh: . /u10/TimesTen/ttimdb1/instance1/bin/ttenv.sh",

 " csh: source /u10/TimesTen/ttimdb1/instance1/bin/ttenv.csh"

]

}

The above shows management and data instances running on ttimdb1-di-001 – ttimdb1-di-004 and the commands

to connect to them. We hope that there hasn’t been any issues along the way, but if there are, assuming you can

correct them, you need merely rerun ansible to continue.

Accessing The Database

From the Bastion host, you can ssh to any other host in the configuration. Perhaps the first thing to do to use the

database is to create an administrative user. It is necessary to run on a data instance as the instance administrator

user, oracle.

[opc@ttimdb1-bs-001 ~]$ ssh ttimdb1-di-001

Last login: Fri Apr …

[opc@ttimdb1-di-001 ~]$ sudo su - oracle

[oracle@ttimdb1-di-001 ~]$

Using the output from above, the instance for ttimdb1-di-001 is located at: /u10/TimesTen/ttimdb1/instance1

[oracle@ttimdb1-di-001 ~]$ /u10/TimesTen/ttimdb1/instance1/bin/ttenv ttisql dsn=ttimdb1

14 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

…

connect "dsn=ttimdb1";

…

Command> create user appuser identified by appuser;

User created.

Command> grant admin to appuser;

Command> quit;

Disconnecting...

Done.

The command above creates an admin user named appuser with password appuser. You may also want to run

ttStatus and make note of the daemon port (default here is 46464).

$ ~]$ /u10/TimesTen/ttimdb1/instance1/bin/ttenv ttstatus

TimesTen status report as of Fri Apr 27 21:49:53 2018

…

Daemon pid 31052 port 46464 instance instance1

Later, a trick for accessing hosts on the private networks from outside the tenancy with a single command

invocation is to use the ssh -J option (jump proxy).

ssh -J opc@129.213.35.214 opc@ttimdb1-di-001

…

Are you sure you want to continue connecting (yes/no)? yes

…

For example, you’d run this on the system where terraform was run to go directly to a management or data

instance. The ssh command first connects to the Bastion host, then to the target, in this case, ttimdb1-di-001.

You’re ready to run applications! Almost.

Client Connectivity

OCI Connectivity Options

There are several ways to connect applications to the database. TimesTen Scaleout direct-linked applications can

be deployed on the same compute instances as the database themselves. Please ensure that the shapes chosen

for the deployment are sufficient to account for both application and database resources, including network

bandwidth, number of CPUs, memory capacity, disk capacity and disk bandwidth.

15 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

OCI provides many other options for connecting to the database in your cloud tenancy from the outside including

VCN peering, FastConnect and VPN access. These options provide high bandwidth, low latency access from

outside the tenancy.

Within the tenancy, separate client systems can be deployed on the private subnets provided. It is not

recommended to install clients on the public networks. Installing on the private networks provides low latency, high

bandwidth access, since client systems are in the same compartment. If the management and or ZooKeeper

servers are running on their own separate compute instances, those may be used as clients given they have been

provisioned with sufficient resources to run the client applications.

The scripts can be used to deploy dedicated compute instances for clients, on which TimesTen client installations

and instances are created. The variables, “clInstanceCount” and “clInstanceShape” control the number and

compute shape provisioned for client use.

 variable "clInstanceCount" { default = "2" }

variable "clInstanceShape" { default = "VM.Standard2.1" }

For example, the above variables settings provision to VM.Standard2.1 systems on the private subnets, and install

the TimesTen Scaleout client software already configured to connect to the database. If management instances

and/or Zookeeper servers have been offloaded to their own compute instances, client installations and instances

will be created there, regardless of the setting of variable “clInstanceCount”. The client instances are created under

the user “oracle” account, in the <service_name>-client directory.

The terraform output with variable settings as in the example above shows the provisioned client systems:

client host instances (private addresses):

ttimdb1-cl-001 172.16.48.3

ttimdb1-cl-002 172.16.64.3

To use the provisioned client, or a client on an offloaded management instance or Zookeeper server, ssh to the

appropriate compute instance as user oracle. Assuming user appuser was created as described above,

ssh -tt ttimdb1-cl-001 sudo su – oracle

. ttimdb1-client/bin/ttenv.sh

ttisqlcs dsn=”ttimdb1cs;uid=appuser;pwd=appuser” 4

…

connect "dsn=ttimdb1";

Connection successful: DSN=ttimdb1;

 …

4 Of course, it is not a best practice to specify a password on the command line.

16 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Command>

Your client instance is now connected! To manually configure a compute instance for client access, please see the

TimesTen Scaleout documentation.

Customizing the Configuration

There are a number of variables that allow control over the initial provisioning settings and configuration. The

variables are located in the variables.tf file. These variables are discussed in the next sections.

Oracle Linux Operating System Images

The same Oracle Linux Image is installed on all provisioned compute instances. As of this writing, this is an Oracle

Linux 7.5 image. To set the image to be installed, update the “InstanceImageOCID” map in variables.tf. Please

see https://docs.us-phoenix-1.oraclecloud.com/images/ for available images.

Upon installation, yum updates all packages in the image for which there are security errata available if the

securityupdates variable is true in variables.tf. By default, the image is not updated. A cronjob lists by CVE any

security updates available, writing the output to the /home/opc/latest-cves file. If you’d like to apply security

updates upon provisioning, choosing more recent images results in faster startup time as there is generally less

errata to apply. It is up to you to apply any updates necessary to maintain the provisioned hosts.

Availability Domains

By default, the data compute instances for the 2x2 configuration are created in availability domains AD-1 and AD-2.

To change the provisioning to use AD-2 and AD-3, set the environment variable in variables.tf:

 variable” initialAD” { default = "2"}

The default setting is initialAD=1. Setting initialAD=3, provisions in AD-3 and AD-1. This variable also controls the AD’s

where management instances are provisioned if they are offloaded to their own VMs. If the ZooKeeper servers are

offloaded, then their VMs span all three availability domains.

To allocate data and management compute instances in a single availability domain, set

variable “singleAD” { default=”true” }.

The AD used is specified by “initialAD” above.

K-Safety

https://www.oracle.com/technetwork/database/database-technologies/timesten/documentation/index.html
https://docs.us-phoenix-1.oraclecloud.com/images/

17 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

You may configure TimesTen Scaleout to create single or multiple copies of data by setting the ksafety value in

variables.tf to 1 or 2 respectively. By default, ksafety is set to 2 to create multiple copies of the data.

The K in NxK

variable "ksafety" { default = "2" }

When ksafety==1, then the database attribute Durability is set so that Durability=1, meaning the transaction

manager will durably write all prepare-to-commit records.

Data Instances

For high availability purposes, database replica sets span across availability domains unless singleAD==true as

described under Availability Domains above. So generally, one TimesTen Scaleout data space is in AD-1, and the

other is in AD-2. The number and shapes of the data instances are controlled by environment variables in

variables.tf.

the N in NxK

variable “diInstanceCount” { default = “2” }

Compute instance shape for data instances

N*K VMs/BMs are provisioned for data instances.

Recommended to use NVMe shape(DenseIO or HighIO) for best performance

variable “diInstanceShape” { default = "VM.DenseIO2.8"}

The data instances can also use Standard shapes, e.g. VM.Standard2.4, however use of Standard shapes also

requires using Block Volumes. See the section on Block Volumes below.

The name of the database is set in env_vars with:

export TF_VAR_service_name=“ttimdb1”

This variable also controls the vcn name, and the directory structure. For example, the installation, and instance

directories are subdirectories of a top level directory named ttimdb1, in this case. Changing the name, enables

another set of resources with a different VCN and database to be provisioned in the same compartment.

Other database attributes such as PermSize and DatabaseCharacterSet can be changed using the “timesten” map

variable in the variables.tf file.

The database runs under user oracle. That is, the user oracle is the Instance Administrator for the database.

There is no password for the oracle user. Access to the oracle account is through sudo from the opc user account.

 sudo su – oracle

18 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Once logged in as oracle, ssh can be used to access the oracle account on other hosts. If it is undesirable to have

users sudo from the opc account, then the ssh keys under /home/oracle/.ssh can be exported to the user.

The installation_location for TimesTen Scaleout is under /home/oracle/<service_name>/<version>;

/home/oracle/ttimdb1/tt18.1.1.2.0 by default. The data instance directories, database files, and transaction log files

are located under /<fsname>/TimesTen/<service-name>, /u10/TimesTen/ttimdb1 by default. The filesystem name,

“fsname”, can be changed in variables.tf.

The “fsname” (/u10 default) filesystem is the mount point for the NVMe or Block Volume devices. As discussed in

‘Planning’ above, no more than 4 NVMe devices, or 1 Block Volume, are configured under this mount point. If more

than one device is present, the default is to stripe the devices using LVM. To use mdraid to create a RAID 10

striped and mirrored configuration on NVMe devices, instead of LVM striping, set the variable “storage”=”MD-RAID-

10” in variables.tf. It takes significant time to create a filesystem on an mdraid device.

Block Volumes

Block Volumes may be used with Standard shapes. One Block Volume is provisioned for each data compute

instance. Block Volumes are configured by specifying the size in GBytes of the storage requested. It is

recommended to use a size at least 3X the size of memory, as the Block Volume contains two checkpoint files

(2xPermSize), transaction log files and is used temporarily for backups. If the Block Volume is to contain a

repository, then be sure to account for that storage in sizing. To provision Block Volumes, set the following in

variables.tf.

Minimum allocation is 50 GB

variable "diBlockVolumeSizeGB" { default = "50" }

The setting above configures 50 GByte Block Volumes. A setting less than 50 will result in no Block Volumes being

provisioned.

Management Instances

By default, management instances are co-located on the same VMs as the data instances. Two management

instances are created, that like the database replica sets, span availability domains. The management instances

can be offloaded to their own VMs by setting, variable "mgInstanceCount" { default = "2"} in variables.tf. When

offloaded, the management instances use a VM.Standard.2.1 shape. The shape may also be changed in

variables.tf. Each management instance requires less than 1 GB of RAM, about 2 GB storage, and uses very little

19 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

CPU or network bandwidth. A management instance offloaded to their own VM contains a client instance as

described above under Client Connectivity.

ZooKeeper Servers

TimesTen Scaleout uses ZooKeeper as a membership service. By default, 3 ZooKeeper servers are set running,

co-located with the data instances. If there are more than 2 data instances, then 3 of them will run ZooKeeper

servers. If there are separate management instances, 2 of the ZooKeeper servers will run on the management

instance hosts, and the third will run on a data compute instance. ZooKeeper servers may be offloaded to their

own VMs, by setting

variable “zkInstanceCount” { default = "3" }

In this case, the 3 ZooKeeper Servers will span all 3 availability domains. The default shape for the offloaded

servers is a VM.Standard2.1 shape. ZooKeeper servers require ~1 GB of memory but use little CPU or network

bandwidth. A Zookeeper server offloaded to its own VM contains a client instance as described above under Client

Connectivity.

Bastion Hosts

Bastion hosts provide an internet firewall and are used as ssh gateways to the rest of the configuration. Use of a

bastion host is considered best practice for OCI. For more information please read, Bastion Hosts: Protected

Access for Virtual Cloud Networks. By default, only 1 bastion host is provisioned, but the implementation allows for

the highly available configuration described in the OCI white paper, NAT Instance Configuration: Enabling Internet

Access for Private Subnets, by increasing the bsInstanceCount variable in variables.tf. The scripts described in the

paper for the H/A configuration are not deployed on the bastion hosts, however, copies can be extracted from the

whitepaper or can be found in the service/scripts directory. The number of bastion hosts and their shape are

configured in the variables.tf file.

Managing Your Configuration

Systemd

The ZooKeeper servers, management and data instances are running as services under systemd. If one of these

compute instances goes down, then systemd attempts a restart. To generically check the status of the services,

one of the commands can be used below from the opc user account.

% sudo systemctl status <service-name>

% sudo journalctl -u <service-name> # -f option can be added to follow updates dynamically.

https://cloud.oracle.com/opc/iaas/whitepapers/bastion_hosts.pdf
https://cloud.oracle.com/opc/iaas/whitepapers/bastion_hosts.pdf
https://cloud.oracle.com/opc/iaas/whitepapers/nat_instance_configuration.pdf
https://cloud.oracle.com/opc/iaas/whitepapers/nat_instance_configuration.pdf

20 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

ZooKeeper

The systemd service for ZooKeeper is named <service-name>-zk1.service. For troubleshooting purposes, ncat is

installed on the compute instances to enable sending the ZooKeeper four letter commands such as ‘stat’.

$ echo stat | nc ttimdb1-di-002 2181

Zookeeper version: 3.4.10-39d3a4f269333c922ed3db283be479f9deacaa0f, built on 03/23/2017 10:13 GMT

Clients:

 /172.16.10.2:59199[0](queued=0,recved=1,sent=0)

Latency min/avg/max: 0/0/0

Received: 2

Sent: 1

Connections: 1

Outstanding: 0

Zxid: 0x10000001d

Mode: leader

Node count: 21

Management instances

The management instances, in particular the active management instance, is where the database is managed.

Operations on management instances under TimesTen Scaleout are performed by the ttgridadmin utility. To

monitor a management instance, ttgridadmin mgmtexamine is expected to be run periodically. In the event a

compute instance becomes unavailable, the output of mgmtexamine provides recommended actions to take to

failover or restart the instances. Scripts are installed under systemd that periodically check the state of the

management instances and run the recommended actions from ttgridadmin mgmtexamine in the event an instance

goes down. For the management database, systemd runs a service that continuously checks the state of the

management database by running a script named, ‘/home/oracle/bin/mgmtexamine.py’ The service files are

named, <service-name>-mgmt.service and <service-name>-mgmt.timer. If the management instances are

destroyed, or moved to different compute hosts, without using the provided scripts, please ensure the

corresponding services are shut down.

Data Instances

The database service files are named <host>.service, e.g ttimdb1-di-001.service. The data instances will be

restarted on reboot or an abnormal exit, that is one where the return code is not 0 and not via one of the signals,

SIGHUP, SIGINT, SIGTERM, nor SIGPIPE.

21 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Stop

Ansible scripts are provided to stop the database, management and ZooKeeper servers and their corresponding

systemd services in that order

% ansible-playbook -i hosts stop.yaml # or

% ansible-playbook -I hosts -e stoptime=<time-in-seconds> stop.yaml

The stop operation closes and unloads the database from memory by running the commands:

 ttgridadmin dbclose <dbname> -wait <time-in-seconds>

 ttgridadmin dbunload <dbname> -wait <time-in-seconds>

The <time-in-seconds> parameter can be an empty string meaning wait until complete. By default, stoptime is set

to 5 minutes but can be configured in variables.tf or on the command line as above. The ansible scripts will fail out

if a timeout occurs. All client-server connections to the database need to be terminated before the database can be

unloaded.

After the database is unloaded the daemons and services are stopped. Next, the management services are

stopped with ‘ttgridadmin mgmtstandbystop’ and ‘mgmtactivestop’. Finally, the ZooKeeper provided ‘zkServer.sh

stop’ script is run to halt the ZooKeeper servers.

The scripts do not turn off the compute resources used, rather that needs to be done through the OCI console.

Restart scripts are not yet provided. To restart, use systemd to first restart the ZooKeeper servers, the

management instances and then the data instances in that order.

Restart

To restart the grid, database and underlying services, use the restart.yaml file.

% ansible-playbook -I hosts restart.yaml or

% % ansible-playbook -I hosts -e restarttime=<time-in-seconds> start.yaml

The scripts will restart the Zookeeper servers, then will restart a single management instance. This instance will

become the replication primary for the management database. The standby database is restarted automatically.

The scripts poll <time-in-seconds>, by default, 300 seconds for the management primary to restart then another

<time-in-seconds> interval for the standby to restart. The governing systemd services are started subsequently.

The <time-in-seconds> option can be specified on the command line or in the variables.tf file. Finally, the data

instances are started using their corresponding systemd services. The output from running the command displays

the status information of the Zookeeper servers, management and data instances.

22 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Scaleout

A limited form of scaling out the number of data instances can be achieved by increasing the variable count of

data instances available, the N in NxK. For example, if you started with a 1x2 configuration, to go to a 2x2

configuration, increase N to 2.

 Edit variables.tf, setting “diInstanceCount” { default = “2” }

Terraform plan will show an addition of two data instances.

 % terraform plan

Refreshing Terraform state in-memory prior to plan...

…

+ oci_core_instance.di_instance[2]

…

+ oci_core_instance.di_instance[3]

…

 Plan: 4 to add, 0 to change, 2 to destroy.

 …

Once the plan looks good, create the data instances. The –auto-approve option has two dashes.

 % terraform apply –auto-approve

oci_core_virtual_network.CoreVCN: Refreshing state...

…

Apply complete! Resources: 4 added, 0 changed, 2 destroyed.

Outputs:

InstanceIPAddresses = [

 bastion host instances (public addresses):

 ssh opc@129.213.102.15 ,

 database [mgmt|zookeeper] hosts (private addresses):

 ttimdb1-di-001 172.16.32.2

 ttimdb1-di-002 172.16.32.2

 ttimdb1-di-003 172.16.32.3

 ttimdb1-di-004 172.16.32.3

]

23 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Terraform has provisioned the data instances, updated the ansible hosts file and copied that file to the Bastion host.

To add the instances to the configuration, login to the Bastion host to perform the following operations. Ansible will

add the hosts, installations and instances, and then run dbDistribute to populate the elements. How long it takes to

scale out depends on how much data needs to move to the new elements.

 % ssh 129…

Last login: …

[opc@ttimdb1-bs-001 ~]$ cd service/ansible

[opc@ttimdb1-bs-001 ansible]$ ansible-playbook -i hosts scaleout.yaml

…

PLAY [db-addresses]

…

"Host ttimdb1-di-003 created in Model",

 "Installation installation1 created in Model",

 "Instance instance1 created in Model",

 "",

 "Host ttimdb1-di-004 created in Model",

 "Installation installation1 created in Model",

 "Instance instance2 created in Model",

 "",

 "Creating new model version...

If the scaleout has been successful, ansible displays the replica set information:

 "RS DS Elem Host Instance Status Date/Time of Event Message ",

 "-- -- ---- -------------- --------- ------ ------------------- ------- ",

 " 1 1 1 ttimdb1-di-001 instance1 opened 2018-06-20 17:39:15 ",

 " 2 2 ttimdb1-di-002 instance2 opened 2018-06-20 17:39:16 ",

 " 2 1 3 ttimdb1-di-003 instance1 opened 2018-06-20 17:39:16 ",

 " 2 4 ttimdb1-di-004 instance2 opened 2018-06-20 17:39:16 "

Scaling the infrastructure has limitations. Scaling in, that is going from a 2x2 to a 1x2 configuration is not currently

supported by the scripts. Nor is attempting to “scale up” or to “scale down” by changing the shape of the data

instances. These operations result in terraform destroying the existing data instances, then provisioning new ones.

24 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Since there are no ansible scripts in place to perform these operations the database is left in an inconsistent state.

In addition, scaling the number of management instances or ZooKeeper servers is not supported by the scripts.

Recreating the Database

In some cases, you may wish to destroy and recreate the database, without reprovisioning the cloud resources or

infrastructure. This can be achieved with ansible commands on the Bastion host.

[opc@ttimdb1-bs-001 ~]$ ansible-playbook -i hosts dbdestroy.yaml

[opc@ttimdb1-bs-001 ~]$ ansible-playbook -i hosts datainstances.yaml mgmtinstances.yaml status.yaml

The status.yaml script can be run by itself at anytime. It runs ‘echo stat | nc …’ to check the Zookeeper servers,

followed by ‘ttgridadmin dbstatus ttimdb1 -element ’ . The prior output from ttGridRollout is also displayed.

Clients

Clients may be provisioned after initial rollout and everything is already set up. To add clients, increase the value of

“clInstanceCount” in variables.tf. Then run terraform and ansible to provision additional clients. First run

% terraform plan

to ensure that nothing important will get destroyed. The ansible hosts file will get destroyed and recreated to

contain the newly provisioned clients. Once you’re satisfied,

% terraform apply –auto-approve # (two dashes before auto-approve)

 [opc@ttimdb1-bs-001 ~]$ ssh opc@129....

[opc@ttimdb1-bs-001 ~]$ cd service/ansible

[opc@ttimdb1-bs-001 ~]$ ansible-playbook -i hosts client.yaml

Clients are provisioned on a separate regional subnet from the regional subnet containing the Zookeeper,

Management or data instances. The only port opened for ingress on the client subnet is port 22 for ssh access.

If ingress on other ports is required, then it is necessary to make changes in two places. First, in the OCI Console,

modify the ttClientSecurityList under Network>Virtual Cloud Networks->vcn<service_name>->Security Lists to add

the required ports. Next, as the opc user, open the firewall ports on the Oracle Linux server:

[opc@ttimdb1-cl-001 ~]$ sudo firewall-cmd --permanent --add-port=${port}/tcp # all arguments have two dashes --)

[opc@ttimdb1-cl-001 ~]$ sudo firewall-cmd --add-port=${port}/tcp

[opc@ttimdb1-cl-001 ~]$ sudo firewall-cmd –reload

[opc@ttimdb1-cl-001 ~]$ sudo firewall-cmd –list-all

25 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Future Work

The scripts today primarily provision the service. It is the intention to evolve these scripts to improve availability and

management of TimesTen Scaleout. Future work hopes to improve the life cycle management, take advantage of

more OCI features, and improve availability.

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

26 | DEPLOYING ORACLE TIMESTEN SCALEOUT ON ORACLE CLOUD INFRASTRUCTURE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0116

Deploying Oracle TimesTen Scaleout On Oracle Cloud Infrastructure
April 2018
Author: steve.folkman@oracle.com
Contributing Authors:

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

	Disclaimer
	Disclaimer 1
	Introduction 3
	TimesTen Scaleout on OCI 3
	Planning Your TimesTen Scaleout Deployment 4
	Preparing For Your TimesTen Scaleout Deployment 5
	Software Downloads and Installation Steps 6
	Setting Required Variables 8
	Deploying Cloud Resources and TimesTen Scaleout 9
	Running Terraform 9
	Running Ansible 12
	Accessing The Database 13
	Client Connectivity 14
	OCI Connectivity Options 14
	Customizing the Configuration 16
	Oracle Linux Operating System Images 16
	Availability Domains 16
	K-Safety 16
	Data Instances 17
	Block Volumes 18
	Management Instances 18
	ZooKeeper Servers 19
	Bastion Hosts 19
	Managing Your Configuration 19
	Systemd 19
	ZooKeeper 20
	Management instances 20
	Data Instances 20
	Stop 21
	Scaleout 21
	Recreating the Database 24
	Clients 24
	Future Work 25
	Introduction
	TimesTen Scaleout on OCI
	Planning Your TimesTen Scaleout Deployment
	Preparing For Your TimesTen Scaleout Deployment
	Software Downloads and Installation Steps

	Setting Required Variables
	Deploying Cloud Resources and TimesTen Scaleout
	Running Terraform
	Running Ansible

	Accessing The Database
	Client Connectivity
	OCI Connectivity Options

	Customizing the Configuration
	Oracle Linux Operating System Images
	Availability Domains
	K-Safety
	Data Instances
	Block Volumes
	Management Instances
	ZooKeeper Servers
	Bastion Hosts
	Managing Your Configuration
	Systemd
	ZooKeeper
	Management instances
	Data Instances
	Stop
	Restart
	Scaleout
	Recreating the Database
	Clients

	Future Work

