

O R A C L E A D V A N C E D

C O M P R E S S I O N

B E S T P R A C T I C E S

 Oracle Advanced Compression
Proof-of-Concept (POC) Insights
and Best Practices

FEATURES TYPICALLY EVALUATED

 Advanced Row Compression

Enables table data to be compressed

during all types of data manipulation

operations

 Index Key Compression and/or

Advanced Index Compression

Reduces the size of all supported

unique and non-unique indexes

 Backup Data Compression

Compression for backup data when

using Oracle Recovery Manager

(RMAN) or Oracle DataPump

 Advanced LOB Compression and

Deduplication

Provides compression and

deduplication for LOBS managed by

SecureFiles

Oracle Advanced Compression

The massive growth in data volumes being experienced by enterprises introduces
significant challenges. Companies must quickly adapt to the changing business
landscape without impacting the bottom line. IT managers need to efficiently
manage their existing infrastructure to control costs, yet continue to deliver
extraordinary application performance.

Oracle Advanced Compression, and Oracle Database, together provide a robust set
of compression, performance and data storage optimization capabilities that enable
IT managers to succeed in this complex environment.

Whether it is a cloud or an on-premises Oracle database deployment, Oracle
Advanced Compression can deliver robust compression across different
environments with no changes in applications. Benefits from Oracle Advanced
Compression include smaller database storage footprint, savings in backups and
improved system performance.

What is Useful to Know for Your Compression POC

This document isn’t meant to be a step-by-step guide to performing a compression POC.

Instead, this document is intended to provide some best practices learned from customer

POC’s and to provide insights to help plan your compression POC, as well as help you

understand the results of your POC.

Enabling Advanced Row Compression

For new tables and partitions, enabling Advanced Row Compression is easy: simply

CREATE the table or partition and specify “ROW STORE COMPRESS ADVANCED”.

See the example below:

CREATE TABLE emp (emp_id NUMBER, first_name VARCHAR2(128),

last_name VARCHAR2(128)) ROW STORE COMPRESS ADVANCED;

There are numerous ways to enable Advanced Row Compression for existing tables. While

a complete discussion of each method is beyond the scope of this document, this document

does provide an overview of the methods typically used by customers. For more

information on these methods, please see the Oracle Database documentation.

ALTER TABLE … ROW STORE COMPRESS ADVANCED

This approach will enable Advanced Row Compression for all future DML -- however,

the existing data in the table will remain uncompressed.

2 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

More Information…

Advanced Compression OTN page:
http://www.oracle.com/technetwork/databas

e/options/compression/overview/index.html

Oracle.com Storage Optimization
page: https://www.oracle.com/database/stor

age-management/index.html

Storage Optimization Blog:
https://blogs.oracle.com/DBStorage/

Online Redefinition (DBMS_REDEFINITION)

This approach will enable Advanced Row Compression for future DML and also

compress existing data. Using DBMS_REDEFINITION keeps the table online for both

read/write activity during the migration. Run DBMS_REDEFINITION in parallel for

best performance.

Online redefinition will clone the indexes to the interim table during the operation. All

the cloned indexes are incrementally maintained during the sync (refresh) operation so

there is no interruption in the use of the indexes during, or after, the online redefinition.

The only exception is when online redefinition is used for redefining a partition -- any

global indexes are invalidated and need to be rebuilt after the online redefinition.

ALTER TABLE … MOVE ROW STORE COMPRESS ADVANCED

This approach will enable Advanced Row Compression for future DML and also

compress existing data. While the table is being moved it is online for read activity but

has an exclusive (X) lock – so all DML will be blocked until the move command

completes. Run ALTER TABLE…MOVE in parallel for best performance.

ALTER TABLE… MOVE will invalidate any indexes on the partition or table; those

indexes will need to be rebuilt after the ALTER TABLE… MOVE. For partition moves,

the use of ALTER TABLE… MOVE PARTITION with the UPDATE INDEXES clause

will maintain indexes (it places an exclusive (X) lock so all DML will be blocked until

the move command completes) – not available for non-partitioned tables.

The ALTER TABLE... MOVE statement allows you to relocate data of a non-partitioned

table, or of a partition of a partitioned table, into a new segment, and optionally into a

different tablespace. ALTER TABLE…MOVE ROW STORE COMPRESS

ADVANCED compresses the data by creating new extents for the compressed data in the

tablespace being moved to -- it is important to note that the positioning of the new

segment can be anywhere within the data file, not necessarily at the tail of the file or head

of the file. When the original segment is released, depending on the location of the

extents, it may or may not be possible to shrink the data file.

ALTER TABLE … MOVE TABLE/PARTITION/SUBPARTITION … ONLINE

This approach will enable Advanced Row Compression for future DML and also

compress existing data. ALTER TABLE ... MOVE

TABLE/PARTITION/SUBPARTITION … ONLINE allows DML operations to

continue to run uninterrupted on the table, partition or subpartition that is being moved.

Indexes are maintained during the move operation, so a manual index rebuild is not

required. Starting with Oracle Database 12.2 on Oracle Cloud, move tables online as well

as partitions and subpartitions.

When Advanced Row Compression Occurs

Advanced Row Compression uses a unique compression algorithm specifically designed to

work with OLTP and Data Warehouse applications. The algorithm works by eliminating

duplicate values within a database block, even across multiple columns. Compressed blocks

contain a structure called a symbol table that maintains compression metadata.

3 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

Important MOS Notes
for Oracle Compression:

Master note:
DOC ID: 1223705.1

Critical patches:
DOC ID: 1061366.1

See if rows are compressed:
DOC ID: 1477918.1

RMAN compression:
DOC ID: 563427.1

Index Key Compression:
DOC ID: 601690.1

Data Guard Redo Transport
Compression:
DOC ID: 729551.1

When a block is compressed, duplicate values are eliminated by first adding a single copy

of the duplicate value to the symbol table. Each duplicate value is then replaced by a short

reference to the appropriate entry in the symbol table.

While the compression benefits and compression techniques used are similar, within the

database different compression types can be invoked when using Advanced Row

Compression. Below are some examples of the different compression types, understanding

when these different compression types are used will help when analyzing POC results.

Insert Direct Load Compression

Performed when data is inserted using the direct-path load mechanisms, such as insert with

an append hint or using SQL*Loader. In this case, the data is being inserted above the

segment high water mark (a virtual last used block marker for a segment) and can be

written out to data blocks very efficiently. The compression engine has a large volume of

rows to work with and is able to buffer, compress and write out compressed rows to the

data block(s). As a result, the space savings are immediate. Rows are never written in an

uncompressed format for Insert Direct Load compression.

Recursive Compression

Invoked on conventional DML operations such as single row or array inserts and updates.

This compression type writes out the rows in uncompressed format, and when the data

block reaches an internal block fullness threshold compression is invoked. Under such a

scenario, Oracle is able to compress the data block in a recursive transaction which is

committed immediately after compression.

The space saved due to compression is immediately released and can be used by any

additional transactions. Compression is triggered by the user DML operation (user

transaction), but actual compression of data happens in a recursive transaction, the fate of

compression is therefore not tied to the fate of the user’s transaction.

Direct-Path versus Conventional-Path Inserts

Performing bulk-load operations, and choosing either direct-path or conventional-path

methods (see here), can have a significant influence in regards to load performance.

Users performing bulk-load insert operations may see slower insert performance,

particularly if they are inserting a large number of rows using a conventional-path load. The

reason why conventional-path loads may be slower, for a large number of rows, is that as

the new rows are inserted into existing compressed blocks the inserts are performed

uncompressed, then as additional inserts are performed on the same block, and the block

begins to fill up, the internal threshold will be met and the block will be compressed (see

the recursive compression discussion above for more details). If additional space is freed up

after the compression then inserts will again be performed on the block, thus leading to

compression again, possibly multiple more times for the same block, during the same

conventional-path load operation.

This means that when using conventional-path inserts it is possible that the same block will

be compressed multiple times during the same operation – consuming CPU resources and

time. If the workload is dominated by conventional-path inserts, then it's likely there will be

more I/O: when a block is recompressed repeatedly as part of the Advanced Row

Compression algorithm (compared to direct-path loads).

Direct-path load operations are preferred when operating on larger numbers of rows since,

unlike conventional-path loads, direct-path loads are done above the high-water mark, so

blocks are completely filled and compressed only once, and then written to disk. This

http://docs.oracle.com/database/121/SUTIL/GUID-495C502D-4A1F-47B3-9E4D-F6F997EDAC4C.htm#SUTIL1285

4 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

streamlines the bulk inserts and avoids the multiple compressions of the same block which

is possible when performing bulk inserts using conventional-path loads.

Later in this document we’ll discuss how to use Automatic Workload Repository reports

(AWR) to determine whether bulk inserts are using direct-path or conventional-path

methods.

Index Key Compression

If used correctly, Index Key Compression (see here) has the potential to substantially

reduce the overall size of indexes. It helps both multi-column unique indexes and non-

unique indexes alike and is also one of the most critical index optimization options

available.

Index Key Compression can be used to compress portions of the key values in an index

segment (or Index Organized Table (IOT)), by reducing the storage inefficiencies of

storing repeating values. It compresses the data by splitting the index key into two parts;

the leading group of columns, called the prefix entry (which are potentially shared across

multiple key values), and the suffix columns (which is unique to every index key). As the

prefixes are potentially shared across multiple keys in a block, these can be stored once

and then shared across multiple suffix entries, resulting in the index data being

compressed.

Index Key compression is done in the leaf blocks of a B-Tree index. The keys are

compressed locally within an index leaf block (both the prefix and suffix entries are stored

within same block). Suffix entries form the compressed representation of the index key.

Each one of these compressed rows refers to the corresponding prefix, which is stored in

the same block. By storing the prefixes and suffixes locally in the same block, each index

block is self-contained and no additional block IO is required to construct the complete

key

Enabling Index Key Compression:

This can be achieved easily by specifying the COMPRESS option for the index. New

indexes can be automatically created as compressed, or the existing indexes can be

rebuilt compressed.

CREATE INDEX idxname ON tabname(col1, col2, col3) COMPRESS;

By default the prefix consists of all indexed columns for non-unique indexes, and all

indexed columns excluding the last one for unique indexes. Alternatively you can also

specify the prefix length, which is the number of columns in the prefix.

CREATE INDEX idxname ON tabname(col1, col2, col3) COMPRESS

[<prefix_col_length>]

The <prefix_col_length> after the COMPRESS keyword denotes how many columns to

compress. The default (and the maximum) prefix length for a non-unique index is the

number of key columns, and the maximum prefix length for a unique index is the

number of key columns minus one. If you specify a prefix length of 1 in the above

example, then the prefix is only (col1) and the suffix is (col2, col3).

http://docs.oracle.com/cd/B28359_01/server.111/b28310/indexes003.htm

5 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

Prefix entries are written to the index block only if the index block does not already

contain that prefix. They are available for sharing across multiple suffix entries

immediately after being written and remain available until the last referencing suffix entry

is deleted and cleaned out from the block. Although key compression reduces the storage

requirements of an index by sharing parts of keys across multiple entries, there is a small

CPU overhead to reconstruct the key column values during index lookup or scans (which

is minimized by keeping the prefixes locally in the block).

Index Key compression can be useful in many different scenarios, such as:

 In case of a non-unique index where ROWID is appended to make the key

unique. If such an index is compressed using key compression, the duplicate key

is stored as a prefix entry in the index block without the ROWID. The remaining

rows become suffix entries consisting of only the ROWID

 In case of unique multicolumn index (key compression is not possible for unique

single column index because there is a unique piece but there are no prefix

grouping pieces to share)

 In case of Index Organized Tables, the same considerations as unique

multicolumn indexes apply

Index Key Compression can be very beneficial when the prefix columns of an index are

repeated many times within a leaf block. However, if the leading columns are very

selective or if there are not many repeated values for the prefix columns, then Index Key

Compression won’t be beneficial. In these scenarios, Oracle still creates prefix entries

storing all unique combinations of compressed column values within a leaf block. The

index rows will refer to the prefix entry, which is hardly shared (if at all) by other index

rows. So, it’s possible that compression in these cases is not beneficial, and could end up

increasing the index size due to the overhead of storing all of the prefix entries.

For index compression to be beneficial, you should ensure low cardinality columns are the

leading columns in a concatenated index. Otherwise you run the risk of getting negative

compression (e.g. leaf blocks can no longer store as many keys as their non-compressed

counterparts). There is also no point in compressing a single column unique index or

compressing every column in a concatenated, multi-column unique index. In these cases

compression will result in an index structure that increases in size rather than decreasing

(negative compression) due to all of the overheads associated with having prefix entries

for each and every index row.

The key to getting good index compression is identifying which indexes will benefit from

it and how to specify <prefix_col_length> correctly. For help, please see MOS note: “How

to find the optimal Index Key COMPRESS level for Indexes (Doc ID 601690.1)”

Oracle does try and protect you under certain cases. For example, you are not able to

create a compressed index on a single column unique index. Nor are you allowed to

specify a prefix length equal to or greater than the number of columns for a unique index,

(remember the default prefix length for a unique concatenated index is the number of

indexed columns minus one) etc.

Advanced Index Compression

Advanced Index Compression, part of Oracle Advanced Compression with Oracle

Database 18c, helps automate index compression so that a DBA is no longer required to

6 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

specify the number of prefix columns to consider for compression (as is required with

Index Key Compression).

The correct and most optimal numbers of prefix columns will be computed automatically

on block-by-block basis, and thus produce the best compression ratio possible. Using

Advanced Index Compression it is possible to have different index leaf blocks compressed

differently (with different prefix column count) or not be compressed at all, if there are no

repeating prefixes.

Enabling Advanced Index Compression:

Advanced Index Compression can be enabled by specifying the COMPRESS

ADVANCED sub-clause of the CREATE/ALTER INDEX clause. New indexes can be

automatically created as compressed, or existing indexes can be rebuilt compressed.

CREATE INDEX idxname ON tabname(col1, col2, col3) COMPRESS

ADVANCED LOW;

Note that there is no need to provide the number of columns in the prefix entries with

Advanced Index Compression as this will be computed automatically for every leaf

block.

Advanced Index Compression works well on all supported indexes, including the ones that

were not good candidates for prefix key compression. Creating an index using Advanced

Index Compression reduces the size of all unique and non-unique indexes (or at least

doesn’t increase the size due to negative compression) and at the same time improves the

compression ratio significantly while still providing efficient access to the indexes.

Advanced Index Compression has following limitations:

 Advanced Index Compression is not supported on Bitmap Indexes

 You cannot compress your Index Organized Tables (IOTs) with Advanced

Index Compression (use Index Key Compression)

 You cannot compress your Functional Indexes with Advanced Index

Compression

With Advanced Index Compression you can simply enable compression for your B-Tree

indexes and Oracle will automatically compress every index leaf block when beneficial,

automatically taking care of computing the optimal prefix column length for every block.

This makes index compression truly local at a block level, where both the compression

prefix table, as well as the decision on how to compress the leaf block, is made locally for

every block with the aim to achieve the most optimal compression ratio for the entire

index segment.

What to Consider for Before POC Testing Begins

As part of the Proof-of-Concept pre-test planning, make note and take action (as needed)

on the following Oracle compression suggested best practices:

7 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

 Upgrade to the latest release (or apply any critical patches to the current release)

(See MOS note: List of Critical Patches Required For Oracle 11g Table

Compression (Doc ID 1061366.1))

 Define Success Criteria for the POC (data, index and backup storage reduction,

query/insert/update performance, bulk load operations performance, application

performance and etc….)

 If the POC is being performed using Oracle E-Business Suite or SAP, see these

Oracle Advanced Compression White Papers for additional information. Oracle

E-Business Suite/SAP

 Ensure compressed columns have no “long” data types – this data type isn’t

supported by Advanced Row compression

 Ensure compressed tables/partitions have less than 255 columns (this limit was

removed in Oracle Database 12c)

 Although CPU overhead is typically minimal, implementing Advanced Row

Compression and Index Compression is ideal on systems with available CPU

cycles, as compression will have additional, although minor overhead for some

DML operations

 The best test environment for each compression capability is where you can

most closely duplicate the production environment– this will provide the most

realistic (pre- and post- compression) performance and functionality

comparisons

 The general recommendation is to compress all of the application related tables

in the database with one exception: if the table is used as a queue. That is, if the

rows are inserted into the table, then later most or all of the rows are deleted,

then more rows are inserted and then again deleted. This type of activity is not a

good use case for compression due to the overhead to constantly compress rows

that are transient in nature

 Index Key Compression can be very beneficial when the prefix columns of an

index are repeated many times within a leaf block. However, if the leading

columns are very selective, or if there are not many repeated values for the

prefix columns, then Index Key Compression would not be beneficial

 Advanced Row Compression works well with tablespace-level encryption.

Tables are compressed before encryption, so the compression ratio isn't affected

by the encryption. With column-level encryption, the encryption is done before

compression, which will negatively impact the compression ratio

For more information see the Index Compression and Advanced Compression Technical

White Papers for Oracle Database 18c.

Direct-Path and Conventional-Path Loads and AWR

If during POC testing you are unsure if bulk loads are using direct-path or conventional-

path load methods you can utilize these suggested steps (with AWR) to determine the

amount of compression occurring during the SQL operation. See this blog for more

http://www.oracle.com/us/solutions/benchmark/white-papers/e-bus-r121-11gr1-advcompression-167254.pdf
http://www.oracle.com/us/solutions/benchmark/white-papers/e-bus-r121-11gr1-advcompression-167254.pdf
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/335322.pdf
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/2968746.pdf
http://www.oracle.com/technetwork/database/options/compression/overview/index.html

8 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

information: https://blogs.oracle.com/DBStorage/entry/critical_statistics_for_advanced_row

Determining Conventional-Path Load Compressions

AWR has an “Instance Activity Stats” section that will list the statistics associated with

the total number of positive compressions (HSC OLTP positive compression) and the

total number of negative compressions (HSC OLTP negative compression). Adding

these two statistics will give you the total number of attempted compressions (re-

compressions or otherwise).

HSC OLTP positive compression + HSC OLTP negative compression

= Total number of attempted compressions and re-compressions (non-

direct load)

Determining Direct-Path Load Compressions

When performing bulk loads using direct-path methods such as “insert append” the data is

organized into data blocks and compressed in memory, this means that the bulk load data

is compressed only once. The data blocks are filled to the point specified by the tables

PCTFREE setting -- the default setting for PCTFREE in Oracle Database is 10%

(PCTFREE allows space to be reserved on the data blocks for possible growth during SQL

UPDATE operations).

For block compressions above the High Water Mark (HWM), such as in Create Table as

Select (CTAS) or insert append cases, there is a statistic called HSC IDL Compressed

Blocks.

HSC IDL Compressed Blocks = Block compressions above the HWM

(such as in CTAS or insert append)

If you only see values for HSC OLTP positive Compression and HSC OLTP negative

compression statistics and no/few values for the HSC IDL Compressed Blocks statistic,

then all the compression occurring is from conventional path operations (in particular, see

how many compressions are occurring per second).

If possible and feasible, you should consider modifying bulk inserts so that direct-path

loading is performed instead of conventional-path loads for the same operation(s). In

doing so you should see a larger value for the HSC IDL Compressed Blocks statistic. If

there is no statistic labeled “HSC IDL Compressed Blocks” this means that there was no

block compression above the HWM.

RMAN Compression

Due to RMAN’s tight integration with Oracle Database, backup data is compressed before

it is written to disk or tape and doesn’t need to be uncompressed before recovery –

9 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

providing a reduction in storage costs and a potentially large reduction in backup and

restore times.

RMAN Basic compression delivers a very good compression ratio, but can sometimes be

CPU intensive and CPU availability can be a limiting factor in the performance of backups

and restores.

There are three levels of RMAN Compression with Advanced Compression: LOW,

MEDIUM, and HIGH. The amount of storage savings increases from LOW to HIGH, while

potentially consuming more CPU resources. LOW / MEDIUM / HIGH compression is

designed to deliver varying levels of compression while typically using less CPU than

RMAN Basic Compression.

Generally speaking, the three levels can be categorized as such:

HIGH - Best suited for backups over slower networks where the limiting

factor is network speed

MEDIUM -Recommended for most environments. Good combination of

compression ratios and speed

LOW -Least impact on backup throughput and suited for environments

where CPU resources are the limiting factor

If you are I/O-limited but have idle CPU, then HIGH could work best, as it uses more CPU,

but saves the most space and thus gives the biggest decrease in the number of I/O's required

to write the backup files. On the other hand, if you are CPU-limited, then LOW or

MEDIUM probably makes more sense - less CPU is used, and about 80% of the space

savings will typically be realized (compared to the Basic compression included with

RMAN).

More about Compression, Performance and Compression Ratio’s

Before performing a POC users sometime speculate that the overhead of decompression

could impact query performance. However, in practice, this is typically unlikely.

Advanced Row and Index Key/Advanced Index compressed blocks are never

"decompressed" at the block level, and for most queries, individual rows aren't

decompressed either: most queries can operate directly on the compressed format in the

database blocks in memory and most query predicates operate directly on compressed data

formats, and only values required for the later stages of the query are decompressed.

There is typically not an increase in overhead for queries on compressed data/indexes, and

there is usually a decrease because of the reduction in I/O to query a given amount of user

data: if the data is compressed at a 3x ratio, for example, then it takes only 1/3 the amount

of I/O to read that data from disk and into the buffer cache when using compression.

While it is true that there can be a few "extra" instruction cycles to dereference pointers

inside compressed data blocks to extract column values, this is usually more than offset by

the reduction in I/O.

10 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

The compression ratio of a particular table/partition is primarily related to the amount of

duplication that exists, at the block level, for that table or partition. The higher the amount

of duplication then the higher the compression ratio, and the more unique the data, then

the lower the compression ratio. Generally speaking, if the data is highly unique, then it is

very possible that the table/partition may not compress well or at all.

There are a few things you can try to possibly increase the compression ratio for a

particular table. As usual, you should test any changes, using your data, applications and

systems, to determine the impact any such changes will have in your environment.

Sorting data

It may be possible to improve a table’s compression ratio by presorting the data when it's

loaded. You will have to decide which column(s) to sort on based on the cardinality of the

data in each column: if you can sort on a column that has a small number of distinct

values, that could produce better compression ratios. But presorting will require additional

preparation of the data before loading - you will need to weigh that additional time versus

any compression ratio gain

Use SecureFiles for LOB storage (see here for more information about using

SecureFiles)

It is usually possible to improve a table’s compression ratio by moving unstructured data

to SecureFiles (and using Advanced LOB Compression) instead of storing unstructured

data inline. Advanced Row Compression depends upon deduplication to reduce the size of

a block. With unstructured data stored inline, it is unlikely that a duplicate of that

unstructured data will be in the same block, and this means that the unstructured data in

the block, which can often be quite large, won’t be compressed. This can lead to lower

than expected overall compression ratios for the table. Advanced LOB Compression,

however, uses a different compression algorithm and can often compress unstructured data

stored in SecureFiles that isn’t able to be compressed when stored inline.

Oracle detects if SecureFile data is compressible and will compress using industry

standard compression algorithms. If the compression does not yield any savings or if the

data is already compressed, SecureFiles will turn off compression for such LOBs.

There are three levels of Advanced LOB Compression: LOW, MEDIUM, and HIGH. By

default, Advanced LOB Compression uses the MEDIUM level, which typically provides

good compression with a modest CPU overhead of 3-5%. Advanced LOB Compression

LOW is optimized for high performance. Advanced LOB Compression LOW maintains

about 80% of the compression achieved through MEDIUM, while utilizing 3x less CPU.

Finally, Advanced LOB Compression HIGH achieves the highest storage savings but

incurs the most CPU overhead.

http://www.oracle.com/technetwork/database/features/secure-files/index.html

11 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

Compression Benefits

• Reduces database storage
requirements and associated costs

• Typically improves query performance

• Reduces time and storage required for
RMAN backup and recovery

• Data in memory remains in compressed
format

• Compresses structured, unstructured,
index, backup, network and Data Guard
redo log transport data

• Cascades storage savings throughout
the data center

• Reduces the size of all supported
unique and non-unique indexes -- while
still providing efficient access to the
indexes

• Can be used with any type of
application without application changes

• Reduces the size of the session data
unit (SDU) transmitted over a data
connection

• Reduces the cost of storing and
accessing historical data

Customer POC Testing Results:

Global 500 Customer:
http://www.oracle.com/ocom/groups/public/

@otn/documents/webcontent/396808.pdf

What does the Typical Compression POC Look Like?

As indicated earlier, it is important to note that the best test environment for each

compression feature is where you can most closely duplicate the production environment–

this will provide the most realistic (pre- and post- compression) performance and

functionality comparisons.

Generally, the Advanced Compression option features that are generally tested during a

compression POC includes:

 Advanced Row Compression

 Index Key Compression* / Advanced Index Compression

 RMAN Compression

 Advanced LOB Compression/Deduplication

 Data Guard Redo Transport Compression

* Index Key Compression is included with Oracle Database Enterprise Edition and

does not require Oracle Advanced Compression

While Advanced Compression does include numerous other features, the above are the

features most typically included in a POC. You may choose to include other Advanced

Compression features or not include some of these features.

In terms of the actual POC, customers often indicate the following:

 Before testing estimate compression ratios (storage reduction) for structured

data, indexes, backups and unstructured data. With Oracle Database 18c,

Compression Advisor (see below) can be used to estimate Advanced Row

Compression, Advanced Index Compression and Advanced LOB Compression

compression ratios

 Use testing to identify performance improvements and any possible performance

impact from compression. This is typically determined by running your

applications, using your data on test platforms (similar to production hardware)

and profiling the performance before and after compression. Ideally the

application testing would include: application queries, bulk load operations

using both conventional and direct-path loads, single row DML (i.e.

conventional insert, update and delete operations) and RMAN backups (See the

customer POC results White Paper (on the left) as an example)

 While the general suggestion is to compress all tables (excluding those noted on

page 7) some organizations instead choose only to compress the largest tables

that account for approximately 80%+ of their data storage requirements

 Using Index Key Compression requires running ANALYZE INDEX to obtain

the prefix column count. Advanced Index Compression does not require running

Analyze Index

 MOS note Doc ID 729551.1 is useful for information about estimating

compression savings when using Data Guard Redo Transport Compression.

12 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

 If available, Oracle’s Real Application Testing (RAT) product can be a useful

tool for a compression POC

 See Appendix A below, for a simple example of what a compression POC may

look like as illustrated in a multi-step process.

Compression Advisor

Compression Advisor is a PL/SQL package (DBMS_COMPRESSION) that is used to

estimate potential storage savings (before implementing Oracle Advanced Compression)

based on analysis of a sample of data, and provides a good estimate of the actual results

that may be obtained after implementing Oracle Advanced Compression.

Compression Advisor, which supports Oracle Database 9i Release 2 through 11g Release

1, is available for free on the Oracle Technology Network website. Compression Advisor

is included with Oracle Database 11g Release 2 and above.

Appendix A – Example of Compression POC as a
Multi-Step Process

The Multi-Step POC compression process below is provided

strictly as a simple example for what a compression POC may

include. Not all POC’s will use every step and many POC’s will

include steps not indicated in the general outline below.

1. Apply all Relevant Patches (optionally upgrade to

latest release)

a. Upgrade to latest release if applicable

b. Apply patches

2. Define Success Criteria

a. Database performance

b. Database size

c. Backup space reduction

d. Backup time/restore time

e. Application performance

f. Data Guard (if applicable)

g. Data Pump Compression (if applicable)

3. Compression Advisor -- DBMS_COMPRESSION

a. Obtain compression ratio estimates for

Data/Indexes

b. Determine the overall list of tables/indexes to

be compressed

4. Baseline Before Compression In Test Environment:

Production Workload/Data

a. Gather database performance data (including

bulk load operations, queries, inserts/updates

and etc…)

b. Gather backup/restore times

c. Gather Data Guard performance data (if

applicable)

d. Gather database size for tables/indexes

e. Gather backup size

f. Gather Data Pump file size

g. Gather AWR reports

5. Implement Compression In Test Environment

a. Compress all candidate tables/indexes

identified using preferred method

(online/offline)

b. Perform bulk load operations and compare

against baseline

c. Run SQL statements (query/insert/update) and

compare against baseline

d. Perform SQL tuning adjustments for non-

performing queries (if any)

e. Run production workload and verify

performance

f. Gather AWR Reports and compare to baseline

6. Prepare for Production Cutover

a. Lessons Learned

BEST PRACTICE:

Oracle’s free Compression

Advisor to use a very useful tool

for estimating compression

ratios, information about advisor

is available on OTN at:

http://www.oracle.com/technet

work/database/options/compres

sion/downloads/index.html

http://docs.oracle.com/database/122/ARPLS/DBMS_COMPRESSION.htm#ARPLS236

13 | ORACLE ADVANCED COMPRESSION

A D V A N C D E D C O M P R E S S IO N P O C IN S IG H T S

b. Document all the benefits and

issues/resolutions encountered during POC

c. Define cutover plan

C O N T A C T U S

For more information about Advanced Compression, visit oracle.com or call +1.800.ORACLE1 to speak

to an Oracle representative.

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0218

