Predictive maintenance is a key component of Industry 4.0. Poor maintenance strategies can substantially affect the operational efficiency and profitability of industrial manufacturers. To be competitive, companies in asset-intensive industries need to minimize unplanned downtime and optimize maintenance costs.
For the manufacturing industry, using data to enable and improve predictive maintenance is particularly relevant as the use case can be applied to any kind of manufacturing production system, such as computerized numerical control (CNC) infrastructure, supply chain and warehouse systems, logistics and test systems, and so on.
While a wide variety of data sources may be used depending on the specific application, the keys to shifting from reactive to predictive maintenance are Internet of Things (IoT) data streams or machine-to-machine (M2M) messages sent and received through an MQTT (the IoT messaging standard) broker or provided by historians from operational intelligence systems. These are the sources of the raw data required to assess whether maintenance operations are needed; however, data from other sources is necessary to establish a proper predictive maintenance system. For instance, maintenance management systems contain information about the pieces of equipment themselves, such as maintenance reports. Other sources of data include supervisory control and data acquisition (SCADA) systems, a special repository containing media files (such as pictures and video streams), maintenance manuals, and weather forecasts. The variety of data that can be used in predictive maintenance is vast.
The architecture presented here demonstrates how recommended Oracle components can be combined to build a full analytics architecture that covers the entire data analytics lifecycle, from discovery through to action and measurement, and delivers the wide range of business benefits described above.
This image shows how Oracle Data Platform for manufacturing can be used to support predictive maintenance and asset availability optimization. The platform includes the following five pillars:
Business record data comprises data from MES, WHM, CMM (maintenance and asset management), IoT, SCADA systems, and historian and operator entry (including faults, quality, and observations).
Technical input data includes IIoT, images, email, videos, paper documentation (OCR), and discrete events (such as an emergency stop of the production line).
Batch ingestion uses OCI Data Integration, Oracle Data Integrator, and DB tools.
Bulk transfer uses OCI FastConnect, OCI Data Transfer, MFT, and OCI CLI.
Change data capture uses OCI GoldenGate.
Streaming ingest uses Kafka Connect.
All four capabilities connect unidirectionally into the serving data store, transactional data store, and cloud storage within the Persist, Curate, Create pillar.
Additionally, streaming ingest is connected to stream processing within the Analyze, Learn, Predict pillar.
The serving data store uses Autonomous Data Warehouse and Exadata Cloud Service.
The transactional data store uses ATP, MySQL, Oracle NoSQL, and Exadata Cloud Service.
Cloud storage uses OCI Object Storage.
Batch processing uses OCI Data Flow.
Governance uses OCI Data Catalog.
These capabilities are connected within the pillar. Cloud storage is unidirectionally connected to the serving data store and the transactional data store; it is also bidirectionally connected to batch processing.
Two capabilities connect into the Analyze, Learn, Predict pillar. The serving data store connects to both the analytics and visualization capability and also to the data products, APIs capability. Cloud storage connects to the machine learning capability.
Analytics and visualization uses Oracle Analytics Cloud, GraphStudio, and ISVs.
Data products, APIs uses OCI API Gateway and OCI Functions.
Machine learning uses OCI Data Science and Oracle Machine Learning.
AI services uses OCI Anomaly Detection, OCI Forecasting, OCI Language, and OCI Vision.
Streaming processing uses GoldenGate Stream Analytics and stream analytics from third parties.
The Measure, Act pillar captures how the data analysis may be used: by people and partners and applications and models, and specifically to update AI service models.
People and partners comprise Condition Monitoring and Sensor Data Analysis, Failure Mode and Effects Analysis (FMEA).
Applications comprises Asset Performance Management (APM), Root Cause Analysis, Reliability Centered Maintenance (RCM).
Models comprises Updated AI Service Model, Predictive Analytics and Machine Learning Models
The three central pillars—Ingest, Transform; Persist, Curate, Create; and Analyze, Learn, Predict—are supported by infrastructure, network, security, and IAM.
Our solution is composed of three pillars, each supporting specific data platform capabilities. The first pillar provides the capability to connect, ingest, and transform data.
There are four main ways to inject data into an architecture to enable manufacturing organizations to move from reactive to predictive maintenance.
Data persistence and processing is built on three (optionally four) components. Some customers will use all of them, others a subset. Depending on the volumes and data types, data could be loaded into object storage or loaded directly into a structured relational database for persistent storage. When we anticipate applying data science capabilities, then data retrieved from data sources in its raw form (as an unprocessed native file or extract) is more typically captured and loaded from transactional systems into cloud storage.
The ability to analyze, predict, and act is facilitated by three technology approaches.
The multiple models created by combining data science with the patterns identified by machine learning can be applied to response and decisioning systems delivered by AI services.
The final yet critical component is data governance. This will be delivered by OCI Data Catalog, a free service providing data governance and metadata management (for both technical and business metadata) for all the data sources in the data platform ecosystem. OCI Data Catalog is also a critical component for queries from Oracle Autonomous Data Warehouse to OCI Object Storage as it provides a way to quickly locate data regardless of its storage method. This allows end users, developers, and data scientists to use a common access language (SQL) across all the persisted data stores in the architecture.
With predictive maintenance, equipment is serviced only when it needs to be serviced, reducing unexpected outages. This delivers multiple advantages that include fewer scheduled maintenance repairs or replacements, the use of fewer maintenance resources (including spare parts and supplies), and, simultaneously, fewer failures. These proactive predictions can help to prolong the life of equipment while reducing the risk of potential product delays by minimizing equipment changeovers and the associated downtime.
Reducing unplanned downtime helps optimize business operations, improving efficiency, productivity, and speed and helping ensure the right part gets to the right place at the right time. Meanwhile, reducing maintenance, labor, and material costs and optimizing asset lifecycle costs increases profitability.
Oracle предлагает бесплатную пробную версию без ограничений по времени для более чем 20 сервисов, таких как Autonomous Database и Arm Compute и Storage, а также бонусы на 300 долларов США для пробного использования дополнительных облачных сервисов. Узнайте подробности и зарегистрируйтесь бесплатно уже сегодня.
Ознакомьтесь с широким спектром сервисов OCI с помощью учебных пособий и тренингов. Независимо от того, являетесь Вы разработчиком, администратором или аналитиком, мы поможем Вам понять, как работает OCI. Многие практические занятия проходят на уровне Oracle Cloud Free Tier или на бесплатной платформе для практических занятий Oracle.
Практические занятия этого семинара охватывают введение в основные сервисы Oracle Cloud Infrastructure (OCI), включая виртуальные облачные сети (VCN), а также сервисы вычислительных ресурсов и хранения.
Начать практическое занятие «Базовые сервисы OCI»На этом семинаре Вы ознакомитесь с пошаговыми инструкциями по началу работы с Oracle Autonomous Database.
Начать практическое занятие Autonomous DatabaseВ рамках этого практического занятия Вы загрузите электронную таблицу в таблицу базы данных Oracle, а затем создадите приложение на основе этой новой таблицы.
Начать этот тренингНа этом практическом занятии Вы развернете веб-серверы на двух вычислительных экземплярах в Oracle Cloud Infrastructure (OCI), настроенных в режиме высокой доступности с помощью балансировщика нагрузки.
Начать практическое занятие «Приложение с высокой доступностью»Посмотрите, как архитекторы и заказчики Oracle развертывают различные нагрузки: от корпоративных приложений до высокопроизводительных вычислений и от микросервисов до озер данных. Ознакомьтесь с лучшими практиками, узнайте много нового от архитекторов-заказчиков в нашей серии видео Built & Deployed, а также разверните множество нагрузок либо благодаря возможности «нажмите, чтобы развернуть», либо самостоятельно с помощью репозитория Oracle GitHub.
Ценообразование Oracle Cloud построено на принципах простоты и постоянства с поддержкой широкого спектра сценариев использования. Чтобы оценить низкую ставку, откройте калькулятор затрат и настройте сервисы в соответствии с Вашими потребностями.
Хотите узнать больше об Oracle Cloud Infrastructure? Позвольте одному из экспертов Oracle помочь.