Boost SQIL. Performance with

cursor_sharing
An Oracle Technical White Paper
July 2001

ORACLE

Boost SQL Performance with cursor_sharing

EXECUTIVE OVERVIEW

This paper describes enhancements to the cursor sharing infrastructure, added in
Oracle8/ Release 2, and Oracle9z These enhancements ate controlled by a new
parameter cursor_sharing.

The goal of cursor_shating is to improve server performance for applications
that don’t use bind variables everywhere.

NEED FOR CURSOR_SHARING

This section explains why applications not using bind variables run into
performance problems.

Applications execute similar SQL statements repeatedly

Applications that use an Oracle database to manage their data must access/modify
it using SQL statements. These SQL statements are either directly issued by an
application through OCI, OCCI, JDBC, PL/SQL etc., or indirectly issued through
other utilities or libraries (e.g. dbms_sq]l).

An application typically provides a fixed collection of functions to the end user
depending on the type of application, e.g. an HR application might provide
functionality like adding a new employee, modifying personal information about an
employee, etc. Every such functionality eventually accesses and/or modifies data
using SQL. Since applications tepeatedly execute such functionality, an
application’s interaction with an Oracle database consists of repeated execution of
similar SQL statements.

Steps involved in executing SQL

To execute a SQL statement, a client program can go through a few different
interfaces. For example, through OCI a client creates a statement handle, then
prepares the statement, binds, defines, and executes the statement handle. Or, a
SQL statement can be executed through a PL/SQL procedure by directly
embedding it in the procedure text.

Regardless of the client interface, an Oracle database always goes through some
fixed steps (by default):

Boost SQL Performance with cursor_sharing Page 2

1. open a user cursor - A user cursor is a handle to all other user state
associated with any SQL statement like execution memorty, reference to the

shared cursor, current state of the user cursor, etc.

2. parse a SQL statement into the open user cursor - Doing this associates the
SQL statement with the user cursort; it also creates a shared cursor, which
corresponds to the parsed form of the SQL statement. The shated cursor
may also be typechecked and optimized as a part of the parse, in some cases.
The process of parsing, typechecking and optimizing a SQL statement is
typically very resource intensive in terms of CPU, memory and latch

contention.

3. bind variables, if necessary - This provides Oracle with the necessary
information about the type, size, value, etc. of the bind variables in the

statement.
4. typecheck and optimize the shared cutsor, if not already done

5. execute the user cursor - This step does the actual work of executing the
statement, and will use up CPU and session memory depending on the
complexity of the statement.

Note that parse, typecheck and optimization (collectively called compilation in this
document) comprise the bulk of the overhead in executing a SQL statement, and
can limit capacity and scalability of the database.

Shared cursors

Given that a typical application repeatedly executes similar statements, a lot of
optimizations in the Oracle database for SQL processing target repeated
executions. The most important optimization is shared cursors, which tries to
remove the overhead of compilation for an average execution, by sharing the result
of compilation between different executions of the same statement (either
happening concutrently, or at very different times). The picture below illustrates
how this is done.

User Session 1

Private
execution
state

A
Shared Cursor

User Session 2

Private
execution
state

Boost SQL Performance with cursor_sharing Page 3

To enable sharing cursors, Oracle splits up the statement execution state into a

shared cursor, and a per-execution instantiation. The shared cursor is the result of
compilation and contains the execution plan; it is cached in the shared pool. Each
session executing the statement has its private copy of per-execution state like the

user cursot, values of runtime variables, etc.

In the parse step (step 2 mentioned earlier), Oracle first searches for an existing
shared cursor that can be shared by the user session. Oracle breaks down this
search into two steps: indexing based on the SQL text to find cursors built for the
same SQL text, and selecting the right cursor based on other criteria like optimizer
modes, base objects accessed, etc. If a sharable cursor is found then no
compilation needs to happen, and the process is called a soft parse. Else, a new
shared cursor is built by compiling the SQL statement, and the process is called a
hard parse.

When most of the statements issued by an application can shate the same set of
cursors, most of the parses become soft parses, and improve the database server
capacity/throughput (by reducing memory and CPU usage), tesponse-time (by
reducing the time taken by the parse phase), and scalability (by reducing latch

contention).

Why cursors are not shared

Assuming that other factors like configurable instance/session/transaction level
parameters are the same, cursors for two statements S1 and S2 can theoretically be
shared if they perform the same operations on the same underlying set of
rows/objects, using the same plan. This can be very hard and computation
intensive to figure out, potentially destroying the benefits of sharing cursors in the
first place! Hence, Oracle’s cursor sharing criteria don’t share cursors in all the
possible scenarios, but they are designed to be efficient, without losing out on
most of the common cases. Until 8i Release 2, two statements S1 and S2 could
share the same cursor if both S1 and S2 were textually identical, and a few other
conditions were met (any object names in the statements translate to the same base

objects, optimizer modes for the sessions issuing the statements match, etc.)

This causes a cursor shating problem when applications use literals instead of bind
variables in statements. Such applications end up producing statements that differ
in some of the literals even when the rest of the statement text is identical. For
example, an application that does not use bind variables, might issue the following
two statements, at different times or from different sessions:

INSERT INTO T VALUES(1, foo’, 4)
INSERT INTO T VALUES (2, *bar’, 7)

Since the two statements aren’t textually identical, they end up building separate

cursofss.

There are various reasons why some applications don’t use bind variables:

Boost SQL Performance with cursor_sharing Page 4

* it’s just easier to write SQL statements with literals, especially with some

tools

* older Oracle releases didn’t support bind variables (at least there was no
cursor shating advantage to using them until Oracle7), and it requires some
work to retrofit bind variables to existing applications

* all database vendors don’t support bind vatiables, or even if they do, the
syntax varies; hence applications lose interoperability with other databases by
using Oracle-only syntax/features

* If a statement uses bind variables, then it always uses the same plan. This can
be a problem if the optimal plans for different bind values can be very
different. For example, consider the following statements:

SELECT * FROM T1, T2 WHERE (T1.N <= 100) AND (T1.N1 = T2.N2)
SELECT *FROM T1, T2 WHERE (T1.N <= 500) AND (T1.N1 = T2.N2)

These two statements can have different optimal plans, depending on the
distribution of values in the column N. Thus, using a bind variable, producing:

SELECT * FROM T1, T2 WHERE (T1.N <= :X) AND (T1.N1 = T2.N2)

will cause the plan to be sub-optimal for some values of the bind variable. This can
force applications (especially, in a DSS environment) to use literals instead of bind
variables.

CONCEPTS

This section describes some necessaty concepts, before going into the solution.

Similar statements

A set of statements will be called similar if any two statements in the set differ only
in the literals.

This is a purely syntactic criterion.

Example: The following statements are similar.
INSERT INTO T VALUES(1, foo’, 4)
INSERT INTO T VALUES (2, *bar’, 7)
INSERT INTO T VALUES (5, ‘alpha’, 11)

INSERT INTO T VALUES(10, kappa’, 17)

Optimally sharable statements

Similar statements may or may not have the same execution plans. For example,

the following two statements will have the same execution plans:

INSERT INTO T VALUES(1, foo’, 4)

Boost SQL Performance with cursor_sharing Page 5

INSERT INTO T VALUES (2, ’bar’, 7)
Such statements will be called optimally sharable statements, in this document.
Thus:
Optimally sharable statements are similar statements that have the same

optimal plan.

This also implies that optimally sharable statements can share the same cutsot,
without any impact on the execution costs.

Sub-optimally sharable statements

On the other hand, the following two statements:
SELECT *FROM T1, T2 WHERE (T1.N <= 100) AND (T1.N1 = T2.N2)
SELECT * FROM T1, T2 WHERE (T1.N <= 500) AND (T1.N1 = T2.N2)

can have different optimal plans, depending on the rows that satisfy (N <= 100)
and (N <= 500), the distribution of values in column N, the availability of an index
on N, N1 or N2, etc. For instance, the first statement may use an index on T1 and
the second statement may do a full table scan on T1. Ot, the first statement may
do a hash join and the second statement may do a nested loop join. Such
statements will be referred to as suboptimally sharable statements. Thus:

Sub-optimally sharable statements ate similar statements that can have
different optimal plans.

This also implies that if sub-optimally sharable statements share the same cursor,

then there may be a penalty in terms of execution costs.

Optimally sharable vs. suboptimally sharable statements

The distinction between optimally sharable and suboptimally sharable statements

is not purely syntactic. It depends on factors like:

* the position of literals in the statement (e.g. in the VALUES clause, or the
WHERE clause)

* the access paths available (e.g. presence of an index)

* the data distribution (statistics) and its availability, if a literal occurs in a
predicate involving a column (e.g. N <= 100 with column statistics available
on N)

* algorithms used by the optimizer, to exploit literals (e.g. constant folding, or

partition pruning)

Non-sharable statements

There are cases where similar statements cannot share the same cursor, because

using the same cursor would produce incorrect results. These are similar

Boost SQL Performance with cursor_sharing Page 6

statements that mean different things, or do something very different during
execution. The following statements illustrate the point:

SELECT * FROM T ORDER BY 1, 4;
SELECT * FROM T ORDER BY 2, 3;

In the above example, the literals 1, 2, 3, and 4 refer to items in the select list. Such
statements will be called non-sharable statements. Thus:

Non-sharable statements are similar statements that cannot share the same

execution plan.

The important point to note here is: if two non-sharable statements share the

same cursort, one of them will get wrong results.

THE SOLUTION

This section describes the solution provided through cursor_sharing.

Overview

The new parameter cutsor_sharing allows shating cursors for similar statements
whenever possible. Depending on the value of the parameter, similar statements
can be always forced to share the same cursor (potentially using suboptimal plans),
or can share the same cursor without compromising the optimality of the
undetlying plan.

With cursor_sharing sct to either SIMILAR or FORCE, Oracle first searches for
a cursor with exactly the same statement text. If such a cursor is not found, Oracle

searches for a cursor with a similar statement text.

Usage

Parameter: cursor_sharing

A new dynamic parameter cursor_sharing has been introduced starting with 8i
Release 2. In 8i, the parameter can have two possible values: FORCE and
EXACT. Starting with 91, a new value SIMILAR has been added.

The default value is EXACT. It only allows statements with the exact same text to
share a cursor. This is the behavior of earlier releases.

The value SIMILAR causes similar statements to shatre the same cursors, without
compromising execution plans, i.e. only optimally sharable statements share

cursofss.

Setting the parameter to FORCE will force Oracle to share cursors for similar
statements, at the risk of suboptimal plans, i.e. both optimally sharable and
suboptimally sharable statements can share the same cursor. The parameter should
be set to FORCE only when the risk of suboptimal plans is outweighed by the
improvements in cursor sharing, e.g. if there are severe performance problems

caused by too many hard parses of suboptimally shareable statements.

Boost SQL Performance with cursor_sharing Page 7

SQL statements

A new hint CURSOR_SHARING_EXACT is allowed in SQL statements to
control cursor sharing at the statement level. The hint behaves similar to the
initialization parameter, cursor_sharing set to EXACT, and ovetrides the existing
default behavior based on any setting of the parameter, i.c. it causes the statement

to share a cursor built for a statement with an exact match.

ALTER SYSTEM and ALTER SESSION commands allow the new parameter

cursor_sharing to be set or changed. The syntax is as follows:
ALTER SYSTEM SET cursor_sharing = {FORCE | SIMILAR | EXACT}
ALTER SESSION SET cursot_shating = {FORCE | SIMILAR | EXACT}

Dynamic views

The following four dynamic views show information about bind variables:

* GV$SQL_BIND_METADATA

V$SQL_BIND_METADATA

GV$SQL_BIND_DATA

V$SQL_BIND_DATA.

These views will also contain information about internal bind variables. Internal
bind vatiables can be distinguished from user bind variables, based on the value of
the column SHARED_FLAG?2 in [G]V$SQL_BIND_DATA, by looking at flag
value 256.

To see only the rows corresponding to internal binds, a user can issue the
following statement:

SELECT * FROM V§SQOIL, BIND_DATA WHERE
BITANDSHARED_FILAG2, 256) = 256

Key benefits and tradeoffs

Consider an application not using bind variables. Such an application will issue
similar statements repeatedly, and most such executions will incur a hard parse.

A typical application not using binds can be expected to have all categories of
statements: optimally shareable, suboptimally shareable and non-shareable. For
optimally shareable statements, sharing cursors is clearly an improvement; non-

shareable statements cannot share the same cursor.

There is no simple answer for suboptimally shareable statements: shating cursors
vs. getting the optimal plan represents a tradeoff that needs to be decided by
weighing the acuteness of the hard parsing overhead on the system vs. the
deterioration that can be caused by forcing such statements to use the same plan.
Thus, the right answer will vary depending on the system load, application
characteristics, resource constraints, etc. That’s the reason Oracle leaves this

Boost SQL Performance with cursor_sharing Page 8

decision up to the user, by exposing two different values for cursor_sharing:
SIMILAR and FORCE. SIMILAR is a motre consetvative choice, which causes
only optimally shareable statements to share cursors. With FORCE, both optimally
shareable and suboptimally shareable statements are forced to share cutsors, and
the outcome is less predictable, since cursors may be shared but execution plans
may also deteriorate. Hence, using FORCE makes sense in situations whete
performance is significantly affected due to hard parsing, and there is a very high
percentage of suboptimally shareable statements. Another way to think about this
is: it is better to try SIMILAR before resorting to FORCE.

When similar statements shate cursors as a result of cutsor_sharing, hard parses
get converted to soft parses. Note that these soft parses are a little more expensive
than a soft parse for an application already using bind variables, due to the
additional cost of determining the similarity of the statement (done internally by
replacing literals with bind variables). However, the net savings in CPU, memory
and latch contention will still be considerable.

Note that with cutsor_sharing, Oracle still searches for an exact match first. Only
when a cursor with exactly the same statement text is not found, Oracle searches
for a cursor with a similar statement text. This is done to ensure that when the
same SQL text is being issued with no hard coded literals, there is no impact on

performance.

Since replacement of literals is done before looking for a cursor, other Oracle
optimizations like session_cached_cursors, and cursor_space_for_time can be
advantageously combined with cutsor_sharing. For example, with both
cursor_sharing and session_cached_cursors set to a reasonable value, a similar
statement will be able to use a cached open cursor, after literals are replaced with
internal bind variables.

A summary of the key benefits follows:
* No application change is needed.

* There is no negative impact on those statements, that already use bind

variables.

e With SIMILAR, cursors are shared more often without impacting

execution plans.
* All similar statements can be forced to share cursors with FORCE, as a

final resort.

Caveats

Mixed statements

Mixed statements are statements that have both bind variables and hard coded
literals. For example:

INSERT INTO T VALUES (3, ‘alpha’, :X)

Boost SQL Performance with cursor_sharing Page 9

Similar statements that are mixed don’t share cursors through cursor_sharing, if
they are issued by a client using Oracle7 OCI; they share cursors with later
versions (starting with Oracle8 OCI). In particular, this also applies to SQL issued
from PL/SQL stored procedutes in the setver, since PL/SQL in the server uses an

older client interface.

Static SQL through PL/SQL
Cursot_sharing does not have any effect on static (embedded) SQL in PL/SQL.

Stored outlines

Any stored outlines created without cursor_sharing set to FORCE or SIMILAR,
don’t get picked up when cutsor_sharing is set (to FORCE or SIMILAR). That’s
because stored outlines are indexed by the SQL text, and the current
implementation of cutsor_sharing modifies the statement text. To use stored
outlines with cursor_sharing, they must be recreated using the
create_stored_outlines parameter (and NOT using the create outline statement).

Overhead

There is an overhead involved with FORCE or SIMILAR, which consists of
searching for a cursor built for a similar statement. As mentioned eatlier, this

comptises of:
* searching for a cursor with the original statement text

* replacing literals with internal bind variables, and searching based on the new

text

This overhead will not matter when cursor_sharing works, since a large
percentage of hard parses will be replaced by soft parses, which ate slightly more
expensive. However, when there isn’t a significant increase in cursor sharing, these
overheads can negatively impact performance. There are three scenatios when this

can happen:

a. an application not using binds, issuing the same statements, and not having

any similar statements

This can happen if an application always executes the same statements with
the same literals hard coded in them. Such an application does soft parses by
default, and setting cursor_sharing to FORCE or SIMILAR, will make the

soft parses more CXpCﬁSiVC.

There is a trick that can be used in the case of such an application:
cursor_sharing can be set to FORCE or SIMILAR, after the shared pool is
warmed up, i.e. after all the statements that have the same literals are already
compiled. That way, Oracle will always find cursors for those statements
right away, avoiding the extra overhead.

Boost SQL Performance with cursor_sharing Page 10

This can be particularly useful, if there are some statements in an application
that always use the same literals, and others that keep changing literals.

b. an application issuing structurally different statements, and thus not having
any similar statements

Such an application does hard parses by default, and setting cursor_sharing
to FORCE or SIMILAR, will make the hard parses slightly more expensive.

c. an application not using binds, with most of the similar statements being
suboptimally shareable, using cursor_sharing set to SIMILAR

Such an application does hard parses by default, and mostly soft parses with
cursor_sharing set to FORCE. Setting cursor_sharing to SIMILAR, will
make the hard parses slightly more expensive.

Using FORCE

Using FORCE can potentially cause a very bad execution plan to be used. The
difference between a good plan and a bad plan can be crucial in some situations,
e.g. a DSS environment. Hence, Oracle does not recommend using FORCE is

such scenarios.

When should you use cursor_sharing?

This section makes some recommendations on using cursor_sharing.

Using cursor_sharing=SIMILAR

As mentioned eatlier, cursor_sharing does not hurt the performance of
applications written using bind variables. Setting cutsor_sharing to SIMILAR
improves performance of applications not using bind variables, in most cases (two
exceptions mentioned in the previous section). Hence, cursor_shating can be set
to SIMILAR with minimal risk, in case of performance problems with applications
that don’t use bind vatiables everywhere. Parts of the application that use bind
variables continue to share cursors, and those parts that issue statements with hard
coded literals benefit from some cursor shating.

Whether cursor_sharing=SIMILAR will improve performance depends on the

answers to the following questions:
* Is performance bad due to a very high number of hard parses?

This can be inferred by monitoring several metrics like the average number
of hard parses, the number of parses/number of executions, average

response times, wait events for sessions, etc.

* Arec there lots of similar statements in the shared pool, with hard coded
literals?

This can be checked through dynamic views like v§sql or v§sqlarea.

Boost SQL Performance with cursor_sharing Page 11

If the answer to both the above questions is positive, then it is very likely that
cursor_sharing=SIMILAR will improve performance.

Using cursor_sharing=FORCE

Using cursor_sharing=FORCE can be considered in the following cases:

* The petcentage of suboptimally shareable statements is very high, so that
SIMILAR isn’t useful enough.

There is no easy way to find the percentage of suboptimally shareable
statements, short of examining all the statements. The only other way of
determining this might be to try setting cursor_sharing to SIMILAR,; if hard
parsing problems due to similar statements not sharing cursors persist, then
there are many suboptimally shareable statements, and FORCE is the only

solution.

* The application has hard coded literals, and there is little detetrioration in
execution time by forcing similar statements to use the same cursor.

Again, this is not easy to tell. When an application uses bind variables, it
implicitly makes this assumption; to some extent such an application
ensures that the plan works reasonably well for all values of bind variables
by structuring the statement in certain ways, using optimizer hints, creating
the right indexes, etc. There is some likelihood of the reverse working; viz.
for an application not using binds, using the rule-based optimizer, with
indexes on most of the interesting columns, forcing similar statements to
share the same cursor may produce reasonable execution times.
Nevertheless, this is a risky approach that may remove the hard parsing
bottleneck, and introduce a new problem of tuning SQL.

Thus, it is useful to think of FORCE as a last resort, when using SIMILAR doesn’t
help.

When should you not use cursor_sharing?

There are three scenarios, mentioned eatlier (in "Caveats"), when using
cursor_sharing can hurt. These are cases where there aren’t any similar
statements that can shate cursors with a certain value of cursor_sharing, and

using it only adds to the parsing overhead.

The other thing to keep in mind is the following: cursot_shating provides a
solution for the DBA faced with an application using literals. It is not a substitute,
however, for writing applications using bind variables, which also allows exploiting
other optimizations provided by Oracle. For example, an application can keep
frequently executed statements patsed in some open cursors, and only issue
executes on them, as needed. Such optimizations are based on deeper application
knowledge, and can’t be matched by using cutsor_sharing.

Boost SQL Performance with cursor_sharing Page 12

CONCLUSION

The use of cutrsor_sharing can solve performance problems caused by hard
parsing, in case of applications not using bind variables everywhere. The parameter
should be set judiciously, based on application and database characteristics and

system resources.

APPENDIX: SOME PERFORMANCE MEASUREMENTS

This section describes an expetiment done with Oracle87 Release 2, to validate
cursot_sharing.

Description

The purpose of this experiment was to do a basic validation. The maximum
throughput of the server was measured by repeatedly issuing a single statement by
a few clients (order of 100s). The experiment was done 3 times, with the following
characteristics:

1. using only bind variables

The purpose was twofold: to establish a baseline, and to ensure that using

cursor_sharing did not impact the performance for such a statement.
2. using only literals, with each iteration having a different literal

This scenario issued similar statements, and was expected to benefit the
most by cursor_sharing.

3. using literals with the same literal with each iteration.

This scenario wasn’t expected to benefit from cursor_sharing; on the
contrary, it was expected to detetiorate. The reason for testing it out was to

measure the overhead of cursor_sharing on a soft parse.
Only the parse throughput (number of parses per second) was measured in each

case.

Results

The results are shown below.

Type cursor_sharing=EXACT cursor_sharing=FORCE
Binds only 2650 2650
Similar statements 360 2500
1 statement with literals {3300 2600

Oracle8.1.7 Parse Throughput numbers with cutsor_sharing (parses/sec)

Boost SQL Performance with cursor_sharing Page 13

ORACLE

Boost SQL Performance with cursor_sharing
July 2001

Author: Sanjay Kaluskar

Contributing Authors: Brajesh Goyal, Namit Jain

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
US.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Oracle Corporation provides the software
that powers the internet.

Oracle is aregistered trademark of Oracle Corporation. Various
product and service names referenced herein may be trademarks
of Oracle Corporation. All other product and service names
mentioned may be trademarks of their respective owners.

Copyright © 2000 Oracle Corporation
All rights reserved.

