

An Oracle White Paper

Updated December 2012

Best Practices for Conflict Detection and
Resolution in Active-Active Replication
Environments Using Oracle GoldenGate

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

Contents

Executive Overview ... 1

Introduction ... 1

Oracle GoldenGate for Active-Active Replication 3

Key Requirements for Active-Active Replication Configurations 5

Real-Time, Low-Impact Data Movement .. 5

Conflict Detection and Resolution .. 5

Heterogeneous Environment Support .. 6

Minimizing Conflicts ... 6

Application Segregation ... 6

Primary Key Generation .. 7

Allowable Conflicts .. 7

Conflict Detection .. 7

Understanding Conflicts and Complex Resolutions 8

Simple Conflict Resolution Methodologies 8

Time Stamp .. 8

Trusted Source ... 11

Quantitative Conflict Resolution ... 14

Conflict Notification and Tracking .. 17

Oracle GoldenGate Data Definition Language Replication 21

Conclusion .. 22

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

 1

Executive Overview

One of the most effective ways to enable increased availability and performance for

database infrastructures is to establish an active-active replication environment, which

distributes database transactions across multiple databases. Beyond disaster recovery

and fault tolerance, active-active database replication configurations facilitate continuous

operations, offer additional raw computing capacity, and provide the flexibility to optimize

workload management. However, implementing an active-active replication solution is not

trivial. The key to success lies in real-time data movement, conflict detection and

resolution, and support for heterogeneous environments. Of the three, conflict detection

and resolution introduces the most complexity. This white paper provides best practices

for conflict detection and resolution and highlights how Oracle GoldenGate 11g Release

2 addresses these challenges.

Introduction

A key objective for any IT organization is to create software applications and a database

infrastructure that can scale to meet growing and changing business needs. With

business processes increasingly migrating to digital transactions, there is a growing

organizational reliance and dependence on the IT group’s ability to handle larger volumes

of data and users, with less system downtime. Active-active configurations provide

significant performance and scalability benefits; deliver exceptional high-availability; and

enable continuous operations for not only unplanned interruptions but also planned

outages such as migrations, upgrades, and systems maintenance.

In most cases, active-active replication configurations are considered to be part of a

continuous availability—not a disaster recovery—plan. At the high end of traditional

disaster recovery plans, there are solutions that offer an active-passive configuration

where the active system assumes all the workload, but when it fails, the passive system

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

 2

becomes active and assumes the full workload. Under normal operating conditions, the

secondary (passive) system doesn’t contribute to handling the data processing load; it is

twice the investment to provide the same amount of processing power as a single

system. By comparison, an active-active replication configuration not only facilitates very

high levels of recovery point and recovery time objectives, but it also returns value on the

investment by adding capacity, flexibility, and higher performance to the operational data

infrastructure.

Implementing an effective active-active replication configuration requires a thorough

consideration of technologies available for enabling the data movement and sharing

between the database instances. Before moving forward, an organization must

understand the different use cases for active-active replication configurations and the

challenges and benefits of each configuration. They must also understand the different

methods for detecting data conflicts that occur and how to effectively resolve those

conflicts.

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

3

Oracle GoldenGate for Active-Active Replication

To effectively identify and respond to data conflicts, organizations need control over the

movement of data across the enterprise. When offering active-active database replication

configurations, Oracle GoldenGate 11gR2 delivers the infrastructure necessary to streamline data

movement to ensure seamless operations.

Oracle GoldenGate provides real-time logical data replication capabilities to move date across

heterogeneous IT environments with subsecond speed. The application platform consists of

decoupled modules that can be combined across systems to provide maximum flexibility,

modularity, and performance. It is an asynchronous solution with synchronouslike behavior.

This architecture facilitates the movement and management of transactional data in four simple,

yet powerful steps.

• Capture. Oracle GoldenGate’s change data capture technology identifies and replicates data

changes from database log files in real time using a nonintrusive, high-performance, low-

overhead approach. Oracle GoldenGate 11gR2 can capture data from any number of

databases, including Oracle, DB2 for Linux/Unix/Windows, DB2 for i-Series, DB2 for z/OS,

as well as those running on HP NonStop/Enscribe, SQL/MP, SQL/MX, and Sybase. All data

changes are captured through direct access to native database transaction logs—redo logs

where applicable—to minimize any impact on system performance.

• Route. Once captured, changed data transactions are placed in queue files (called Trail Files)

and can be delivered to any data target including message queues. There are no geographic

distance constraints or impacts. Oracle GoldenGate uses a variety of transport protocols as

well as compression and encryption techniques prior to routing changed data.

• Enhance. To optimize performance and data management capabilities, at any point prior to

delivering changed data from the host to the target system, Oracle GoldenGate can execute a

number of built-in functions, such as filtering and transformation.

• Apply. Oracle GoldenGate can apply changed data to multiple targets with subsecond latency

to ensure transaction integrity with features for conflict detection and resolution.

Key technical features that are intrinsic to Oracle GoldenGate’s support for active-active

replication configurations include the following:

• Flexible topology support and bidirectional configurations. Using a decoupled, modular

design, Oracle GoldenGate can support a wide variety of replication topologies, including one-

to-one, one-to-many, many-to-one, and many-to-many—for both unidirectional and

bidirectional configurations. For additional scalability, cascading topologies can be created to

eliminate any potential bottlenecks. By staging specific sets of database changes on the source

Best Practices for Conflict Detection and Resolution in Active

or target system, different data replication requirements can be met through a single pass on

the data source. Each set of staged data can c

• Conflict detection and resolution

the activity is shared across both systems

becomes an essential requirement for any active

GoldenGate 11g Release 2 provides a wide variety of conflict detection and resolution options

to provide the necessary flexibility and adaptability for a range of requirements. Conflict

detection and resolution options can be implemented globally, object by object, based on data

values and complex filters, and through event

messages.

• Heterogeneity. Oracle GoldenGate decouples the data

application to easily facilitate heterogeneity. In addition, changed data is staged between the

systems in a universal data format (Trail Files) to facilitate porta

in the choice of hardware, operating system, and databases for sources and targets, and can

accommodate unplanned outages as well as system, database, and application maintenance

activitieswithout interruption. Unlike arc

process” coupling, this decoupled architecture provides each module the ability to perform its

tasks independently of other modules or components.

• Subsecond latency. Oracle GoldenGate’s capture, enhance, route,

move thousands of committed data transactions between systems with subsecond speed.

There is very minimal impact on the source system and infrastructure, thus ensuring high

performance with high data volumes.

Whether you are using any mix of Oracle

NonStop or Teradata, Oracle GoldenGate is an excellent solution for improving the

performance, accessibility, and availability of your data across the enterprise.

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

or target system, different data replication requirements can be met through a single pass on

source. Each set of staged data can contain unique or overlapping sets of data.

esolution. When two systems are processing data transactions and

the activity is shared across both systems, detecting and addressing conflicts across them

becomes an essential requirement for any active-active replication configuration. Oracle

provides a wide variety of conflict detection and resolution options

flexibility and adaptability for a range of requirements. Conflict

detection and resolution options can be implemented globally, object by object, based on data

values and complex filters, and through event-driven criteria including database error

Oracle GoldenGate decouples the data source and target, which enables the

application to easily facilitate heterogeneity. In addition, changed data is staged between the

systems in a universal data format (Trail Files) to facilitate portability. This provides flexibility

in the choice of hardware, operating system, and databases for sources and targets, and can

accommodate unplanned outages as well as system, database, and application maintenance

without interruption. Unlike architectures that implement a tight “process

process” coupling, this decoupled architecture provides each module the ability to perform its

tasks independently of other modules or components.

Oracle GoldenGate’s capture, enhance, route, and delivery processes can

move thousands of committed data transactions between systems with subsecond speed.

There is very minimal impact on the source system and infrastructure, thus ensuring high

performance with high data volumes.

ng any mix of Oracle Database, Sybase, SQL Server, DB2, or even HP

NonStop or Teradata, Oracle GoldenGate is an excellent solution for improving the

performance, accessibility, and availability of your data across the enterprise.

Oracle GoldenGate

4

or target system, different data replication requirements can be met through a single pass on

ontain unique or overlapping sets of data.

When two systems are processing data transactions and

, detecting and addressing conflicts across them

configuration. Oracle

provides a wide variety of conflict detection and resolution options

flexibility and adaptability for a range of requirements. Conflict

detection and resolution options can be implemented globally, object by object, based on data

driven criteria including database error

source and target, which enables the

application to easily facilitate heterogeneity. In addition, changed data is staged between the

bility. This provides flexibility

in the choice of hardware, operating system, and databases for sources and targets, and can

accommodate unplanned outages as well as system, database, and application maintenance

hitectures that implement a tight “process-to-

process” coupling, this decoupled architecture provides each module the ability to perform its

and delivery processes can

move thousands of committed data transactions between systems with subsecond speed.

There is very minimal impact on the source system and infrastructure, thus ensuring high

, Sybase, SQL Server, DB2, or even HP

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

5

Figure 1. In an active-active replication configuration, Oracle GoldenGate delivers continuous system

availability.

Key Requirements for Active-Active Replication Configurations

In an active-active replication configuration—also referred to as a master-master, dual-master,

multi-master, or peer-to-peer configuration—multiple database systems concurrently process

data transactions. Any changes that persist on one system are reflected in the other systems. The

key benefit of this type of configuration is the ability to balance the transaction workload across

multiple systems. Each additional system in the active-active replication configuration increases

the overall capacity, resulting in improved response times and enhanced system performance.

Active-active replication configurations enable workload partitioning based on multiple

attributes. For example, different applications can be routed to different systems in the

configuration, or users in a specific region can be serviced by a local database server. Thus,

active-active replication configurations not only offer additional capacity, but they also offer the

flexibility to optimize workload management.

Despite all the availability and performance benefits that can be reaped by the business, it is

critical to point out that implementing an active-active replication solution is not trivial. The key

ingredients include

• Real-time bidirectional data movement

• Conflict detection and resolution

• Heterogeneous environment support

Real-Time, Low-Impact Data Movement

To load balance users across multiple databases, all users must have access to the same data. In

practice, this requires more than just moving data from one system to another. The ideal solution

should impose minimal latency and very low overheadwithout introducing interprocess

dependencies. Although a synchronous approach using a two-phased commit would provide

zero latency, it would also lead to high overhead and dependencies across multiple systems. In

active-active replication configurations, the data movement has to be asynchronous yet provide

“synchronouslike” behavior.

Conflict Detection and Resolution

In an active-active replication configuration, data collisions are inevitable. When two resources

simultaneously update the same record on two separate systems, the ensuing conflict must be

detected and resolved. To support a wide variety of business rules, an effective active-active

replication solution must facilitate different conflict detection and resolution mechanisms.

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

6

Heterogeneous Environment Support

Systems in an active-active replication configuration might have different hardware setups,

operating systems, service packs, database versions, and patch levels. To ensure continuous

operations during upgrades and maintenance operations, and to provide flexibility for optimal

resource allocation, the active-active replication solution must provide heterogeneous

infrastructure support.

Minimizing Conflicts

Even with the best conflict resolution routines, there are still going to be issues that are not easy

to handle. A key goal in building active-active replication environments is minimizing the amount

of conflicts that happen. If you can avoid conflicts on 99 percent of the tables, or even on a

single type of operation (such as a delete), then you can save an enormous amount of time

implementing and maintaining your environment. This section is going to discuss several ways

that conflicts can actually be avoided or reduced. Any way to reduce the amount of conflicts will

provide a better experience for all stakeholders.

Application Segregation

Segregating application users is one way to avoid conflicts. Both inventory- and quantity-related

conflicts can easily be addressed this way. Each server that is balancing the user load contains the

primary source for a certain type of product or service.

Stock trades are one type of product that cannot have conflicts, but can still benefit from an

active-active replication environment. By moving the trades on companies that begin with the

letters A−M to one server and the letters N−Z to another, you can avoid any conflicts of trading

the same stock at the same time. Removing the conflicts in such critical situations can really allow

this type of configuration to succeed, but also provide phenomenal results. Through the use of

an application server, this can be made even easier by having a pool of connections to issue the

trades, rather than having the users log on to both systems.

Another way to do this is with user names. If people are frequently changing account

information, or even account balances, you can move an equal number of people to each server

and avoid nearly all conflicts. Because the changed data from all servers is going to be propagated

to all the other nodes, in the event that the primary node for a group of accounts goes down,

they can be routed to a secondary node until everything is back up and running smoothly. Some

companies have gone as far as designating primary and secondary load distribution methods to

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

7

ensure that a single server is not overly burdened by an outage elsewhere in the environment.

The more servers that are involved, the more it will help to have secondary application

segregation and load-balancing strategies.

Primary Key Generation

It is critical that table primary keys and unique indexes are unique for each database participating

in an active-active replication environment. The table primary keys and unique indexes for each

database in the active-active replication environment must contain information that identifies

which database the operation occurred on. Insert conflicts can be avoided and almost eliminated

by implementing database specific primary keys and unique indexes and is probably the easiest

method of reducing the number of conflicts that can arise.

For Oracle databases that are configured to use sequences for table primary keys, simply alternate

the primary key generation sequences or routines. For a two-server environment, have one

generate even primary keys, the other odd. For an n-server environment, have each generate keys

starting at a different value (1, 2, 3, 4, 5,…n) and have their sequences increment by the number

of servers in the environment. For a three-server environment, server one starts at 1 and

increments by three (1, 4, 7, 10, 13), server two starts at 2 and increments by three (2, 5, 8, 11,

14), and server three starts at 3 and increments by three (3, 6, 9, 12, 15).

However, even though it is extremely easy to implement, this method might not be available to

all applications.

Allowable Conflicts

This goes against much of what has been discussed so far; however, there are going to be certain

yet rarer cases where conflicts can just be ignored. One case could be in deleting information. If

an item is going to be discontinued and the store manager deletes it out of the inventory system,

and the database administrator does it at the same time, it really doesn’t matter if someone

committed their delete just a split second before the other user. A delete is a delete, and the result

will be a discontinued product. Conflicts that arise in these situations can just be ignored. At first,

you might want to keep track of them just to see how often they occur, but once you are

confident that there is no harm being done, they can usually be skipped.

Conflict Detection

Even through application segregation and primary key isolation techniques can significantly

reduce conflicts in an active-active replication configuration, there may still be conflict scenarios

that can’t be avoided and need to be addressed through conflict detection and resolution. Oracle

GoldenGate 11g Release 2 provides built-in logic to reduce the complexity of configuring conflict

detection and resolution for successful active-active replication deployments.

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

8

Understanding Conflicts and Complex Resolutions

Different types of conflicts require different resolutions. In certain instances, the conflicts are

simple and the rules to resolve them are equally straightforward.

Take the case of an airline reservation system that has an active-active replication configuration

with one database located in the United States used for online transactions and the other

database in Europe used for over the phone transactions. Two customers, Joe and Kevin, are

reserving their seats for flight 123 from Barcelona to New York City at approximately the same

time. Joe is making his seat reservation over the phone, so when the operator submits his seat

reservation for 2A it is made to the European Database. Kevin is making his seat reservation

online at approximately the same time, so when he submits his seat reservation for 2A it is made

to the U.S. Database. In the absence of conflict detection and resolution processes, Joe and

Kevin would have both reserved seat 2A successfully.

An active-active replication configuration can, and must, detect these types of data collisions.

During the operation, both the pre-change data and the changed data need to be captured. When

delivering the data, the conflict detection process should match the pre-change version of the

data from the originating system with the pre-update version of the record on the target system.

Matching a primary key or unique key is not sufficient to detect and resolve conflicts. Data

lookups, transformations, and custom business logic could also come into play, and the active-

active replication solution needs to facilitate these variations.

In the example, the solution must have the ability to match the non-key columns and obtain the

before and after image of the records. It could also be resolved by placing additional unique

constraints on the objects or by invoking custom business logic.

Simple Conflict Resolution Methodologies

In an active-passive replication environment, a conflict is considered an out-of-sync record and is

handled individually and manually. Such discrepancies need to be immediately identified and

handled, with as much automation as possible. It is also important to use the same resolution

procedures on all the systems in the active-active replication environment, so that the same

conflict receives the same resolution across the board.

The two most preferred conflict resolution methodologies are time stamp and trusted source. As

an implementation practice, it is commonplace to have a database procedure for each operation

type—one for inserts, one for updates, and one for deletes—that can handle 80 percent of the

objects and their data transactions.

Time Stamp

With the time stamp methodology, in most cases, the record that was modified first (though in

some cases, last) always wins. For this method to work, each record must contain a timestamp

column that contains the date and time the record was inserted or updated. The easiest way to

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

9

accomplish this, if it is not present in the data, is through a database trigger or by modifying the

application code to place the timestamp in a table column.

It is critical to ensure that the clocks on all databases are identical to one another and it’s

recommended that all database servers are configured to maintain accurate time through a time

server using the network time protocol (NTP). Even in environments where databases span

different time zones, all database clocks must be set to the same time zone or Coordinated

Universal Time (UTC) must be used to maintain accurate time. Failure to maintain accurate and

synchronized time across the databases in an active-active replication environment will result in

data integrity issues.

To detect a conflict in a timestamp−based environment, there are two simple rules to follow.

First, attempt to apply the row making sure that the pre-update timestamp from the source

system is equal to the current timestamp in the target system. If the operation succeeds, there is

no conflict. If it fails, then the second rule is to compare the timestamp of the current record in

the target database to the after image of the timestamp from the source database. The row that

has the oldest time stamp value wins.

Example #1: Reserving an Airline Seat Using Time Stamp Resolution

An airline reservation system uses the SEAT_RESV table to store flight and seat reservation

information for a passenger. The SEAT_RESV table is pre-populated with the airline’s flight and

seat information while the PASSENGER column is null until a passenger reserves a seat and the

table is updated. For example, before a passenger reserves seat 2A on flight 123, the table would

look like below.

(SEAT_RESV table)

 ID PASSENGER SEAT FLIGHT LAST_UPDATE

1 2A 123 10-10-2012 8:00:00

Returning to the previous example of Joe and Kevin reserving a seat, suppose that Joe (by

phone) reserved seat 2A at 10:30:00am, while Kevin (online) reserved seat 2A one second after

Joe did at 10:30:01am.

Update to European Database (SEAT_RESV table) Over the Phone

 Update EURO.SEAT_RESV set PASSENGER = ‘Joe’, LAST_UPDATE = (timestamp ‘2012-10-15 10:30:00’

 where ID = 1;

Update to U.S. Database (SEAT_RESV table) Online

 Update US.SEAT_RESV set PASSENGER = ‘Kevin’, LAST_UPDATE = (timestamp ‘2012-10-15 10:30:01’

where ID = 1;

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

10

Before Oracle GoldenGate replicates the seat reservation update transactions to the European

and U.S. Databases, the seat reservation tables would look like the following.

European Database (SEAT_RESV table)

 ID PASSENGER SEAT FLIGHT LAST_UPDATE

1 Joe 2A 123 10-15-2012 10:30:00

U.S. Database (SEAT_RESV table)

 ID PASSENGER SEAT FLIGHT LAST_UPDATE

1 Kevin 2A 123 10-15-2012 10:30:01

How would Oracle GoldenGate 11g Release 2 be configured to detect this conflict and resolve it

using a timestamp?

Setup Before Image Capture

As mentioned above, the pre-update or before image of the timestamp column needs to be

captured from the source system, so that it can be compared against the target timestamp column

to determine if a conflict has occurred. In order for the timestamp resolution method to be

successful, the application must always value the timestamp column when updating the table. In

this example, it is required that the airline reservation system always values the timestamp column

LAST_UPDATE when updating the SEAT_RESV table. If the airline reservation system cannot

be configured to always value the timestamp column LAST_UPDATE, then the timestamp

resolution method cannot be used.

The following line would be added to the Oracle GoldenGate Capture parameter file for the

European and U.S Databases. The parameter instructs the Capture process to capture the before

values in addition to the after values for the key column ID and the LAST_UPDATE column

when an update occurs on the SEAT_RESV table.

European Database Capture

TABLE euro.seat_resv, GETBEFORECOLS(ON UPDATE KEYINCLUDING(last_update));

U.S. Database Capture

TABLE us.seat_resv, GETBEFORECOLS(ON UPDATE KEYINCLUDING(last_update));

Configure Oracle GoldenGate Delivery

Now that the Oracle GoldenGate Capture processes have been configured to capture the before

image data required to detect a conflict, the Oracle GoldenGate Delivery processes need to be

configured to detect the conflict and resolve it.

The following lines would be added to the Oracle GoldenGate Delivery parameter file for the

European and U.S. Databases.

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

11

European Database (Delivery)

MAP us.seat_resv, TARGET euro.seat_resv,
COMPARECOLS (ON UPDATE KEYINCLUDING (last_update)),
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMIN (last_update)));

U.S. Database (Delivery)

MAP euro.seat_resv, TARGET us.seat_resv,
COMPARECOLS (ON UPDATE KEYINCLUDING (last_update)),
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, USEMIN (last_update)));

The parameter COMPARECOLS instructs the Delivery process to compare the before image

values of the LAST_UPDATE column with the current LAST_UPDATE column value when an

update occurs to the SEAT_RESV table. The KEYINCLUDING parameter instructs the

Delivery process to use the primary key ID for uniqueness when comparing rows. If the

LAST_UPDATE column values match, the update transaction will complete normally, as no

conflict has occurred. If the LAST_UPDATE column values don’t match, and in this example

the LAST_UPDATE values are different, a conflict has occurred and the

RESOLVECONFLICT parameter would fire. The RESOLVECONFLICT parameter, in this

example, instructs the Delivery process to update the PASSENGER and LAST_UPDATE

columns when the LAST_UPDATE value is older than the current value through USEMIN. In

this example, Kevin’s seat reservation would be overwritten by Joe’s seat reservation in the U.S

Database, as Joe’s LAST_UPDATE value is 1 second older than Kevin’s. Kevin’s seat

reservation transaction would be ignored in the European Database, as Joe’s LAST_UPDATE

value is 1 second older than Kevin’s. The databases remain in sync as seat 2A is now reserved by

Joe in both databases.

Confirm Conflict Detection Resolution Succeeded

Issue the following command in GGSCI on the European and U.S. Database servers to display

the current CDR statistics for the Delivery (also called Replicat) process. This is a quick method

to determine if conflicts are being resolved successfully by the Delivery process.

GGSCI> STATS REPLICAT <group>, REPORTCDR

Total inserts 0.00
Total updates 1.00
Total deletes 0.00
Total discards 0.00
Total operations 1.00
Total CDR conflicts 1.00
CDR resolutions succeeded 1.00
CDR UPDATEROWEXISTS conflicts 1.00

Trusted Source

Another common conflict resolution approach is called trusted source. In these resolution

routines, there is a single trusted source that is considered to always contain the correct data. This

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

12

could be as simple as a server location, or as complex as a database user hierarchy. The

implementation of this approach is straightforward—the decided trusted source always wins.

Example #2: Reserving an Airline Seat Using Trusted Source Resolution

The airline reservation system example will be used again, but in the example the

LAST_UPDATE column does not exist on the SEAT_RESV table. To handle conflicts, the

airline established the rule that the U.S. Database, used for online reservations, will be the trusted

source. This means no matter what operation or change caused the conflict on the SEAT_RESV

table, the U.S. Database transactions will always win. In this example, Joe and Kevin are making

their seat reservations for flight 123 from Barcelona, Spain to New York City. Joe is making his

seat reservation over the phone, while Kevin is making his online. The operator assisting Joe

completes his seat reservation for 2A over the phone and clicks submit. Simultaneously, Kevin

has also completed selecting seat 2A online and clicks submit.

Update to European Database (SEAT_RESV table) Over the Phone

 Update EURO.SEAT_RESV set PASSENGER = ‘Joe’ where ID = 1;

Update to U.S. Database (SEAT_RESV table) Online

 Update US.SEAT_RESV set PASSENGER = ‘Kevin’ where ID = 1;

Before Oracle GoldenGate replicates the seat reservation update transactions to the European

and U.S. Databases, the seat reservation tables would look like the following.

European Database (SEAT_RESV table)

 ID PASSENGER SEAT FLIGHT

1 Joe 2A 123

U.S. Database (SEAT_RESV table)

 ID PASSENGER SEAT FLIGHT

1 Kevin 2A 123

How would Oracle GoldenGate 11g Release 2 be configured to detect this conflict and resolve it

using a trusted source?

Setup Before Image Capture

When using the trusted source method, pre-update or before image values for all columns in the

table must be captured from the source system, so that they can be compared against all columns

in the target database to determine if a conflict has occurred. To accomplish this, all columns

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

13

must be added to the SEAT_RESV table supplemental log group and the Oracle GoldenGate

Capture processes need to be configured to always capture all column before image values.

Issue the following command to add the SEAT_RESV table supplemental log group using all the

table columns ID, PASSENGER, SEAT, and FLIGHT. The SEAT_RESV supplemental log

group needs to be created in both the European and U.S. Databases.

GGSCI> ADD TRANDATA SEAT_RESV, COLS (PASSENGER, SEAT, FLIGHT)

The following line would be added to the Oracle GoldenGate Capture parameter file for the

European and U.S Databases. The parameter instructs the Capture process to capture the before

values in addition to the after values for all columns when an update occurs on the SEAT_RESV

table.

European Database Capture

TABLE euro.seat_resv, GETBEFORECOLS(ON UPDATE ALL);

U.S. Database Capture

TABLE us.seat_resv, GETBEFORECOLS(ON UPDATE ALL);

Configure Oracle GoldenGate Delivery

Because the U.S. Database is the trusted source in this configuration, the GoldenGate Delivery

process applying transactions to the European Database would always overwrite the values in the

SEAT_RESV table when a conflict occurs. The GoldenGate Delivery process applying

transactions to the SEAT_RESV table in the U.S. Database would always ignore the transactions

that came from the European Database when a conflict occurs.

By default the GoldenGate Delivery process will write to the target database unless the map

statement is configured to explicitly ignore it. Because of this, the COMPARECOLS and

RESOLVECONFLICT parameters would only need to be added to the U.S. Database Delivery

parameter file. There is no reason to check for conflicts of transactions coming from the U.S.

Database, because the U.S. Database is the trusted source and always wins. The European

Database parameter file would just contain the standard map statement, while the U.S. Database

parameter file map statement would be configured to ignore conflicts.

European Database (Delivery - Overwrite)

MAP us.seat_resv, TARGET euro.seat_resv;

U.S. Database (Delivery - Ignore)

MAP euro.seat_resv, TARGET us.seat_resv,
COMPARECOLS (ON UPDATE ALL),
RESOLVECONFLICT (UPDATEROWEXISTS, (DEFAULT, IGNORE));

The parameter COMPARECOLS instructs the Delivery process to compare the before image

values of columns when an update occurs to the SEAT_RESV table. The ALL parameter

instructs the Delivery process to compare all table columns. If all column values match, the

update transaction will complete normally, as no conflict has occurred. If any of the column

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

14

values don’t match, and in this example the PASSENGER values are different, a conflict has

occurred and the RESOLVECONFLICT parameter would fire. The RESOLVECONFLICT

parameter instructs the Delivery process to IGNORE the transaction if it came from the

European Database. In this example, Kevin’s seat reservation would overwrite Joe’s seat

reservation in the European Database, because Kevin’s transaction occurred in the trusted source

U.S. Database. Joe’s seat reservation transaction would be ignored by the GoldenGate Delivery

process applying to the U.S. Database, because the transaction came from the European

Database. The databases remain in sync as seat 2A is now reserved by Kevin in both databases.

Confirm Conflict Detection Resolution Succeeded

Issue the following command in GGSCI on the European and U.S. Database servers to display

the current CDR statistics for the Delivery (Replicat) process. This is a quick method to

determine if conflicts are being resolved successfully by the Delivery (Replicat) process.

GGSCI> STATS REPLICAT <group>, REPORTCDR

Total inserts 0.00
Total updates 1.00
Total deletes 0.00
Total discards 0.00
Total operations 1.00
Total CDR conflicts 1.00
CDR resolutions succeeded 1.00
CDR UPDATEROWEXISTS conflicts 1.00

Quantitative Conflict Resolution

The methods previously discussed are fine for most of the tables normally involved in database

transactions. However, there are times when more-complex routines are needed to handle the

different issues that can occur. A number of different problems were alluded to in the first two

examples where the conflicts were relatively simple. This section addresses the more-complex

quantitative conflict resolution method.

Quantitative values include tangible values such as inventory, account balances, and sales

information—anything that has its value incremented or decremented by a set amount.

Example #3: Flight Seats Available Using Quantitative Resolution

Prior to Joe and Kevin reserving their seats for flight 123, they had to purchase their initial

tickets. For this example, flight 123 has 10 seats available and Joe is purchasing 3 tickets for his

family over the phone which utilizes the European Database, while simultaneously Kevin is

purchasing 4 tickets for his family online which utilizes the U.S. Database.

Update to European Database (FLIGHT_INV table) Over the Phone

 Update EURO.FLIGHT_INV set SEATS_AVAIL = seats_avail – 3 where FLIGHT = 123;

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

15

Update to U.S. Database (FLIGHT_INV table) Online

 Update US.FLIGHT_INV set SEATS_AVAIL = seats_avail – 4 where FLIGHT = 123;

Before Oracle GoldenGate replicates the flight inventory update transactions to the European

and U.S. Databases, the flight inventory tables would look like the following.

European Database (FLIGHT_INV table)

 FLIGHT SEATS_AVAIL

123 7

U.S. Database (FLIGHT_INV table)

 FLIGHT SEATS_AVAIL

123 6

When Joe’s transaction is replicated to the U.S. Database it will fail. Why? Because the before

image value of SEATS_AVAIL is expected to be 10, but instead it is 6 from Kevin’s purchase of

4 tickets. Kevin’s transaction will also fail for the same reason when it is replicated to the

European Database, because it’s also expecting the before image value of SEATS_AVAIL to be

10. There are enough seats available for both Joe and Kevin to complete their purchase, so

neither timestamp nor trusted source is a suitable solution. In this case, SEATS_AVAIL needs to

be handled using a quantitative resolution. The resolution needs to look at the actual change in

SEATS_AVAIL at the source system and apply that to the target system, rather than using the

actual numbers.

How would Oracle GoldenGate 11g Release 2 be configured to detect this conflict and resolve it

using a quantitative resolution?

Setup Before Image Capture

The preupdate or before image of the SEATS_AVAIL column value needs to be captured from

the source system, so that it can be compared against the target SEATS_AVAIL column value to

determine if a conflict has occurred. To accomplish this, the SEATS_AVAIL column needs to

be added to the FLIGHT_INV table supplemental log group and the Oracle GoldenGate

Capture processes need to be configured to always capture the SEATS_AVAIL column’s before

image values.

Issue the following command to add the FLIGHT_INV table supplemental log group using the

primary key column FLIGHT and the inventory column SEATS_AVAIL. The FLIGHT_INV

table supplemental log group needs to be created in both the European and U.S. Databases.

GGSCI> ADD TRANDATA FLIGHT_INV, COLS (SEATS_AVAIL)

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

16

The following line would be added to the Oracle GoldenGate Capture parameter file for the

European and U.S Databases. The parameter instructs the Capture process to capture the before

values in addition to the after values for key column ID and the SEATS_AVAIL column when

an update occurs on the FLIGHT_INV table.

European Database Capture

TABLE euro.flight_inv, GETBEFORECOLS(ON UPDATE KEYINCLUDING (seats_avail));

U.S. Database Capture

TABLE us.flight_inv, GETBEFORECOLS(ON UPDATE KEYINCLUDING (seats_avail));

Configure GoldenGate Delivery

Now that the Oracle GoldenGate Capture processes have been configured to capture the before

image data required to detect a conflict, the Oracle GoldenGate Delivery processes need to be

configured to detect the conflict and resolve it.

The following lines would be added to Oracle GoldenGate Delivery parameter file for the

European and U.S. Databases.

European Database (Delivery)

MAP us.flight_inv, TARGET euro.flight_inv,
COMPARECOLS (ON UPDATE KEYINCLUDING (seats_avail)),
RESOLVECONFLICT (UPDATEROWEXISTS, (delta_resolution_method, USEDELTA, COLS (seats_avail)),
(DEFAULT, OVERWRITE));

U.S. Database (Delivery)

MAP euro.flight_inv, TARGET us.flight_inv,
COMPARECOLS (ON UPDATE KEYINCLUDING (seats_avail)),
RESOLVECONFLICT (UPDATEROWEXISTS, (delta_resolution_method, USEDELTA, COLS (seats_avail)),
(DEFAULT, OVERWRITE));

The parameter COMPARECOLS instructs the Delivery process to compare the before image

values of the SEATS_AVAIL column with the current SEATS_AVAIL column value when an

update occurs to the FLIGHT_INV table. The KEYINCLUDING parameter instructs the

Delivery process to use the primary key FLIGHT for uniqueness when comparing rows. If the

SEATS_AVAIL column values match, the update transaction will complete normally, as no

conflict has occurred. If the SEATS_AVAIL column values don’t match, and in this example the

SEATS_AVAIL values are different, a conflict has occurred and the RESOLVECONFLICT

parameter would fire. The RESOLVECONFLICT parameter, in this example, instructs the

Delivery process to update the SEATS_AVAIL column by subtracting the before image value of

the column from the after image value of the column and then adding that value to the current

value of the column.

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

17

Database After Value Before Value Current Value Final Value

European 6 - 10 + 7 = 3

U.S. 7 - 10 + 6 = 3

The COLS parameter instructs the Delivery process which columns to update on resolution and

the USEDELTA parameter instructs the Delivery process to calculate the final value. In this

example, Joe ordered 3 tickets, so the current value of the SEATS_AVAIL column in the

European Database would be 7, while Kevin ordered 4 tickets, so the current value of the

SEATS_AVAIL column would be 6. When Joe’s order is applied to the U.S. Database, the

original inventory of 10 tickets would be subtracted from his after value of 7 and then the current

U.S. Database value of 6 would be added for a final value of 3. When Kevin’s order is applied to

the European Database, the original inventory of 10 tickets would be subtracted from his after

value of 6 and then the current European Database value of 7 would be added for a final value of

3. The quantitative resolution routines produced the same result of 3 for SEATS_AVAIL in both

databases and the rows are in sync.

Confirm Conflict Detection Resolution Succeeded

Issue the following command in GGSCI on the European and U.S. Database servers to display

the current CDR statistics for the Delivery (Replicat) process. This is a quick method to

determine if conflicts are being resolved successfully by the Delivery process.

GGSCI> STATS REPLICAT <group>, REPORTCDR

Total inserts 0.00
Total updates 1.00
Total deletes 0.00
Total discards 0.00
Total operations 1.00
Total CDR conflicts 1.00
CDR resolutions succeeded 1.00
CDR UPDATEROWEXISTS conflicts 1.00

Conflict Notification and Tracking

When configuring an active-active replication environment for conflict detection and resolution,

it is a best practice to track conflicts through an exceptions table. The exceptions table contains

the changes that were made by the automated resolution routines. Logging these changes, makes

it easy to find out what conflicts occurred, how they were handled, and what resolution was

taken. Exception tables assist in troubleshooting, auditing, and notification purposes in complex

environments.

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

18

Example #4: Configure an Exceptions Table for Auditing and Notification

In the seat reservation example, timestamp was used to resolve the conflict of Joe and Kevin

making the seat reservation at approximately the same time. The conflict was handled correctly in

the database, but Joe and Kevin both believe they have reserved seat 2A. Joe made his seat

reservation for 2A one second before Kevin and overwrote Kevin’s seat reservation in the U.S.

Database. As far as Kevin knows, he has reserved seat 2A. How would the airline know to notify

Kevin that his seat reservation was not successful and that he needed to reserve a new seat? The

airline would use the exceptions table to identify Kevin’s rejected seat reservations and notify

him to reserve a new seat.

How would Oracle GoldenGate 11g Release 2 be configured to write conflicts to an exceptions

table for seat reservations and notify Kevin to reserve a new seat?

 Create Exceptions Table

An exceptions table is recommended to be created in both the European and U.S. Databases and

a best practice is to write as much information as possible to the exceptions table about the

conflict. The exceptions table should include all columns in the parent table as well as additional

identifying information about the transaction. Further, it is recommended to create the

exceptions table without any primary key or unique indexes to avoid unique constraint violations.

For example the SEAT_RESV exceptions table would be named SEAT_RESV_EXCEPTIONS

and might look like the following.

Name Null? Type

TOTAL_CDR_CONFLICTS NUMBER

CDR_FAILED NUMBER

CDR_SUCCESSFUL NUMBER

RESOLUTION_DATE DATE

OPTYPE VARCHAR2(10)

DBERRNUM NUMBER

DBERRMSG VARCHAR2(25)

TABLE_NAME VARCHAR2(20)

PASSENGER_AFTER VARCHAR2(10)

LAST_UPDT_AFTER TIMESTAMP(6)

PASSENGER_BEFORE VARCHAR2(10)

LAST_UPDT_BEFORE TIMESTAMP(6)

PASSENGER_CURRENT VARCHAR2(10)

LAST_UPDT_CURRENT TIMESTAMP(6)

ID NUMBER

SEAT VARCHAR2(3)

FLIGHT NUMBER

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

19

Configure Oracle GoldenGate Delivery

Once the exceptions table has been created in the European and U.S. Databases, the Oracle

GoldenGate Delivery processes need to be configured to write conflict and resolution exceptions

to the SEAT_RESV_EXCEPTIONS table.

The following lines would be added to Oracle GoldenGate Delivery parameter file for the

European and U.S. Databases. The map statement for SEAT_RESV_EXCEPTIONS needs to

appear immediately following the SEAT_RESV map statement in the parameter file.

European Database (Delivery)

MAP us.seat_resv, TARGET euro.seat_resv,
COMPARECOLS (ON UPDATE KEYINCLUDING (last_update)),
RESOLVECONFLICT (UPDATEROWEXISTS, (min_resolution_method, USEMIN (last_update), COLS (passenger,
last_update)), (DEFAULT, OVERWRITE));

MAP us.seat_resv, TARGET euro.seat_resv_exceptions,EXCEPTIONSONLY, INSERTALLRECORDS,
SQLEXEC (id qry,
QUERY "select passenger,last_updt from euro.seat_resv where id = :p1",
PARAMS (p1 = id)),
 COLMAP (USEDEFAULTS,
 total_cdr_conflicts = @GETENV(“DELTASTATS”, “TABLE”, “euro.seat_resv”, “CDR_CONFLICTS”),
 cdr_failed = @GETENV(“DELTASTATS”, “TABLE”, “euro.seat_resv”, “CDR_RESOLUTIONS_FAILED”),
 cdr_successful = @GETENV(“DELTASTATS”, “TABLE”, “euro.seat_resv”, “CDR_RESOLUTIONS_SUCCEEDED”),
 resolution_date = @DATENOW(),
 optype = @GETENV("LASTERR", "OPTYPE"),
 dberrnum = @GETENV("LASTERR", "DBERRNUM"),
 dberrmsg = @GETENV("LASTERR", "DBERRMSG"),
 table_name = @GETENV("GGHEADER", "TABLENAME"),
 passenger_after = passenger,
 last_updt_after = last_updt,
 passenger_before = before.passenger,
 last_updt_before = before.last_updt,
 passenger_current = qry.passenger,
 last_updt_current = qry.last_updt,
);

U.S. Database (Delivery)

MAP euro.seat_resv, TARGET us.seat_resv,
COMPARECOLS (ON UPDATE KEYINCLUDING (last_update)),
RESOLVECONFLICT (UPDATEROWEXISTS, (min_resolution_method, USEMIN (last_update), COLS (passenger,
last_update)), (DEFAULT, OVERWRITE));

MAP euro.seat_resv, TARGET us.seat_resv_exceptions,EXCEPTIONSONLY, INSERTALLRECORDS,
SQLEXEC (id qry,
QUERY "select passenger,last_updt from us.seat_resv where id = :p1",
PARAMS (p1 = id)),
 COLMAP (USEDEFAULTS,
 total_cdr_conflicts = @GETENV(“DELTASTATS”, “TABLE”, “us.seat_resv”, “CDR_CONFLICTS”),
 cdr_failed = @GETENV(“DELTASTATS”, “TABLE”, “us.seat_resv”, “CDR_RESOLUTIONS_FAILED”),
 cdr_successful = @GETENV(“DELTASTATS”, “TABLE”, “us..seat_resv”, “CDR_RESOLUTIONS_SUCCEEDED”),
 resolution_date = @DATENOW(),
 optype = @GETENV("LASTERR", "OPTYPE"),
 dberrnum = @GETENV("LASTERR", "DBERRNUM"),
 dberrmsg = @GETENV("LASTERR", "DBERRMSG"),
 table_name = @GETENV("GGHEADER", "TABLENAME"),
 passenger_after = passenger,
 last_updt_after = last_updt,
 passenger_before = before.passenger,
 last_updt_before = before.last_updt,
 passenger_current = qry.passenger,
 last_updt_current = qry.last_updt,
);

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

20

The parameter EXCEPTIONSONLY instructs the Delivery process to handle errors in the

previous SEAT_RESV table map statement if they occur. The parameter

INSERTALLRECORDS instructs the Delivery process to change all transactions to insert

statements when writing to the SEAT_RESV_EXCEPTIONS table. COLMAP explicitly maps

source columns to target columns and USEDEFAULTS automatically maps columns with the

same name. The TOTAL_CDR_CONFLICTS column stores the total number of conflicts that

have occurred with the DELTASTATS parameter keeping a running count from the previous

time statistics were collected. The CDR_FAILED column stores the number of conflicts that

failed to resolve with the DELTASTATS parameter keeping a running count from the previous

time statistics were collected. The CDR_SUCCESSFUL column stores the number of conflicts

that were resolved successfully with the DELTASTATS parameter keeping a running count from

the previous time statistics were collected. The RESOLUTION_DATE column will store the

date/time the conflict occurred. The OPTYPE column will store the operation type of insert,

update, or delete. The DBERRNUM column will store the database error code. The

DBERRMSG column will store the database error message. The TABLE_NAME column will

store the name of the table that had the conflict. The PASSENGER_AFTER column will store

the after image of the PASSENGER value from the trail file. The LAST_UPDT_AFTER

column will store the after image of the LAST_UPDT value from the trail file. The

PASSENGER_BEFORE column will store the before image of the PASSENGER value from

the trail file. The LAST_UPDT_BEFORE column will store the before image of the

LAST_UPDT value from the trail file. The PASSENGER_CURRENT column will store the

PASSENGER value that is currently in the SEAT_RESV table. The LAST_UPDT_CURRENT

column will store the LAST_UPDT value that is currently in the SEAT_RESV table.

Notification

In this example, Kevin’s seat reservation was overwritten by Joe’s seat reservation in the U.S

Database and Joe’s transaction would be inserted into the SEAT_RESV_EXCEPTIONS table.

The SEAT_RESV_EXCEPTIONS table would contain the following row in the U.S. Database.

U.S. Database (SEAT_RESV_EXCEPTIONS table)

 RESOLUTION_DATE OPTYPE DBERRNUM DBERRMSG TABLE_NAME

15-OCT-12 SQL COMPUP 1403 EURO.SEAT_RESV

PASSENGER_AFTER LAST_UPDT_AFTER PASSENGER_BEFORE LAST_UPDT_BEFORE

 JOE 15-OCT-12 10:30:00 AM 01-OCT-12 8:15:45 AM

PASSENGER_CURRENT LAST_UPDT_CURRENT ID SEAT FLIGHT

 JOE 15-OCT-12 10:30:00 AM 1 2A 123

TOTAL_CDR_CONFLICTS CDR_FAILED CDR_SUCCESSFUL

 1 0 1

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

21

Kevin’s seat reservation transaction would be ignored and inserted into the

SEAT_RESV_EXCEPTIONS table in the European Database, as Joe’s seat reservation is older

than Kevin’s. The SEAT_RESV_EXCEPTIONS table would contain the following row in the

European Database.

European Database (SEAT_RESV_EXCEPTIONS table)

 RESOLUTION_DATE OPTYPE DBERRNUM DBERRMSG TABLE_NAME

15-OCT-12 SQL COMPUP 1403 US.SEAT_RESV

PASSENGER_AFTER LAST_UPDT_AFTER PASSENGER_BEFORE LAST_UPDT_BEFORE

 KEVIN 15-OCT-12 10:30:01 AM 01-OCT-12 8:15:45 AM

PASSENGER_CURRENT LAST_UPDT_CURRENT ID SEAT FLIGHT

 JOE 15-OCT-12 10:30:00 AM 1 2A 123

TOTAL_CDR_CONFLICTS CDR_FAILED CDR_SUCCESSFUL

 1 0 1

The information stored in the SEAT_RESV_EXCEPTIONS tables would be used to identify

customers that need to re-reserve their seats. A best practice would be to have a batch process

periodically check the exception tables where the after image is not equal to the current image. In

this example, the PASSENGER_AFTER value is “Kevin” and the PASSENGER_CURRENT

value is “Joe” in the European Database’s SEAT_RESV_EXCEPTIONS table. From this

information, the airline identifies Kevin’s seat reservation was overwritten by Joe’s and notifies

Kevin that he needs to re-reserve his seat.

The same process that handles notifications in this example can be used for a number of

different operations, such as providing information to the database administration team on the

number of exceptions, types of exceptions, and details about those exceptions. Resolving these

issues with the least impact to your business is critical, and minimizing conflicts reduces the

complexity significantly.

Oracle GoldenGate Data Definition Language Replication

Oracle GoldenGate provides Data Definition Language (DDL) replication for Oracle Database

to allow a user to capture and propagate DDL changes from one system to another. However,

special considerations need to be taken into account if DDL replication is to be used in an active-

active replication configuration.

DDL operations that alter or change the existing table definitions should not be issued in a

production active-active replication environment. These statements would include DDL

operations that drop columns, rename tables, or modify objects in such a way that the DML

statement, or Oracle GoldenGate parameter files, would also be required to change. For

Best Practices for Conflict Detection and Resolution in Active-Active Replication Environments Using Oracle GoldenGate

22

example, if a column is dropped in one database and at the same time someone inserts a value

into that column on a different database, this would cause problems that could not be handled by

conflict resolution. In order to manage these types of DDL operations in an active-active

replication environment, one database would be quiesced until only one database was active and

the configuration was now running in an active-passive replication mode. DDL operations could

then be executed and parameter files updated on the passive database without interfering with in-

flight transactions. After the passive database has been updated, the roles would be reversed for

the remaining database to be updated as well. Once both databases have been updated, including

GoldenGate parameter files, the environment configuration would return to active-active

replication mode.

DDL operations that don’t modify existing table definitions can safely be executed in an active-

active replication environment, but should only be executed against one database. These

statements would include DDL operations that create new tables, create new tablespaces, or

create users.

Conclusion

Active-active database replication implementations can seem like a daunting task, especially when

building some of the more-complex conflict detection and resolution routines. This should not

discourage anyone from pursuing such a solution for their business. There are tremendous

benefits to improve database performance, response times, and availability and to achieve

significant scalability gains by implementing an active-active replication environment.

Databases and servers will failit is inevitable. To be ready for this, companies have invested

hundreds of millions of dollars on disaster recovery centers and 24/7 operations. Active-active

replication configurations deliver excellent business continuity results in a cost-effective way.

Oracle GoldenGate is uniquely designed to support robust conflict detection and resolution

processes to optimize data accuracy and integrity in active-active replication configurations.

Best Practices for Conflict Detection and

Resolution in Active-Active Replication

Environments Using Oracle GoldenGate

Updated December 2012

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and

the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective

owners.

0109

