

 Oracle Enterprise Data Architecture
Data Lifecycle
O R A C L E W H I T E P A P E R | J A N U A R Y 2 0 1 9

1 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

Table of Contents

 0

Disclaimer 1

Introduction 2

Enterprise Data Architecture 3

Oracle Technologies 4

Heat Map 6

Automatic Data Optimization Compression Tiering 6

Advanced Row Compression 7

Database In-Memory 9

Warehouse (Query) Compression (HCC) 12

Archive Compression (HCC) 13

ADO Storage Tiering 14

Summary 15

Additional Oracle Technologies 16

More Information 17

Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into

any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.

The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.

2 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

Introduction

Oracle is continuously building innovative storage technologies that provide high performance, greater

automation and increased cost savings to ensure organizations achieve the maximum benefit from their

Oracle Database. These technologies allow Oracle Database to provide industry-leading solutions while

also providing tremendous flexibility for the deployment of applications, whether in the cloud or on-

premises.

This document discusses how the various technologies that enable Oracle to deliver a robust enterprise

data architecture, benefit organizations in the areas of performance, storage management, data lifecycle

automation, data transfer, compliance/versioning and more. Major performance related technologies

discussed in this document, like Oracle Database In-Memory for high speed, real-time analytics, and

Oracle Advanced Compression for sophisticated database compression, can significantly improve

performance and reduce I/O and storage footprints.

The enterprise data architecture provides organizations the flexibility to leverage Oracle Database's

sophisticated scale out and engineered systems to expand their compute footprint as their computing

needs grow and change over time.

Figure 1. Oracle Enterprise Data Architecture

3 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

Enterprise Data Architecture

The various component technologies that comprise the Oracle Enterprise Data Architecture fit broadly into

these general key categories:

Performance

Maintaining database performance is always a concern and is exasperated by the exponential growth

in data that organizations experience. The amount of data that enterprises store and manage is

growing rapidly - various industry estimates indicate that data volume is doubling every 2-3 years. This

rapid growth of data presents daunting challenges for both IT and database administrators in regards

to maintaining database performance.

To help ensure database performance continues to meet an organization's expectations (and SLAs)

Oracle Enterprise Data Architecture technologies can automatically manage data across a wide variety

of storage tiers and formats. This includes high-speed in-memory columnar data for high performing

analytics queries to OLTP and Data Warehouse workloads that can leverage flash and multiple data

and disk formats – all with an eye on improving database performance.

Oracle’s compression tiering and storage tiering can also help improve application performance and

ensure that performance sensitive data is on the most performant storage tier while colder, inactive

data is still available, and stored on the most cost efficient tier.

Storage Management

Database related storage requirements continue to grow and have become a challenge, not just

because of the sheer size of the data growth, but also because of increasing performance

requirements associated with this growth. Oracle Database offers technologies to not only manage

data storage growth based on size, but also based on the current usage of the data. Often,

organizations do not recognize that not all data has the same access requirements.

With Oracle’s data compression technologies, it is possible to utilize a “compression tiering” solution,

where organizations can choose to use the level of compression that best matches how their data is

currently being used. For example, colder data (historic/archive data) is compressed at a higher level,

at the cost of slightly slower access, while active data can be compressed at a level of compression

optimized for active OLTP data.

Oracle Database provides several levels of compression to ensure the compression used best fits the

usage of the data as that data moves through its lifecycle - from hot/active to warm/less active to

cold/historical – while still meeting the performance and availability requirements for the application.

Data Lifecycle Automation

Most data has a lifecycle of activity from inception, where it can be highly volatile, to retention "just in

case" where the data may never (or rarely) be accessed, but must be retained to meet regulatory or

fiduciary requirements. Even if data is no longer needed, archive and purge techniques rarely work

well unless the data is truly isolated. In most applications, data has many dependencies and making

some data unavailable invalidates other, related data, or renders it useless due to lack of context.

Even when data can be grouped into archivable sets, it is rarely practical to remove the data (or place

the data on tape) if it will ever need to be accessed again. The idea of "unplugging" data and then, if

4 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

needed, plugging it back in to access is a complicated and rarely successful process. Data formats,

the time to reload and possible version upgrade incompatibilities (i.e. both database and application)

can all make it very impractical to reload data that has been removed from the database.

Oracle's solution is to retain the data in the database and use “storage tiering” technologies to manage

older, less active data, possibly also making it read only to avoid multiple backups, and to keep the

data in the database so that it is always secure and accessible. With storage tiering, organizations can

deploy their data on different tiers of storage so that less-accessed (“colder”) data is migrated away

from the costliest and fastest storage. The colder data is still available, but at slightly slower speeds –

the effect on the overall application performance is minimal, due to the rarity of accessing colder data.

Data Transfer and Backup

Any time data is touched; there is an opportunity to make its transfer (network movement, data

backups, etc.) more efficient. The Oracle Enterprise Data Architecture provides additional compression

technologies to reduce network traffic and disaster recovery (Oracle Data Guard) redo transport traffic

as well as reducing database backup and recovery times.

This is much more efficient than typical storage-based compression utilities that do not understand the

data (or its format) and must rely on generic compression algorithms. While storage-based solutions

are ideally suited to provide compression for a wide range of applications and uses, storage-based

compression solutions can be characterized as being “database-unaware” -- meaning that they lack

the application awareness needed to truly optimize the storage and use of Oracle Database data.

 Compliance and Versioning

The Oracle Enterprise Data Architecture includes technologies that allow data to be archived for

auditing or other compliance requirements, and versioned to simplify application level views of data at

any time in its lifecycle.

Versioning and auditing enables organizations to track and store transactional changes to data over

the lifetime of that data -- very useful for compliance with record stage policies and audit reports.

Likewise, these technologies also enable users and applications to set the “archive state” for their data.

Data that has been marked as archived remains safe in the database, but is not visible to an

application unless the application wants to include this archived data in its results.

Including these technologies with Oracle database frees organizations from having to specially build

this functionality into their application, which would typically require additional coding and application

maintenance.

Oracle Technologies

This section discusses the specific features/capabilities of the Oracle Enterprise Architecture grouped by

where the technologies are typically utilized in the data lifecycle. Most of these features work in conjunction

with other Oracle Database features. They are not isolated but instead work together to enable industry

leading abilities in database and application management and performance.

To understand how the various Oracle technology components interact with each other, as well as

understand the benefits provided by each component, this document will follow data from the early OLTP

stages of its lifecycle (where the data is actively modified) until the later stages of its lifecycle, where the

5 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

data is primarily being used for reporting/analytical purposes, and then later is maintained as

archive/historic data (often for legal or regulatory or legal reasons).

Starting from the transaction that created the data, we will discuss each Oracle technology component,

included in this document, as that component is utilized during the different stages of the data’s lifecycle,

as illustrated below.

Figure 2. Data Lifecycle Flow with Enterprise Data Architecture

LIFECYCLE STAGE

Action: Transaction creates new data or data is loaded from an external source – Oracle Heat Map

and Automatic Data Optimization utilized to implement compression tiering for OLTP data using

Advanced Row Compression

Organizations typically want to reduce the storage footprint for their ever-growing databases. Oracle

Database provides several types of compression, allowing organizations to choose the type of

compression best suited to the current usage of the data, as data moves through its lifecycle - from

hot/active to warm/less active to cold/historical – while still meeting the performance and availability

requirements for the application. We call this compression tiering.

Before compression tiering can be used to compress data to its optimal compression level (based on the

data’s current usage) an organization must first understand where that data is in its lifecycle. This is a task

made more difficult given that IT organizations do not always have visibility into the usage of that data. This

typically requires knowledge of the usage of the data and with commercial, off-the-shelf applications, or

custom applications where the organization no longer has access to the developers who built the

application, this can be difficult or impractical.

Fortunately, the easiest way to gather and manage data usage information is with Oracle Heat Map, an

important component in the Oracle Enterprise Data Architecture.

6 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

Heat Map

Heat Map is the key to providing the heuristics to manage data (tables/partitions) based on use and usage

type. Heat Map automatically tracks usage information at the row and segment levels.1 Data modification

times are tracked at the row level and aggregated to the block level, and modification times, full table scan

times, and index lookup times are tracked at the segment level. Heat Map enables a detailed view of how

data is accessed, and how access patterns change over time. It can also differentiate between row-store

accesses versus column-store access (i.e. Database In-Memory).

Programmatic access to Heat Map data is available through a set of PL/SQL table functions, as well as through

data dictionary views. In addition, Oracle Enterprise Manager provides graphical representations of Heat Map data.

The figure below shows one way to depict Heat Map data. Each box represents one partition of a table. The size of

the box is the relative size of the partition, and the color represents how “hot” (i.e. frequently accessed) the partition

is based on the most recent access to any row in the partition.

Figure 3. Heat Map Information for Partitioned Table Usage

With the data collected by Heat Map, organizations can create Automatic Data Optimization (ADO) policies to

automate compression tiering across the database. Oracle Database evaluates ADO policies during the DBA-

defined database maintenance window, and uses the information collected by Heat Map to determine which

policies to execute.

Based on Heat Map data (i.e. segment access, row modification or time since creation), ADO policies can be

created to move a table/partition through various levels of compression, including Advanced Row Compression

and Hybrid Columnar Compression. The level used can be determined based upon the current usage of the data

as identified by the Heat Map.

Automatic Data Optimization Compression Tiering

ADO provides for the implementation of an automated Information Lifecycle Management (ILM) strategy --

recognizing that data has different access patterns during its existence can lead to usage that is much

more efficient and performant, rather than treating data as a "one size fits all".

Heat Map provides the usage information and ADO enables the creation of the policies needed to control

the format and location of data based on its actual usage characteristics. ADO policies are specified at the

segment or row level for tables and table partitions. ADO policies specify what conditions (of data access)

1 Database rows are stored in database blocks, which are grouped in extents. A segment is a set of extents that contains all the data for a logical storage structure
within a tablespace (i.e. a table or partition).

7 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

will initiate an ADO operation – such as no access, or no modification, or creation time – and when the

policy will take effect – for example, after “n” days or months or years. Custom conditions can be created

by the DBA, allowing other factors to be used to determine when to move or compress data.

In this example, a segment-level ADO policy is created to automatically compress partitions using Advanced Row

Compression after there have been no modifications for 30 days. This will automatically reduce storage used by

older sales data, as well as improve performance of queries that scan through large numbers of rows in the older

partitions of the table.

ALTER TABLE orders ILM ADD POLICY

ROW STORE COMPRESS ADVANCED SEGMENT

AFTER 30 DAYS OF NO MODIFICATION;

In the next example, an organization wants the benefits of compression, but also needs to ensure SLA

requirements are met. It would be beneficial to compress the data, in the partition, on a more granular

basis (block by block instead of the entire segment). Row-level ADO policies can automatically compress

blocks in the partition after no row, in a given block, has been modified for at least 3 days. With row-level

policies, all rows in the block must meet the policy conditions before the block is compressed.

Below is an example ADO policy where rows are inserted uncompressed, and then later moved to

Advanced Row Compression. Note that this policy uses the ROW keyword instead of the SEGMENT

keyword.

ALTER TABLE orders ILM ADD POLICY

ROW STORE COMPRESS ADVANCED ROW

AFTER 3 DAYS OF NO MODIFICATION;

In addition to being evaluated and executed automatically in the background during the maintenance

window, policies can also be evaluated and executed anytime by a DBA, manually or via a script.

Since the data we are following in this document is being actively modified, an organization will want to use

Advanced Row Compression (as in the examples above) to compress their active data. Advanced Row

Compression uses a unique compression algorithm specifically designed to work with OLTP/DW

applications to improve performance while reducing storage costs.

Although storage cost savings and optimization across servers (production, development, QA, Test,

Backup and etc...) is often seen as the most tangible benefit, all of the features of Oracle Advanced

Compression are designed to improve performance for all components of your IT infrastructure, including

memory, network bandwidth and storage.

Advanced Row Compression

Advanced Row Compression can significantly reduce a tables/partitions storage requirements, 2x to 4x

compression ratios are typical, but the challenge is to maintain the performance of data access when using

compression.

Advanced Row Compression uses a unique compression algorithm specifically designed to work with

OLTP/DW applications. The algorithm works by eliminating duplicate values within a database block, even

across multiple columns. Compressed blocks contain a structure called a symbol table that maintains

compression metadata. When a block is compressed, duplicate values are eliminated by first adding a

single copy of the duplicate value to the symbol table. Each duplicate value is then replaced by a short

reference to the appropriate entry in the symbol table.

8 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

Through this innovative design, compressed data is self-contained within the database block, as the

metadata used to translate compressed data into its original state is stored in the block header. When

compared with competing compression algorithms that maintain a global database symbol table, Oracle’s

approach offers significant performance benefits by not introducing additional I/O when accessing the

compressed data’s metadata.

Oracle's unique technology allows for significant compression without a "decompression" penalty. Oracle

can operate directly on the compressed data. This reduces the I/O and memory footprints because the

data is queried, in a compressed format, and is stored, in memory, in the same compressed format (i.e. in

the Oracle Database buffer cache). This actually improves performance for all types of applications and is

often contrary to what most developers and administrators initially think about compression, instead

assuming that it will require significant CPU resources to compress and decompress the data.

Oracle Database 11g Release 1 first introduced OLTP Table Compression, now called Advanced Row

Compression, which maintains compression during all types of data manipulation operations, including

conventional DML such as INSERT and UPDATE. Advanced Row Compression minimizes the overhead

of write operations on compressed data, making it suitable for transactional / OLTP environments as well

as Data Warehouses, extending the benefits of compression to all application workloads.

LIFECYCLE STAGE

Action: Transactional data populated in Database In-Memory to facilitate real-time analytics directly

on the source data – without having to wait for the data to be transferred to a reporting platform

As the amount of data under management continues to grow it becomes evident to organizations that their data

needs to serve multiple use cases -- including support for transactional applications and reporting/analytical

applications. Historically, in a traditional enterprise data architecture transactional data would be maintained in a

transactional/OLTP database system while the data, or a copy of the data, needed for reporting/analytics would

typically be transferred (and managed) in a separate data warehouse database. While this traditional configuration

to the multi-use case of data issue has been the approach often taken by organizations, the Oracle Enterprise Data

Architecture can instead offer a much more streamlined and better performing solution for those organizations

seeking a better solution to their dual-use case requirements.

Oracle Database In-Memory provides a unique dual-format architecture that enables tables to be simultaneously

optimized for both transactional and reporting/analytics uses, but requiring only one database.

Figure 4. Oracle’s Unique Dual-Format Architecture

9 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

Oracle Database In-Memory's dual-format architecture enables organizations to run reports and ad hoc queries in

addition to OLTP transactions, using the same data. The key advantage of Oracle’s in-memory capabilities is the

possibility of "real-time analytics" (the ability to run analytic queries directly on the source data) without having to

wait for that data to be transferred or ETL'd to a reporting platform. This provides organizations with trends and

summaries of their data that can be acted on in real time. In fact, real-time analytics opens up the possibilities of

asking business questions, which were not being asked before, because of the resource requirements or time

delay in accessing data.

In addition, Database In-Memory eliminates the need for most analytic indexes by delivering performance similar to

having an index on every column, but with much less transactional overhead. Removing analytic indexes speeds

up OLTP operations since the analytic indexes are no longer needed by every transaction -- further reducing the

storage requirements of the database

Database In-Memory

Database In-Memory uses an In-Memory column store (IM column store), which is a component of the Oracle

Database System Global Area (SGA), called the In-Memory Area. Data in the IM column store does not reside in

the traditional row format used by the Oracle Database; instead, it uses a new columnar format.

Oracle Database has traditionally stored data in a row format. In a row format database, each new transaction or

record stored in the database is represented as a new row in a table. That row is made up of multiple columns,

with each column representing a different attribute about that record. A row format is ideal for online transaction

systems, as it allows quick access to all of the columns in a record since all of the data for a given record are kept

together in-memory and on-storage. A column format database stores each of the attributes about a transaction

or record in a separate column structure. A column format is ideal for analytics, as it allows for faster data retrieval

when only a few columns are selected but the query accesses a large portion of the data set.

Supported Database In-Memory workloads include:

 OLTP and Mixed Workloads: Database In-Memory enables orders of magnitude faster analytics

without impacting OLTP workload. In fact, as long as there are sufficient CPU resources to support

the analytic workload, there is virtually no impact to the OLTP workload.

 Data Warehouse Workloads: Data Warehouse workloads have been traditionally dominated by

analytic reporting requirements. Data Warehouses are usually time based historical repositories

that integrate data from one or more disparate sources. Organizations tend to run analytic reports

on the most current data while retaining older data for historical data retention. While this

description is a simplistic view of Data Warehousing, the reality is that most analytic reporting is

performed on relatively recent data. Database In-Memory is ideally suited to this type of workload.

Database In-Memory enables all types of analytic workload by leveraging columnar formatted

data, along with specialized technology, to make scanning of in-memory columnar data orders of

magnitude faster than similar row-based queries.

But what happens when a DML operation (insert, update or delete) occurs on each format? A row format is

incredibly efficient for processing DML as it manipulates an entire record in one operation (i.e. insert a row,

update a row or delete a row). A column format is not as efficient at processing DML, to insert or delete a single

record in a column format all the columnar structures in the table must be changed. That could require one or

more I/O operations per column. Database systems that support only one format suffer the tradeoff of either sub-

optimal OLTP or sub-optimal analytics performance. Database In-Memory provides the best of both worlds by

10 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

allowing data to be simultaneously populated in both an in-memory row format (the buffer cache) and a new in-

memory columnar format (the IM column store): a dual-format architecture.

It is important to remember that the IM column store does not replace the buffer cache, but acts as a supplement,

so that data can now be stored in memory in both a row and a columnar format. In addition to supporting DRAM

in the SGA for the IM column store, Database In-Memory columnar formatted data is supported on Exadata flash

-- this enables organizations to have Terabytes of columnar formatted data to run high-speed analytic processing.

Not all of the objects in an Oracle database need to be populated in the IM column store. This is an advantage

over so-called “pure” in-memory databases that require the entire database to be memory-resident. With Oracle

Database In-Memory, the IM column store should be populated with the most performance-critical data in the

database. Less performance-critical data can reside on lower cost flash or disk. If your database is small enough,

you can populate all of your tables into the IM column store.

Database in-Memory on Exadata enables organizations to have objects populated in the columnar format

that makes the best use of memory and flash resources. On Exadata systems there is much more Flash

available than DRAM and this makes a good secondary tier for columnar data. As data is ingested into the

Data Warehouse and has significant analytic value, it is an ideal candidate for population into the in-

memory column store. As it ages, and is less actively queried, it may be a candidate to be evicted from the

IM column store and accessed in Flash storage in columnar format and/or converted to hybrid columnar

compression (see below) format for storage savings while retaining columnar query capabilities. Ultimately,

the data may be retained just for archive purposes and Hybrid Columnar Compression may provide the

most economical method of storing that data while still having it available to query if necessary.

Database In-Memory can also reduce the need for analytic reporting indexes. Database In-Memory

queries scan the entire column(s) of a segment and do not make use of traditional Oracle Database

indexes. Typically, organizations have needed to create large numbers of analytic reporting indexes in

order to run their analytic reports. This requires significant amounts of disk space, in many cases as much

as the base object(s), and requires overhead to maintain these indexes during DML operations. Since

indexes are persistent objects, they generate undo and redo and have to be backed up. This also

increases the overhead of maintaining them.

Oracle Database In-Memory inherits all the proven functionality of Oracle Database, including the

sophisticated and robust high availability solutions embodied in Oracle’s popular Maximum Availability

Architecture (MAA). Oracle Database In-Memory is fully compatible with Oracle’s Multitenant database

architecture, allowing consolidated databases to take advantage of a combination of fast in-memory and

low-cost storage technologies

Application SQL does not have to be changed to take advantage of Oracle Database In-Memory. The

Oracle SQL Optimizer automatically routes analytic queries to the column format and OLTP queries to the

row format based on cost, transparently delivering best-of-both-worlds performance. Oracle Database also

automatically maintains full transactional consistency between the row and the column formats, just as it

maintains consistency between tables and indexes today. The new column format is a pure in-memory

format and is not persistent on disk, so there are no additional storage costs or storage synchronization

issues.

Another advantage of Database In-Memory is that it can significantly reduce reporting oriented I/O

workload. Database In-Memory queries only use CPU and memory resources and typically run in a fraction

11 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

of the time that row based analytic queries take to run. This can actually reduce the overall analytic

workload and provide the ability to run even more analytics or ad hoc drill down type queries.

Automatic In-Memory (AIM)

The Automatic In-Memory capability enables Database In-Memory to automatically evict segments from

the IM column store based solely on Heat Map and other usage criteria. This does not require the creation

of policies ahead of time. This allows for the automatic management of the IM column store when there is

not enough room to populate all objects (i.e. the column store is under memory pressure). With AIM

enabled, the most active data will populated as the least active data is evicted.

ADO policies also support the addition to, the compression of, and the removal of segments from the IM

column store. Again, this is supported for Heat Map based or time-based policies. All ADO operations are

executed automatically and in the background, with no user intervention required.

LIFECYCLE STAGE

Action: Automatic Data Optimization Compression Tiering – Inactive Data automatically

compressed using Oracle Hybrid Columnar Compression as the data continues to become less

active (can include data evicted from the IM column store) and is primarily used for

reporting/query-only purposes

A key benefit of the Enterprise Data architecture is that Heat Map can track and monitor the usage of tables and

partitions over the lifecycle of those database objects. As discussed earlier, when data is created and is being

actively modified, organizations typically enable Advanced Row Compression to ensure the best possible

compression ratios, and performance, for actively modified data. However, at this stage of the data lifecycle, even

though the data volume is still growing exponentially, much of the data has begun to “cool” down and is used

primarily for queries and reporting purposes (read mostly/only data).

The information tracked by Heat Map reflects the changing usage patterns of the data we have been following,

and together with existing ADO policies can be used to implement the organization's compression tiering strategy.

In our example a compression tiering strategy makes use of ADO to move the aging (colder data) out of its

current Advanced Row Compression level to the compression level best suited for the current usage of the

table/partition while also significantly reducing the object's storage footprint. Since the table/partition has cooled

down (with no or few DML updates or inserts), the ADO polices in place will automatically, and transparently,

move the compression level to Hybrid Columnar Warehouse Compression.

Oracle’s Hybrid Columnar Compression (HCC) technology is a new method for organizing data within a database

block. As the name implies, this technology utilizes a combination of both row and columnar formats while

avoiding the performance shortfalls of a pure columnar format. A logical construct, called the compression unit

(CU), stores a set of hybrid columnar compressed rows. When data is loaded, column values for a set of rows are

grouped together and compressed. After the column data for a set of rows has been compressed, it is stored in a

compression unit.

12 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

One of the key benefits of the hybrid columnar approach is that it provides both the compression and

performance benefits of columnar storage without sacrificing the robust feature set of Oracle Database.

Warehouse (Query) Compression (HCC)

HCC Warehouse (also called Query Compression) provides significant storage savings by leveraging Hybrid

Columnar Compression technology. Query Compression typically provides a 10:1 (10x) data compression ratio,

delivering roughly five times the industry average savings. For example, enabling Query Compression on an

uncompressed 100 terabyte data warehouse would reduce the storage requirements to only 10 terabytes. Query

Compression would return 90 terabytes of storage back to the enterprise for other uses.

While Query Compression is a database storage optimization feature, the implementation of Hybrid Columnar

Compression on Exadata is optimized to improve I/O scan performance during typical data warehouse queries.

The I/O required to scan a Query-compressed table typically decreases by the compression ratio achieved.

Therefore, scan-oriented queries that access a table that has a compression ratio of 10:1 will likely have a

reduction in I/O of up to 10x. Total query performance will also likely improve, however it will depend on the

available CPU resources.

Further improving performance is Exadata’s Smart Scan technology, which greatly reduces the amount of data

sent from storage to the database server by offloading much of the scan activities to the Exadata storage. Exadata

Smart Scan works directly on Hybrid Columnar compressed data on Exadata. With this level of improvement in I/O

scan performance, Query Compression reduces costs by both decreasing the amount of storage required and by

eliminating the need to increase the number of disk drives and related hardware to meet performance objectives.

Query Compression provides two levels of compression: LOW and HIGH. Query Compression HIGH typically

provides a 10x reduction in storage, while Query Compression LOW typically provides a 6x reduction. Both levels

are optimized on Exadata to increase scan query performance by taking advantage of the fewer number of blocks

on disk. To maximize the storage savings and query performance benefits of Query Compression, the default level

is HIGH.

While HCC compressed data can be modified using conventional Data Manipulation Language (DML)

operations, such as UPDATE and DELETE - HCC is best suited for applications with no, or very limited

DML operations.

LIFECYCLE STAGE

Action: Automatic Data Optimization Compression Tiering – Cold Data compressed to a higher

level of Oracle Hybrid Columnar Compression as the data needs to be primarily maintained for

historic/legal or regulatory reasons but may still need to be accessed for query/reporting purposes

Again, fortunately for the organization, the information tracked by Heat Map reflects another change in the

lifecycle flow of the data and together with existing Automatic Data Optimization policies implements a change to

the compression tiering to further compress this now cold data. The organization's compression tiering strategy

13 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

will now automatically, and transparently, move the table/partition out of its current HCC Warehouse Compression

level to a compression level even better suited for archive/historic data -- HCC Archive Compression.

Archive Compression (HCC)

HCC Archive Compression provides significant storage savings by leveraging Hybrid Columnar Compression

technology. Archive Compression is optimized to maximize storage savings, typically achieving a compression

ratio of 15:1 (15x). That is, an uncompressed table or partition would require 15x more storage than a table or

partition using Archive Compression.

In contrast to Warehouse Compression, Archive Compression is a pure storage saving technology. Tables or

partitions utilizing Archive Compression will typically experience a slight decrease in performance - a factor of the

compression algorithm being optimized for maximum storage savings. Therefore, Archive Compression is intended

for tables or partitions that store data that is rarely accessed. Data Warehouses on Exadata will typically store

frequently queried data in partitions compressed with Warehouse Compression (for performance), while historical

data is stored in partitions compressed with Archive Compression (for storage savings).

In many applications, historical data is responsible for consuming up to 80% of the allocated storage. It is no

wonder that IT administrators are implementing information lifecycle strategies that archive much of this historical

data to tape. However, this approach has several inherent flaws. Once data is archived to tape, the application can

no longer access this data directly. In order to access the archived data, IT administrators must first restore the

data from tape and load it back into the database. This can take a tremendous amount of time and does not meet

the requirements of today’s fast-paced businesses.

Complicating things further, data archived to tape can become out-of-sync with structural changes to the database

schema, such as the addition of columns and constraints. Therefore, restoring this data back into the database

requires not only a significant amount of time but also a significant amount of resources to correctly restore the

data and make it accessible by the application. Of course, requests for this data are usually extremely urgent and

any delays affect management’s ability to make critical business decisions. As you can see, this approach to

storing historical data can actually be quite costly to the business.

Archive Compression provides the storage savings benefits of archiving data to tape while keeping this data online

for immediate access and modification. Further, as the application evolves, all the historical data will evolve with

the database schema modifications, such as new columns, constraints, etc. Therefore, when an application user

needs to access historical data, the application will be able to seamlessly service queries without any need to

involve IT administrators or application developers.

While query performance against tables or partitions with Archive Compression is slightly slower than tables or

partitions with Warehouse Compression or Advanced Row Compression, they are orders of magnitude faster than

queries that must access data archived to tape.

Summary of the different compression levels that can be implemented as part of compression tiering.

Figure 5. Summary of Oracle Database Data Compression Levels

14 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

LIFECYCLE STAGE

Action: Automatic Data Optimization Storage Tiering - Once data becomes “cold” it can be tiered to

secondary (tier 2) storage to ensure space for more frequently accessed data on primary (tier 1)

storage

The data we have been tracking since the beginning of this document has gone from very active to colder,

historic/archive data. The design of the Enterprise Data Architecture recognizes that organizations (or even

a single application) do not access all of its data equally: as typically the most critical or frequently

accessed data will need the best available performance and availability. To provide this best access quality

to all data would be costly, inefficient and is often architecturally impossible.

Instead, to meet this challenge an IT organization can implement storage tiering. With storage tiering,

organizations can deploy their data on different tiers of storage so that less-accessed “colder” data is

migrated away from the costliest and fastest storage. Using Oracle Data Partitioning, the most active data

partitions can be placed on faster, higher performance storage, while less active and historical data can be

placed on lower cost storage. The colder data is still available, but at slightly slower speeds – the effect on

the overall application performance is minimal, due to the rarity of accessing colder data.

ADO storage tiering policies also support the ability to "tier" segments to different storage layers. Based on

Heat Map data or time, policies can be created to move segments online to different tablespaces once the

source tablespace reaches a certain utilization threshold.

Automatic Data Optimization Storage Tiering

ADO-based storage tiering (TIER TO) is not based upon the ADO condition clause (i.e. after “x” days of

NO MODIFICATION) as is compression tiering and instead, is based upon tablespace space pressure.

The justification for making storage tiering dependent on "space pressure" is exactly as you might imagine,

the belief that organizations will want to keep as much data as possible on their high performance (and

most expensive) storage tier, and not move data to a lower performance storage tier until it is absolutely

required. The exception to the storage pressure requirement are storage tiering policies with the 'READ

ONLY' option, these are triggered by a heat-map based condition clause.

The value for the ADO parameter TBS_PERCENT_USED specifies the percentage of the tablespace quota when

a tablespace is considered full. The value for TBS_PERCENT_FREE specifies the targeted free percentage for

the tablespace. When the percentage of the tablespace quota reaches the value of TBS_PERCENT_USED, ADO

begins to move segments so that percent free of the tablespace quota approaches the value of

TBS_PERCENT_FREE. This action by ADO is a best effort and not a guarantee.

15 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

For example:

BEGIN

 DBMS_ILM_ADMIN.CUSTOMIZE_ILM(DBMS_ILM_ADMIN.TBS_PERCENT_USED,85):

 DBMS_ILM_ADMIN.CUSTOMIZE_ILM(DBMS_ILM_ADMIN.TBS_PERCENT_FREE,25):

END;

In this example, when a tablespace reaches the fullness threshold (85%) defined by the user, the database will

automatically move the coldest table/partition(s) in the tablespace to the target tablespace until the tablespace

quota has at least 25 percent free space. Of course, this only applies to tables and partitions that have a "TIER

TO" ADO policy defined (see example below). This frees up space on your tier 1 storage (ACTIVE tier) for the

segments that would truly benefit from the performance while moving colder segments, that don’t need Tier 1

performance, to lower cost Tier 2 storage (LESS ACTIVE/COLD Tier)

ALTER TABLE orders ILM ADD POLICY TIER TO lessactivetbs;

In this simple ILM example, Oracle Database automatically evaluated the ADO policies to determine when data

(table/partition) was eligible to move to a different tablespace (tier 2 storage) – with no additional burden placed on

database administrators or storage management staff.

Summary

Oracle’s Enterprise Data Architecture enables organizations to understand how their data is accessed over time,

and optimize their data usage (reporting, analytics or transactional), compression level and storage tiering to best

meet the needs of the organization.

16 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

Additional Oracle Technologies

The Oracle Technologies above discussed how various components of the Enterprise Data Architecture

provide an integrated solution to manage data as that data progresses through its lifecycle. Yet, that is only

part of the power of the Enterprise Data Architecture.

These are additional Oracle Technologies’ designed to provide further storage savings, streamlined data

access as well as data auditing. These capabilities can be used in conjunction with the capabilities

discussed earlier and can be implemented at any point of the enterprise data lifecycle flow.

17 | P a g e – E n t e r p r i s e D a t a A r c h i t e c t u r e

More Information

For more information regarding the features/capabilities discussed above, please see the following links.

Database In-Memory

Advanced Compression/Basic Compression

Hybrid Columnar Compression

SecureFiles LOB Compression/Deduplication

Index Compression

Heat Map/Automatic Data Optimization

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0119

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

https://www.oracle.com/database/technologies/in-memory.html
https://www.oracle.com/database/technologies/advanced-compression.html
https://www.oracle.com/database/technologies/advanced-compression.html
https://www.oracle.com/database/technologies/advanced-compression.html
https://www.oracle.com/database/technologies/advanced-compression.html
https://www.oracle.com/database/technologies/advanced-compression.html

