ORACLE

Oracle Database InMemory
Quick Start Guide

May 2021 | Version 17
Copyright © 2021, Oracle and/or its affiliates
Public

PURPOSESTATEMENT

This documentprovidesinformation about how to get started with using Oracle Database-Memory. It is intended solelyto help
you assesthe businessenefitsof upgradingand using Oracle Databasekemory.

DISCLAIMER

This documentin any form, softwareor printed matter, containsproprietary information that is the exclusiveproperty of Oracle.
Your access$o and useof this confidential material is subjectto the termsand conditions of your Oracle softwarelicenseand service
agreementwhich hasbeenexecutedandwith which you agreeto comply. This documentandinformation containedherein may not
be disclosedcopied,reproducedor distributed to anyoneoutside Oraclewithout prior written consentof Oracle.This documentis
not part of your licenseagreementnor canit beincorporatedinto any contractualagreementwith Oracleor its subsidiariesor
affiliates.

This documentis for informational purposeonly andis intended solely to assistyou in planning for the implementation and upgrade
of the product featuresdescribed .t is not acommitment to deliver any material, code,or functionality, and shouldnot be relied upon
in making purchasingdecisionsThe development,releaseandtiming of any featuresor functionality describedin this document
remainsat the solediscretion of Oracle.

Due to the nature of the product architecture, it may not be possibleto safelyinclude all featuresdescribedin this documentwithout
risking significant destabilizationof the code.

1 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

Table of Contents

PUIMNPOSE STALEIMENL.... .. et e oottt e e e et s e e e et e e e e e tmeeeaa e e e eeta e e e eennaas 1
[ox F= 1 1= USRS 1
oo 18 Tox 1o o 1P 4
[F= U 1 T SR 4
Identify AN@lYtic WOTKIOAAS. ... e e e ettt e e e e et e e e e e e eeeeennnes 4
Understanding How Database IMemory WOTKS. ... 4
o LT a1 YRS U (oot SR O 1 (=1 = TSP 5
Identify HOW t0 Measure IMPrOVEMENL..........couui i ier e e e e e e e e e e eee e e e et e e e s et e e e eaanneeeeaneaeees 5

[(01T o T T] = = o PP 5
(D U= Lo L= TSY I o = Lo [T PP 6
o Tol Ui To] g I o F= T IR =Y o 11 6
(@] o1 To 8T =1 1o o 1SR 6
Apply the Latest Database Release UPAAte.........ccoooiiiiiiiiiiiee s 6
1T gL A A 10T = o o TS OTSPSPPPPRR 7
Planning for Additional Memory REQUIFEIMENTSciiuiii e e e e e e e e e e e ne e s et e e e e aaan e e eeannns 7
Database Parameter SEINGS. ettt e e e e ettt e e e e emtee s e e e e e eeeeesatan e e e e eeamsanaeeeeeeeeesnnnes 7
INMEMAY ParameEter SEIINGSueeie ittt et e e ra b et e e s aab et e e e aa b b e e e e aabe e e e e atbeeeenanbeeee s e 8
Memory Allocation in Multitenant DatabaSES............uuuuuiimiiiiee e 8
Population CONSIAEIALIONSccoiiiieiiee ettt an s me e e e e e e eeeeaeeaeeeaaeens 8
Real Application CIUSTEIS (RAQ).....ciiiiiiiiiiieiiiee ettt e e e e e e e e e e e e et e e e e e e e e e e ama e 9
1S3 10T (o o P 9

F UL (o 1 B 1 = TSP UPPPTTRRPPIN 9
D O B2 S T= o = (o | PR PP PPUPRRP 10
IMPIEMENTATION. ...t e e et e ettt ettt ettt e et e e e e e e e e e e e e e e eeeeeeeeeeees 10
Y1 = 1= | 10
PerfOrmManCE HISTOIY........uiiii i e e e e e e e e e e e emr e e e e e e e e e e setaa e eeeean 10
[(010U UPPPPRR 10
Step 1: Run the workload without DatabaSEMBIMOIY...........cuueiiiiiiiieiiiee ettt aeees 10
Step 2: Enable Databas@NBIMOIYooiiiiiie ettt et 11
Step 3: Populate TabIESMIEIMOIY........oiiiiiii ittt e et e e e bb e e e nbb e e e e e 11
Step 4: Run the Workload with DatabaSEVIBMOIY..........cuuiiiiiiiiieiiiiie ettt e s 11
[dentifying INFMEMOIY USAQE.......ccoveiiiiiei it e e e e e amte e e e e e e e e e e e e e e eeesa e eennen 11
Yo 1§ TSP UUPTTRPPPN 11

B L0 11 SRR 12

2 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

T =T n e o] YA AV o =T o =1 0] o R 13

YU 0] 4= T PP PRSPPI 15

3 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

INTRODUCTION

Oracle Database hMemory (Database IiMemory) was introduced in the first patch set for Oracle Database R&lease 1 (12.1.0.2).
Since then it has been actively developed and enhanced to make it even more performant, manageable and scalable. Database In
Memory is available with Oracle Database Enterprise Edition-pnemises, Oracle Cloud and Cloud at Customkradds inmemory
functionality to Oracle Database for transparently accelerating analytic queries by orders of magnitude, enablingirealbusiness
decisions without needing application code changes. It accomplishes this using a “fduaiat" architecture to leverage columnar
formatted data for analytic queries while maintaining full compatibility with all of Oracle's existing technologies. This &hiormat”
architecture provides the best of both worlds. The traditional row format for incredibly effiai¢ on-line transaction processing

(OLTP) and the columnar format for supefast analytic reporting.

The purpose of thigechnical briefis to provide a set of guidelines that can enable most customers to quickly get started with
Database IAMemory with a minimum amount of effort. For more detailed guidelines on evaluating or implementing Database In
Memory see theOracle Database kiMemary Implementation Guidelines The information provided is based on our experience of
participating in many implementations and working directly with customers and should work well in most situations.

This technical briefassumes that you are familiar witbatabase InlMemory fundamentals as outlined in th®racle Database
Memory whitepaper.

PLANNING

Identify Analytic Workloads

Database IAMemory is not a one size fi all solution. It is specifically targeted at analytical workloads, which is why the IM column
store is populated in a columnar format. Columnar formats are ideal for scanning and filtering a relatively small numbeslofrms

very efficiently. It is important to understand the fundamental difference between DatabaseNtemory and the traditional Oracle
Database rowstore format. The row format is excellent for OLTP type workloads, but the columnar format is not and Database In
Memory will not speed up pue OLTP workloads. Workloads that involve pure OLTP, that is inserts, updates and deletes (i.e. DML)
along with queries that select a single row, or just a few rows, will generally not benefit from Databas&Bmory. Workloads that

do mostly ETL where thedata is only written and read once are also not very good candidates for Databa$édmory.

The ideal workload for Database Hvlemory is analytical queries that scan large amounts of data, access a limited number of columns
and use aggregation and filtarg criteria to return a small number of aggregated values. Queries that spend the majority of their time
scanning and filtering data see the most benefit. Queries that spend the majority of their timecomplex joins(e.g.where result sets
flow through the plan or that use windowing functions)sorting or returning millions of rows back to the client will see less benefit.

A good way to think about this is that the goal of Database-Memory queries is to perform as much of the query as possible while
scanning the data. By taking advantage of the ability to push predicate filters directly into the scan of the data, the uséofrBfilters

to transform hashjoinsinto scan and filter operations, and the usé VECTOR GROUP Bo perform group by aggregatits as part

of the in-memory scan, Database {Memory can in the best cases perform the majority of a query's processing while scanning the
data. Other Database kMemory features complement these primary attributes and include the use of Single Instruchanitiple

Data (SIMD) vector processing, HMemory storage index pruning, InMemory Expressions (IME) to avoid reomputing commonly
used expressions, Join Groups (JG) to further enhance join performance ardddmory Dynamic Scans (IMDS) to dynamically
parallelize In-Memory compression unit (IMCU)scans to provide even more scan performance gains.

Understanding How Database lMemory Works

It is important to understand how Database Hviemory works since it does not benefit all workload types. As was stated earlier,
Database IAMemory benefits queries that spend the majority of their run time scanning and filtering dapeerforming joinsand

group by aggregations. This will be reflected in execution plans showing inmemory full table scans (i.e. TABLE ACCESS INMEMOR
FULL), hash joins with Bloom filters or nested loops joins with inmemory access and aggregations ¥&@l ORGROUP BY

operations In addition, the execution plarmay also show predicate push down and filtering for inmemory scamsll of these

operations benefit from the optimizations included in Database-Memory. Other database operations do not benefit from Database
In-Memory. This includes DML operations (i.e. insert, update, delete), sorting, row fetching, other types of joins, index accesses, etc.

1 See theDatabase IaMemory blogfor a two part blog post on predicate push down

4 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

http://www.oracle.com/technetwork/database/in-memory/learnmore/twp-oracle-dbim-implementation-3863029.pdf
https://www.oracle.com/a/tech/docs/twp-oracle-database-in-memory-19c.pdf
https://www.oracle.com/a/tech/docs/twp-oracle-database-in-memory-19c.pdf
https://blogs.oracle.com/in-memory/

Identify Success Criteria

It is important to define success criteria when implementing Database Memory. We have seen many impmentations get bogged
down in trying to get improvement from every transaction or SQL statement. The reality is that most SQL statements that are
analytical in nature will improve. By how much is highly dependent on how much time is being spent scannifilggring, joining and
aggregating data, and whether the Optimizer can further optimize the execution plan based on amémory access path. Another
important consideration iswhether any SQL statements regress in performance.

Successriteria will be dependent on what the customer is trying to achieve, but in general will consist of one or more of the
following criteria:

e Transaction or SQL response time
®* Resource usage
e System level workload

Although transaction response time is often the most important cderation, transaction throughput or an increase in capacity
headroom can be just as valuable. Consider the environment where a relatively small reduction in transaction resource @sage ¢
translate into a huge gain in capacity headroom because of thereraus volume of transactions executed. And all without having to
change application code.

An important way to create measurable criteria for success is to establish a baseline for the performance of the applmasielected
SQL statementdf focusing an SQL response time therhe simplest way to create a baseline is to identify the SQL statements that are
analytical in nature and are the target of the implementation. This can be done based on knowledge of the application otthath

help of theIn-Memory Advisor as mentioned earlierNo matter what the success criteriange identified, performance characteristics
can be measured and recorded as theddae. Whether upgrading from an earlier release of Oracle Database, or implementing a new
application, a baseline should be created in the target Oracle Database version prior to implementing Databasenhory.

As part of creating a baseline, it is imp@nt to consider the hardware platform and software involved. For example, you cannot

expect to see the same performance if migrating to different hardware platforms or CPU generations. As with any benchlikark

project it is also important to ensure thahe testing is repeatable. In the case of Oracle Database this means that execution plans need
to have stabilized and that the application environment has reached a steady state. A single SQL execution is not a reasstioe,

there are just too manyariables involved in SQL executions. This will probably result in the need for many repeated executions and
multi-user testing to replicate a representative environment.

Once a baseline is created, a comparison ta@n be made to determine how much beffi¢ Database InMemory provided. It is also
important to properly define expectationsHow much improvement needs to occurkPor example, do all the targeted SQL statements
or transactions need to improve, and if so, by how much? Is a X#@formanceimprovement acceptable and how much business
value can be derived from the improvement? How much improvement is really practical? There are limits to performance
improvements based on the technology used.

These are the types of questions that can be used astitpdetermining the success of a DatabaseNfemory implementation.

Identify How to Measure Improvement

It is important to determine how changes and benefits will be identified and measur&dr individual SQL we recommend the use of
SQL Monitor active eports to accomplish this. SQL Monitor requires the Oracle Diagnostics and Tuning packs and provides a visual,
time based method of analyzing the execution of SQL statements. The SQL Monitor active report is used to display this itifmmma

and provides asimple, accurate way of comparing SQL statement execution. More information can be found in the Oracle Database
SQL Tuning Guide.

If measuring success based on application throughput then that throughput has to be quantified. This may be available icazippl
tracking information or perhaps Database system statistics. For database workload measurement the Automatic Workload Rgposito
(AWR) and it's reporting capability may be the best tool.

How To Get Started

Two questions come up mostequently when implementing Database khiMemory:
e How do we identify the objects to populate into the IM column store?
e How much memoryshould weallocate to the IM column store?
The answers to both questions are highly dependent on each application environment. Since Datab&genmory does not require

that the entire database be populated into memory, customers get to decide how much memory to allocate and which objects to

5 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

http://www.oracle.com/technetwork/database/manageability/inmemory-advisor-2412222.html

populae. While there is no substitute for understanding the application workload being targeted for Databas&lemory, it is not
always practical to know which objects would benefit the application the most from being populated in the IM column store.

In the case of which objects to populate into the IM column store, there are basically two ways to tackle the issue. There igy util
available called theDracle Database lfiMemory Advisor (In-Memory Advisor). It uses Automatic Workload Repository (AWR),

Active Session History (ASH) and other met@ata to help with determining which objects will benefit from Database tMemory.

Since the In"Memory Advisor is awailable as a separate utility it can be used in database versions 11.2.0.3 or higher. This allows for
advanced planning for existing database environments before implementing Databasddmory. More information can be obtained
about the In-Memory Advisor via My Oracle Support (MOS) Note 1965343zahd theln-Memory Advisor technical white paper The

other way of tackling the issue is to identify the objects thate accessed by the application's analytic queries and enable those objects
for population. This can be accomplished by mining the SQL statements being run or based on application knowledge. If there i
enough memory available then it is also possiblejtst populate all of an application's objects.

In Oracle Database 18c and higher there is a feature of Databaddémory called Automatic InMemory (AIM). This feature
leverages Heat Mapike datato track actual segment usage and can be used to popuéatiet and even compress segments to a higher
level based on usage.

For the second question about how much memory to allocate to the IM column store, @@mmpression Advisofi.e. the
DBMS_COMPRESSION PL/SQL package) can be used. The Compression Advisor has been enhanced in Oracle Database 12.1.0.2 and
above to recognize the different Database-Memory compression levels and to measure how much mery would be consumed in

the IM column store by the object(s) in question based on the target compression level.

Database Upgrades

Since Database Memory requires Oracle Database 12.1.0.2 or higher it is still very common that a Databagddmory
implementation will also require an upgrade to Oracle Database. If this is the case then the two activities, that is the databgisele
and the Database khMemory implementation, should be performed separately. It can be very difficult to identify the rootusz of a
performance regression, or attribute performance improvement, when multiple things change at once. By separating the upgrade
activity from the Database IAMemory implementation it will be much easier to identify performance changes.

Execution PlanStability

An important considerationwhen implementing Database InAMemory is that execution plans will change whethe IM column store

is accessed. For example, a TABLE ACCESS BY INDEX ROWID could change to a TABLE ACCESS INMEMORY FULL. The
ldentifying In-Memory Usagesection later in this document has some specific examples of the types of execution plan changes that
can occur when using Database-IMemory. As part of the implementation process outlined in thémplementationsection optional
steps have ben added that specify the use of SQL Plan Baselines to help identify changed execution g@hsPlan Baselines are one
part of Oracle's SQL Plan Management feature, and while not required, can be very ugeftdntrolling SQL execution plans.

The stepgn the /mplementationsectionhave been made optional since SQL Plan Baselines do have limitations and it is beyond the
scope of this paper to provide a step by step guide as to their usage. Howtherg is an abundance of information about SQL Plan
Managementand the use of SQL Plan Baselines and other methods of ensuring controlled plan execution. A good place forstart

more information is with the Oracle Database SQL Tuning Guidand the Optimizer Blog.

CONFIGURATION

Apply the Latest Database Release Update

Before starting any Database {Memory implementation you should ensure that the latest available fabase Release Update (RU)
(formerly known as the Database Proactive Bundle Patch) has been applied. Databaskemory fixes are only distributed through
the Database Release Update process and this will ensure that you have the latest performance ewhtxes. Database Release
Updates are delivered on a préefined quarterly schedule and are cumulative.

For more information on patching see the following Oracle support documents:
* Oracle Database Overview of Database Patch Delivery Methods for 12.2lGand greater (MOS Note: 2337415.1)
® Oracle Database Overview of Database Patch Delivery Methodsl2.1.0.2 and older (MOS Note: 1962125.1)
There are also specific Proactive Patch Information notes available based on release:

® Oracle Database 19c¢ ProactiWwatch Information (MOS Note: 2521164.1)

6 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

http://www.oracle.com/technetwork/database/manageability/inmemory-advisor-2412222.html
https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1965343.1
http://www.oracle.com/technetwork/database/options/compression/compression-advisor-095705.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/index.html
https://blogs.oracle.com/optimizer/

e Database 18 Proactive Patch Information (MOS Note: 2369376.1)
® Database 12.2.0.1 Proactive Patch Information (MOS Note: 2285557.1)
® Database 12.1.0.2 Proactive Patch Information (MOS Note: 2285558.1)

Memory Allocation

When adding Database kMemory to an existing database environment, it is important to add additional memory to support the IM
column store. You should not plan on sacrificing the size of the other System Global Area (SGA) components to shésfizing
requirements for the IM column store. IM column store sizing can be done using theMemory Advisor and the Compression
Advisor which are described in prior sections of this document, but knowledge of the application workload will make this process
much easier and more accurate.

When using Database hMemory in a Real Applications Cluster (RAC) environment additional memory must also be added to the
shared pool. In RAC environments, every time a database block is populated in the IM column store as pantiMCU, Database In
Memory allocates a RA@vide lock for that database block. This RAC lock ensures that any attempt to do a DML on a database block
on any of the RAC instances will invalidate the database block from the column store of all other instanehere it is populated.
Additional memory is also required for an IMCU home location map which is used to track the IMCU locations across the RAC
instances.

The amount of memory allocated from the shared pool by DatabaseMemory depends on several fears:

e Size of the IM column store

e Compression ratio of the data populated in the IM column store
e Database block size

e Size of the RAC lock (approximately 300 bytes)

The allocation of memory for the IRnMemory column store should follow the general formuladdow in Figure 1 and should be
considered a minimum recommendation for the additional amount of memory that should be allocated to the SGA. See the MOS
Note, Oracle Database HvMemory Option (DBIM) Basics and Interaction with Data Warehousing Features (3883.1).

These recommendations are made assuming Automatic Shared Memory Management (ASMM) and the use of SGA_TARGET and
PGA_AGGREGATE_TARGET initialization parameters. See fhatabase Administrator's Guidér more information about
managing memory.

Single-instance Databases | SGA_TARGET + INMEMORY_SIZE PGA_AGGREGATE_TARGET

RAC Databases SGA_TARGET + (INMEMORY_SIZE *1.1) | PGA_AGGREGATE_TARGET

Figure 1. Memory Allocation

** Note that Database kMemory queries tend to perform large aggregations and can use additional Program Global Area (PGA)
memory. If not enough PGA memory is available then space in the temporary tablespace will be used. The maximum amount of PGA
memory that a single database process can use is 2GB, but for parallel queries it can be as high as 2GB * PARALLEL_MAX_SERVERS.
PGA_AGGREGATE_TARGET should be sized with this in mind.

Sufficient PGA memory should also be allocated to ensure that any joins, aggiiegs, or sorting operations remain in memory and
spilling to disk is avoided. For existing systems, a good way to identify the initial SGA and PGA sizes is to use AWR rdpdte
Advisory Statistics section there is a Buffer Pool Advisory section anBGA Memory Advisory section.

Planning for Additional Memory Requirements

You should also not plan on allocating all of the memory in the IM column store memory. You need to allow extra room to
accommodate new data and changes to existing data due to Ridivity. Like database blocks in the row store, when IMCUs are re
populated they can change in size, or can be split thus taking up more memory. When new data is inserted new IMCUs may be
created to populate the new data.

Database Parameter Settings

7 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

http://www.oracle.com/technetwork/database/manageability/inmemory-advisor-2412222.html
http://www.oracle.com/technetwork/database/options/compression/compression-advisor-095705.html
http://www.oracle.com/technetwork/database/options/compression/compression-advisor-095705.html
http://docs.oracle.com/database/122/ADMIN/managing-memory.htm#ADMIN00207

We grongly recommend that youevaluate all initialization parameters thahave nondefault settings. It is very common to keep
parameter settings througltifferent databaserersiors because nobody knows why they were set or what they do. The problem with
someinitialization parameters is that they camegatively affect the use of Databaseklemory.

For example, customers on previous database releases often set the following parameters-tiefarit values:

COMPATIBLE
OPTIMIZER_INDEX_CACHING
OPTIMIZER_INDEX_QOST_ADJ
OPTIMIZER_FEATURES_ENABLE

These particular parameters can prevent the use of Databas®émory plans or severely limit their usage. This is not to say that
these are the only parameters to look for, or that their usage will necessapilgvent the use of Database dIMemory execution plans,
but these are examples of where you can get into trouble by just leaving parameters set because you don't know why they.are s

This is not to say that all nordefault parameters will cause problembut in general, if you don't know why a parameter is set then
unset it and see if there are any problems. Pay particular attention to any underscore parameters. Each new release ofhf@sacle
many new features and bug fixes. An issue with an older releasy have been corrected in a newer release and this is another
reason that parameter settings should be-egaluated.

Inmemory Parameter Settings
The following parameter enables Database-Memory and should be set based on expected usage:

INMEMORY_SIZE- initially keep set at O for the baseline and then set based on the object space in the IM column store that is
required plus room for growth.

Note that this may be an iterative process to get the size correct and since the IM column store is allocatedti®®GA, other
initialization parameters may have to modified to accommodate the increased size (i.e. SGA_TARGET or MEMORY_SIZE).

Also note that increasing the size of Oracle Database shared memory allocations can have operating system implicationls as wel
Database IAMemory doesn't change the behavior of how Oracle Database uses shared memory, or how it implements OS
optimizations.

For additional database specific information we recommend that you consult the appropriate installation and/or administrafiodes
for your platform and MOS note(s) for any updates. Tl@&acle Database Upgrade PM teamalso an excellent resource for Upgrade
Best Practices.

Memory Allocation in Multitenant Databases

Oracle Multitenant is a database consolidation architecture first introduced in Oracle Database 12c in which multiple Pldggab
Databases (PDBs) are consolidated within a single Container Database (CDB). While keeping many of the isolatiots a$[saugle
databases, Oracle Multitenant allows PDBs to share the SGA and background processes of a common CDB.

When used with Oracle Database {Memory, PDBs also share a single-Memory column store (IM column store) and hence the
question, "How do Icontrol how much memory each PDB can use in the IM column store?"

The total size of the IM column store is controlled by the INMEMORY_SIZE parameter setting in the CDB. By default, each B8 s
the entire IM column store size and has the potential to fylpopulate it and possibly starve other PDBs. In order to avoid this you
can specify how much of the shared IM column store a PDB can use by setting the INMEMORY_SIZE parameter msjukcific

PDB using the following command:

ALTER SYSTEM SET inmemory_ige = 4G container = CURRENT scope = spfile

Not all PDBs in a given CDB may need to use the IM column store. Some PDBs can have the INMEMORY_SIZE parameter set to 0,
which means they won't use the IFiMemory column store at all.

Population Considerations

There are several things to consider for population. Obviously having enough memory available in the IM column store is trucia
You do not want to have partially populated objects if at all possible as this will significantly affect the performancéegpplication.
You also need to take into account the growth of segments populated in the IM column store. Just because everything figs toda
doesn't mean that they will still be fully populated after undergoing significant DML changes.

8 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

https://mikedietrichde.com/slides/#Comprehensive

As mentioned in an edier section, in order to gain memory for the IM column store you do not want to "steal" memory from other
components of the SGA (i.e. buffer pool, shared pool, etc.) because that can affect existing application performance.edpsdglly
important in mixed workload environments Very often the easiest strategy is to populate the entire schema in the IM column store
(reference theHow To Get Startectection earlier in the paper)The ability to achieve this will be dependent on the amount of
memory that can be allocated to the IM column stornd the compression level chosen

Population is largely a CPU dominated process, and as with parallelism in general, the more worker processes that carcaedlto
population, the faster the populatio will happen. This is a balancing act, and you typically don't want to saturate the machine with
population if you have other workload needs. There are however, customers who do not want the database accessed untiicall cri
segments are populated. Fttose customers, sincthe MAX_POPULATE_SERVERS parametisrdynamic, CPUs allocated to
population can be adjusted higher during initial population. In addition, starting i@racle Databas&9c the POPULATE_WAIT
function of the DBMS_INMEMORY_ADMIN packagean be used to programmatically determine if all objects have been populated.
This can be usetb block connections froman application(s) until population is complete.

Another consideration is to only populate the data that will give you the biggest béihd=or many applications this means the most
current data. Typically this is time based information and partitioning can help divide the data so that just the most beiaéfiata

can be populated into the IM column storePopulation of partitions can bénandled in several different ways. The table can be
enabled for irmemory and then all partitions will be populated, including newly created partitions since they will inherit the default
attribute of inmemory enabled. If however a rolling window partitiming strategy is desired for population in the IM column store
then individual partition/sub-partitions can be altered to be inmemory or no inmemory. In 12.1 this can be accomplished with a
scheduler job or manually. In 12.2 and greater Automatic Data Qpization (ADO) policies can be employed based on heat map
heuristics or time to populate or evict individual partitions/suipartitions.

REAL APPLICATION CLUSTERSRAC)

RAC databases enable the scalet of the IM column store by allowing the allocation o&n IM coumn store on each RAC database
instance. Data is then distributed across IM column stores effectively increasing the IM column store size to the total immesize
allocated to all of the RAC database instances.

Conceptually it helps to think ofDatabase IAMemory in a RAC environment as a shareabthing architecture for queries (although
it is much more flexible than a true sharedothing database). IMCUS§.e. in-memory data)are not shipped between RAC instances
so Parallel Query must be usdd access the data on other RAC database instan€this makes the distribution of data between IM
column stores very important. The goal is to have as even a distribution of data as possible so that all parallel senessgspend
approximately the sene amount of time scanning data to maximize throughpahd minimize response time.

Distribution

How an object is populated into the IM column store in a RAC environment is controlled by the DISTRIBUTE-slduise. By default,
the DISTRIBUTE sukclause is set to AUTO. This means that Oracle will choose the best way to distribute the object across the
available IM column stores using one of the following options, unless the object is so small that it only consists of 1 IMGAhich
case it will reside on just one RAC instance:

e BY ROWID RANGE
e BY PARTITION
e BY SUBPARTITION

The distribution is performel by background processes as a part of the segment population task. The goal of the data distribution is to
put an equal amount of data from an object on each RAC instance. If your partition strategy results in a large data skew&ditieon

is much larger than the others), we recommend you override the default distribution (BY PARTITION) by manually specifying
DISTRIBUTE BY ROWID RANGE.

Auto DOP

In a RAC environment when data is distributedcrosscolumn storesparallel query must be used to access tidQUs in the column
stores on all but the local instance. In order to accomplish this the parallel query coordinator needs to know in which imtgts IM
column store the IMCUs for each object involved in the query reside. This is what is meant by paraiahs beindaffinitized for
inmemory" (you may see this in the Notes section of an execution plan)

In order for the parallel query coordinator to allocate parallel query server processes on the other RAC instances the D@® of
query must begreater thar or equal to the number of IM column stores involvedhere are two ways to ensure theorrect DOP. The
first is the use of Auto DOP (i.e. the initialization parameter PARALLEL_DEGREE_POLICY set to AUTO) which will ensure that

9 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

the costbased DOP calculain will be greater than or equal to the number of IM column store instances. The second relies on the
user application to ensure that the DOP of the query is greater than or equal to the number of IM column stores involvélislfs

not the case then tk data residing in IM column stores that do not get a parallel server process assigned to them will have to be read
from disk/buffer cache.

12.1.0.2 Behavior

In 12.1.0.2 Auto DOP was required in order to guarantee that the degree of parallelism (DOP) chaseild result in at least one
parallel server process being allocated for each active instance, and to enable access to the map of the IMCU home |oElations.
was no workaround andit was required that Auto DOP be invoked with the PARALLEL_DEGREE_PQOLY parameter specified at
either the instance or session level. In addition to this restriction, if an IMCBaccessd from an instancein which it doesn't exist
then that IMCU's database blocks will be marked as invalid and will not be accessed fronikheolumn store on any instance.

IMPLEMENTATION

Strategy

As mentioned previously it is imperative that performance baselines be established at critical phases of the implementétion.
upgrading from a previous version of Oracle Database then a baselimer po the upgrade will establish that application performance
is at least as good as it was before the upgrade. You do not want to use Databdenhory to mask a flaw in an upgrade or a poorly
performing system. Once the database is at the proper varsaaod patch level then a baseline should again be taken so that it can be
compared to the performance of the application after DatabaseMiemory has been enabled. This will then show just the benefits of
Database IAiMemory to the application's performancelt is also important to recognize that Database-Memory is more than just

the enhanced columnar format. The Optimizer can take advantage of additional execution plan features that are only enakited wi
Database IAMemory.

Performance History

Verify that AWR is running and is available for troubleshooting. This can also be useful for verifying initialization parameters and
any other anomalies. If this is an implementation from an existing system then AWR information from the existing system @n b
used & a baseline to compare system workload differences. Be aware that the default retention period for AWR is only 7 days so thi
should be extended to cover the PoC or implementation period.

Process

In order to implement Database FMemory, it is our recommadation that the following four-step process outlined below be
followed. This process was developed in conjunction with the Optimizer team and will help ensure that no SQL performance
regressions occur due to plan changes with the introduction of Databhsévemory or database upgrades, and that plan
improvements can be incorporated in a manageable way. This will also provide the lowest risk so that any possibility ofisesps
minimized.

Step 1: Run the workload without Database 1Memory

This step maybe a twapart process if the database is being upgraded. The goal of this step is to establish a baseline for application
performance prior to implementing Database Memory. If upgrading the database then a baseline should be taken prior to the
upgrade b confirm that no performance regressions have occurred due to the upgrade. If there have been regressions, then stop and
figure out why. Once performance has been established to be acceptable (i.e. as good or better than prior to the upgradestirey

of Database IAMemory can begin.

Tasks:

e Optional: Turn on SQL Plan Baseline captui@ plan to capture plans manually

e Run the workload
Capturesuccess criterianeasuremerdg. Whatever the success criteriat is usually not sufficient to run a one user, single
execution test. We strongly recommend ensuring that SQL statements have reached a "steady state". That is, plans are not
changing and repeated executions have consistent timing.

Note: If using SQL Plan Bselines then ach SQL statement must be run at least twice in order foplanto be captured
automatically.

e Optional: Turn off SQL Plan Baseline capturiéenabled

10 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

e Optional: Drop unrelated SQL plan baselines

Step 2: Enable Database-Memory

Enable Datalse InMemory by settingthe INMEMORY _SIZEnitialization parameter and restarting the databasBon't forget to
evaluate the overall SGA size and acot for the increased size required by the IM column store.

Step 3: Populate Tables {Memory

Populate the tables identified for the Database 1Memory workload into the IM column store and wait for population to complete. It
is important that all tables are fully populated into the IM column store(s). This can be verified by querying the V$IM_SEGNIE
view (GV$IM_SEGMENTS on RAC) and verifyinthe BYTES_NOT_POPULATED column

On single instancadatabases - BYTES_NOT_POPULATED should equal O.

On RACdatabasesBYTES_NOT_POPULATEvill not equal Ofor objects that are distributed across IM column stores. Yownca
account for this by calculatinghe SUMBYTES- BYTES_NOT_POPULATEDfpr all instances the totals shouldequal the total
BYTES for the segmenSee Figure for an example.

SQL> @racim_ sum
INST_ID SEGMENT_NAME BYTES BYTES_POPULATED BYTES_NOT_ POPULATED INMEMORY_ SIZE
1 LINEORDER 730750976 299892736 430858240 236584960
2 730750976 199999488 530751488 157745152
3 730750976 230858752 499892224 181927936
dkhkkkhkhkhkdkhkhkhhkhkhkhkhdkdkdkdx == 0000 arrmdmmm———————] e —————————
sum 730750976 576258048

SQL>

Figure 2. RAC column store population

Step 4: Run the Workload with Databas&iMemory

The same workload that was run in Step 1 should be run again, but now with the IM column store fully populated. We are now
expecting that execution plans will change and will reflect the use of nemory execution pathsvhere the optimizer has determined
that the cost is less to access the object(s) in the IM column stth€QL Plan Baselines are enabled themyanew plan changes will
be captured but will not be usedntil they are accepted

Tasks:

e Optional: Turn on SQ Plan Baseline capturer plan to capture plans manually

®* Run the workload
Capturesuccess criterianeasuremerdg. Whatever the success criteriat is usually not sufficient to run a one user, single
execution test. We strongly recommend ensuring that S@tatements have reached a "steady state". That is, plans are not
changing and repeated executions have consistent timing.

e Optional: Turn off SQL Plan Baseline captuitenabled

e Optional: Verify any newly captured SQL plan baselines

e Optional: Evolve SQL Rin Baselines

e Optional: Rerun workload with accepted SQL Plan Baselines

* Verify execution times. For any SQL statements that do not improve, or regress, consider analyzing the differences with
SQL Monitor active reports or another time based optimizationdb See the next section "Identifying liMemory Usage".

IDENTIFYING IN-MEMORY USAGE

We know that Database InMemory helps in three key areas of an execution plan: data access, joins and g¢igwgggregations. The
following will show how to determine if Database IAMemory helped speed up a query. The examples will 88L Monitor active
reportsto highlight how to determine whether Database kiMemory affected the SQL execution.

Scans
The following SQL will list the total number of aders and the total value of merchandise shipped by air:
SELECTCOUNT(*),

11 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

https://www.oracle.com/technetwork/database/in-memory/learnmore/sql-monitor-brief-5900312.pdf
https://www.oracle.com/technetwork/database/in-memory/learnmore/sql-monitor-brief-5900312.pdf

SUM(l.lo_ordtotalprice)
FROM lineorder |
WHEREI|.lo_shipmode ="AIR’

A traditional execution plan looks like the following:

~ Overview
(o, Time & Wait Statistics 10 Statistics
SQL Text SELECT /*+ NO_PARALLEL MONITOR */ count(*), SU =l Duration (I 5.0 Buffer Gets I 167K
Execution Started Thu Jan 12, 2017 1:54:16 PM Database Time (I .75 10 Requests 0
Last Refresh Time Thu Jan 12, 2017 1:54:21 PM ave 10 Bytes 0
Execution ID 16777217 Activity % I 100
User 558
Fetch Calls 1

Time is spent
« Details accessing data in
the row store

0] Plan Statisties I3 Plan |~ Activity | [] Metrics

Plan Hash Value 1385010855 () Plan Note

Operation Name Li... | Estimate... | Cost | Timeline(Ss) Exec... | Actual... | Memor... | Temp (.. |O. | [ORe.. |I Activity %
[} SELECT STATEMENT | 0 ——— 1 1 [[
[} SORT AGGREGATE 1 1 . 1 1
B TABLE ACCESS BY INDEX ROWID B... LINEORDER 2 10M 218K e—— 1 10M N 75
INDEX RANGE SCAN LINEORDER_I1 3 10M 3K — 1 10M . s

Figure3. SQL Monitor Report for rostore scan

Note that the majority of the execution time is spent accessing data. Specifically, an index scan and table access onHGRDER
table for a total execution time of 5.0 seconds. Now let's look at what happens when we access the same tdadNhcolumn store:

v Overview
General Time & Wait Statistics 10 Statistics
SQLText SELECT /*+ NO_PARALLEL MONITOR */ count(*), SU L] Durstion [1.0 Buffer Gets (I :
Execution Started Thu Jan 12, 2017 1:51:44 PM Database Time [0.9 10 Requests 0
Last Refresh Time Thu Jan 12, 2017 1:51:45 PM ava 10 Bytes 0
Execution ID 16777216 Activity % N 100
User SSB
Fetch Calls 1
v | Details Time now spent
ing data in
[Plan statistics ~ Sg2 Plan &, Activity accessing data
the column store
Plan Hash Value 2267213921) Plan Note
Operation Name Li... | Estimate... Cost | Timeline(1s) Exec... | Actual ... | Memor.. L. - VAdMly%
B} SELECT STATEMENT 0 — 1 1
E} SORT AGGREGATE 1 1 NR— 1 1
TABLE ACCESS INMEMORY FULL LINEORDER 2 10M 12 Se— 1 10M I 100

Figure 4. SQL Monitor Report fofNfemory Scan

We see that the query now spends the majority of its time accessing the LINEORDER tablaemory and the execution time has
dropped to just 1.0 seconds. Also note that the color oéthctivity bar has changed to reflect imemory CPU usage (se&QL
Monitor active reportsfor more details on how CPU time is differentiated).

Jons
Now let's look at how Database hMemory can optimize joins. The following SQL will show total revenue by brand:

SELECT p.p_brandi,
(lo_revenue) rev
FROM lineorder |,

part p,

supplier s
WHERE l.lo_partkey = p.p_p artkey
AND I.lo_suppkey = s.s_suppkey

12 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

https://www.oracle.com/technetwork/database/in-memory/learnmore/sql-monitor-brief-5900312.pdf
https://www.oracle.com/technetwork/database/in-memory/learnmore/sql-monitor-brief-5900312.pdf

'MFGR#12'
'AMERICA'

AND p.p_category
AND s.s_region
GROURY p.p_brandl

The query will access the tablesimemory, but will perform a traditional hash join. Note that the majority of théime spent for this

query, 8.0 seconds, is spent in the hash join at line 4:

v Overview

General Time & Wait Statistics

SQL Text
Execution Started

SELECT /*+ NO_PX_JOIN_FILTER(I) NO_PARALLEL
Wed Jan 18, 2017 5:16:10 PM
Last Refresh Time Wed Jan 18, 2017 5:16:18 PM
Execution ID 16777218
User SSB
Fetch Calls 4

 —————————
L
Database Time | 7.55
PLUSQLS Java Os
Activity % I 100

v Details
[5] Plan Statistics |~ Activity | [] Metrics

Plan Hash Value 1153046401

Line... | Operation Name Esti.. | Cost | Timeline(8s) Exec... | Actual Rows | Memory... | Temp (.
0 B SELECT STATEMENT e — 1 40
1 [HASH GROUP BY 1,000 128K p— 1 40 M8
2 E) HASH JOIN 84K 128K ————— 1 584K 16M8
3 TABLE ACCESS INMEMORY FULL SUPPLIER 3K 237 - 1 380K
4 E] HASH JOIN AICON |- S| S —— 1 2,922k 5MB
5 TABLE ACCESS INMEMORY FULL PART 0Kz | (= 1 80K
6 TABLE ACCESS INMEMORY FULL LINEORDER M 1K — 1 M

Figure 5SQL Monitor Report for JoiflNo Bloom Filter

10 Statistics

Buffer Gets |, 33
10 Requests 0
10 Bytes 0

Majority of time spent
joining data

.

Now let's take a look at the same query when we let DatabaseMamory use a Bloom filter to effectively turn a hash joiinto a scan

and filter operation:

| Overview
General Time & Wait Statistics
SQL Text SELECT /+ NO_PARALLEL NO_VECTOR_TRANSFO L= Duration I 4.05
Execution Started Thu Jan 18, 2017 4:09:10 PM Database Time (I :.7s

Last Refresh Time Thu Jan 19, 2017 4:09:14 PM PUSQL & Java Os

10 Statistics

Buffer Gets [51
10 Requests 0
10 Bytes 0

Execution ID 16777216 Activity % I 100
User SS8

Fetch Calls 4

Majority of time
now spent scanning
& filtering data

| Details

[3) Plan Statistics | 2 Plan | | Adivity | [Metrics

Plan Hash Value 322496553 [Plan Note

Line... | Operation [ame Estim... | Cost | Timeline(4s) Exec.. | Actual Rows | Memory (Max) | Temp (... | Other | 10 Activity %
0 B SELECT STATEMENT — P
1 2 HASH GROUP BY 1,000 128K ——— 1 0 M8
2 Bl HASH JOIN 842K 128K —— 1 584K 16MB k) [FS
3 TABLE ACCESS INMEMORY FULL SUPPLIER 3|0K 237 — 1 380K
4 B HASH JOIN 419K 117K — 1 2,922K SMB [
5 £} JOIN FILTER CREATE BFO000 80K 212 — 1 80K [
6 TABLE ACCESS INMEMORY FULL PART BOK 212 - 1 80K
7 B JOIN FILTER USE -BFO000 73M 1K e 1 8,093K &
8 TABLE ACCESS INMEMORY FULL LINEORDER M K AW —— 1 8,093K N 7

Figure6. SQL Monitor Report for JeilVith Bloom Filter

We see that now the majority of the query time is spent accessing the LINEORDER tablmé@mory and uses a Bloom filtef he
Bloom filter (:BF0000) is created immediately after the scan of tRART table completes (lines). The Bloom filter is then appliedas
part of the in-memory scan of the LINEORDER table (lis&7 & 8). The query now runs in just 4.0 seconds. More information about
how Bloom filters are used by Database-Memory can be found in theOracle Database kMemory whitepaper.

In-Memory Aggregation
The following query is a little more complex and will show the total profit by year and nation:

SELECT d.d_year,
FROM

c.c_nation, SUM(lo_revenue - lo_supplycost)
LINEORDER |, DATE_DIM d, PART p, SUPPLIER s, CUSTOMER ¢

13 TECH BRIEF| Oracle Database kMemory Quick Start Guide| Version 17

Copyright © 2021, Oracle and/or its affiliates [Public

http://www.oracle.com/technetwork/database/in-memory/overview/twp-oracle-database-in-memory-2245633.html

WHERE |.lo_orderdate = d.d_datekey

AND I.lo_partkey = p.p_partkey

AND I.lo_suppkey =s.s_suppkey
AND I.lo_custkey = c.c_custke y
AND s.s_region ='AMERICA'

AND c.c_region ='AMERICA'

GROUP BY.d_year, c.c_nation
ORDER BMY.d_year, c.c_nation

The following shows a traditional group by even though all but one of the tables being queried are populated in the IMneolstore:

v Overview
General Time & Wait Statistics.

10 Statistics

SQL Text SELECT /*+ NO_PARALLEL NO_VECTOR_TRANSFO
Execution Started Wed Jan 18, 2017 9:13:22 P

Duration | 15 0m
Detabase Time [15 O

Buffer Gets I 100
10 Reguests 0

Last Refresh Time Wed Jan 18, 2017 $:28:23 Pk T K Jave s

Execution ID 16777216
User 558
Fetch Calls 4

- Detalls
(&) Plan statistics 4E Plan | Actvity | [5] Metrics

Pian Hash Value 46511963 |] Plan Note

aceity |, 100

10 Bytes 0

Majority of time spent
on scan and group by
operation

Operation Name Une... | Estimated R... | Cost | Timedine(301s) Actual Rows | Memory (... | Temp (Max) | O.. | IO Requests | 10
) SELECT STATEMENT [] £
) SORT GROUP BY 1 12¢ g Se———— s 4KB
B HASH JOIN H 1M 1pM S— 28M M8 &
TABLE ACCESS FULL DATE_DIM_NUMBEF 3 2,556 7 P 2,55
) HASH JOIN 4 1M 18M 28M 96MB ®
TABLE ACCESS INMEMORY FULL PART 5 2000€ 187 2,000¢
£} HASH JOIN 6 3[M 1M 28M 374MB o
TABLE ACCESS INMEMORY FULL CUSTOMER 7 570K 3434 ' 570K
5 HASH JOIN] L16M 13M 1,139M 17M8 @
£/ JOIN FILTER CREATE :BFO000 £l 360K 2,471 380K o
= VIEW VW _GBF_28 0 30K 2471 ' 380K
- HASH GROUP BY n 360K 2471 380K 14M8
TABLE ACCESS INMEMORY FULL SUPPLIER 12 00K 237 380K
£ JOIN FILTER USE :BFO0D0 13 S700M 557K ‘— 1,534M Y
TABLE ACCESS INMEMORY FULL LINEORDER _SINGLI 14 S700M SS7K — 1,534 I

Figure 7SQL Monitor Report with no-Memory Aggregation

Note that the majority of the time is spent in the scan and group by operations and the total run time is 15.0 minutes. tNatehe

run time is much longer than in the previous exames because we have switched to a much larger data set.

Next let's look at how the query runs when we enable {Memory Aggregation:

Figure 8 SQL Monitor Report with-Memory Aggregation

14 TECH BRIEF| Oracle Database kiMemory Quick Start Guide| Version 17
Copyright © 2021, Oracle and/or its affiliates [Public

