ORACLE 1 2 c
DATABASE

When to Use Oracle Database In-Memory

Identifying Use Cases for Application Acceleration

ORACLE WHITE PAPER | MARCH 2015

Executive Overview

Oracle Database In-Memory is an unprecedented breakthrough in Oracle database performance,
offering incredible performance gains for a wide range of workloads. Oracle Database In-Memory can
provide orders of magnitude performance improvements for analytics workloads, as well as substantial
improvements for mixed-workload Enterprise OLTP applications. This document briefly introduces
Database In-Memory, enumerates high-level use cases, and explains the scenarios under which it
provides a performance benefit. The purpose of this document is to give you some general guidelines

so that you can determine whether your use case is a good match for this exciting new technology.

Introducing Database In-Memory

Database In-Memory features a highly optimized In-Memory Column Store (IM column store) maintained alongside
the existing row formatted buffer cache as depicted below in Figure 1. The primary purpose of the IM column store
is to accelerate column-oriented data accesses made by analytics operations. It is similar in spirit to having a
conventional index (for analytics) on every column in a table. However, it is much more lightweight than a
conventional index, requiring no logging, or any writes to the database. Just as the performance benefit to an
application from conventional indexes depends on the amount of time the application spends accessing data in the
tables that are indexed, the benefit from the IM column store also depends on the amount of time the application
spends on data access for analytic operations. It is therefore important to understand the basic characteristics of
your application in order to determine the potential benefits from Database In-Memory.

Existing New In-Memory
Buffer Cache Format
)
11

—— ‘ ' »
= ¥
OLTF SALES — SAbES Analytics

Row Column
Format Format

Figure 1: Dual format in-memory representation featuring new in-memory column store

How Does Database In-Memory Improve Performance?

The IM column store includes several optimizations for accelerated query processing. These are described in detail
in the Database In-Memory Whitepaper so only a brief overview is provided here.

There are four basic architectural elements of the column store that enable orders of magnitude faster analytic query
processing:

1. Compressed columnar storage: Storing data contiguously in compressed column units allows an analytic
query to scan only data within the required columns, instead of having to skip past unneeded data in other
columns as would be needed for a row major format. Columnar storage therefore allows a query to perform

1 | ORACLE DATABASE IN-MEMORY

http://www.oracle.com/technetwork/database/in-memory/overview/twp-oracle-database-in-memory-2245633.html

highly efficient sequential memory references while compression allows the query to optimize its use of the
available system (processor to memory) bandwidth.

2. Vector Processing: In addition to being able to process data sequentially, column organized storage also
enables the use of vector processing. Modern CPUs feature highly parallel instructions known as SIMD or
vector instructions (e.g. Intel AVX). These instructions can process multiple values in one instruction — for
instance, they allow multiple values to be compared with a given value (e.g. find sales with State = “California”)
in one instruction. Vector processing of compressed columnar data further multiplies the scan speed obtained
via columnar storage, resulting in scan speeds exceeding tens of billions of rows per second, per CPU core.

3. In-Memory Storage Indexes: The IM column store for a given table is divided into units known as In-Memory
Compression Units (IMCUs) that typically represent a large number of rows (typically several hundred
thousand). Each IMCU automatically records the min and max values for the data within each column in the
IMCU, as well as other summary information regarding the data. This metadata serves as an In-Memory
Storage Index: For instance, it allows an entire IMCU to be skipped during a scan when it is known from the
scan predicates that no matching value will be found within the IMCU.

4. In-Memory Optimized Joins and Reporting: As a result of massive increases in scan speeds, the Bloom
Filter optimization (introduced earlier in Oracle Database 10g) can be commonly selected by the optimizer. With
the Bloom Filter optimization, the scan of the outer (dimension) table generates a compact bloom filter which
can then be used to greatly reduce the amount of data processed by the join from the scan of the inner (fact)
table. Similarly, an optimization known as Vector Group By can be used to reduce a complex aggregation query
on a typical star schema into a series of filtered scans against the dimension and fact tables.

Apart from accelerating queries, Database In-Memory has the ability to speed up DML operations or writes to the
database with the ability to replace analytic Indexes: Since the IM column store enables superfast analytics, it is
possible to drop conventional indexes used only to accelerate analytic queries. Avoiding costly index maintenance
allows update/insert/delete operations to be an order of magnitude faster. As stated earlier, the IM column store is a
purely in-memory structure, and maintaining it is very low overhead.

The following table summarizes the key application design principles for maximizing the benefits of Database In-
Memory. None of these principles are new, but they are even more important to follow when using Database In-
Memory because of the incredible speedup it provides for analytic data access.

Table 1: General Guidelines for Maximizing the Benefits of Database In-Memory

Process Data in the Database, not in the Instead of reading rows out of the database into

Application the application in order to compute a metric such
as a total or an average, it is far more efficient to
push that computation down into the database.
This is especially true with Database In-Memory,
since the benefits of processing within the
database are much higher.

Process Data in Sets, not Row by Row This rule is applies to any analytics workload: The
costs of database entry and exit are amortized by
the number of rows processed. Since Database
In-Memory can process billions of rows per
second, it is important to give the database
enough data to process on each invocation.

2 | ORACLE DATABASE IN-MEMORY

Table 1: General Guidelines for Maximizing the Benefits of Database In-Memory

Use Representative Optimizer statistics Plan differences can make a huge difference to
the performance of a query especially when in-
memory access paths can provide orders of
magnitude faster performance. To ensure that
you have optimal plans, please follow Oracle’s
recommended best practices for gathering a
representative set of statistics.

When Possible, Use Parallel SQL With Database In-Memory, IO bottlenecks are
alleviated and CPU time dominates the overall
execution profile. Parallelism is essential to
maximize performance, using all available CPU
cores for In-Memory processing. This is
especially true in an Oracle Real Application
Cluster environment, where Auto DOP is needed
to fully utilize all available CPU cores.

High-Level Use Cases for Database In-Memory

As depicted in Figure 2 below, Database In-Memory can be used both within Enterprise OLTP systems and within
Data Warehouses for real time analytics.

Data Warehouse Systems

For Data Warehouses, Database In-Memory can significantly improve the performance of analytics and reporting on
data that can be accommodated within the IM column store, such as on table partitions representing relatively near-
term data.

e Tables within the Foundation layer and within the Access layer can leverage Database In-Memory. Due to
the massive performance gains for queries on in-memory tables within the Foundation layer, it may be
possible to eliminate many indexes and other summary objects such as (pre-computed cubes) from the
Access layer.

o Database In-Memory is particularly applicable to data marts. Pre-computed summaries and aggregates
(such as Key Performance Indicators), can usually be stored easily within memory.

Note: Database In-Memory is generally not useful for the ETL or Staging layer where data tends to be written and
read only once.

Enterprise OLTP Systems

Enterprise OLTP systems (those running packaged ERP, CRM, HCM applications such as Siebel, Peoplesoft, JD
Edwards, etc) typically include a mixture of both OLTP transactions and periodic analytic reporting. In these
systems, Database In-Memory can be used for real-time reporting against the base OLTP data. As stated earlier,
the IM column store can potentially replace analytic indexes in these systems with significant speedups for OLTP
DML operations.

3 | ORACLE DATABASE IN-MEMORY

Removing analytic indexes results in many system-wide benefits, e.g. it reduces the total size of the database
resulting in reduced storage requirements and faster backups. Analytic index removal also improves buffer cache hit
rates, reduces overall redo and undo generation rates, and reduces the total I/O to the database.

OITE Entarprise Date Warehouss
System Btaging Laye Foundation Layer Access Layerl

[in-Memony

Ref c Star Schema
leference ore

Disk In Memory Staging data Data (o c .Dnla l-. l-.
== f
] T T ~

Pre-calculated KP|
' d

C
L
C

TIT

(0o

Data Mining
| Statistical Data

= 0
] R
Oracle R

Discovery Sandbox

(00000

AMNA

;;bperational Data

Discovery Layer

Figure 2: Use cases for Database In-Memory within the Enterprise

Note: For specialized “pure” OLTP systems (such as real-time trading engines, real-time telecommunications billing
or call routing applications) that do not have an Analytics component, there is no benefit from Database In-Memory.
The Oracle TimesTen In-Memory Database is highly optimized for pure OLTP workloads providing response times

in microseconds. For such systems, TimesTen may be a better choice if the data can be stored in-memory.

Understanding Your Application

Once there is a high-level match between Database In-Memory and your use case, it is important for you to
understand where your application bottleneck is (i.e. where it spends the maijority of its time) in order for you to
estimate overall benefits from Database In-Memory. The abstract pie chart shown in Figure 3 below depicts a typical
application time profile.

Areas that Benefit from Database In-Memory

As described earlier, Database In-Memory provides optimizations for dramatically faster Analytic queries. Therefore
the following workload time components potentially benefit from Database In-Memory (as indicated in the pie chart):

1. Data Access for Analytics and Reporting: This is the core value proposition of Database In-Memory, to enable
orders of magnitude faster analytic data access.

2. Analytic Index Maintenance: Database In-Memory often enables analytic indexes to be dropped, and
eliminating the maintenance of these indexes improves overall application performance.

Areas that do not benefit from Database In-Memory

As the pie chart shows, there are also a number of other workload time components that do not benefit since they
are unrelated to analytic data access or indeed, to any aspect of SQL execution. The same Oracle Database best
practices that have been in vogue prior to the existence of Database In-Memory still apply when minimizing the time
spent in these areas.

4 | ORACLE DATABASE IN-MEMORY

http://www.oracle.com/technetwork/database/database-technologies/timesten/overview/index.html

Applicati Network
pplication communication
Data Access - Database
Analytics and Logon/Logoff
Reporting *
Parse
PL/SQL execution
SQL function
execution
Analytic Index
Maintenance —\ \
Data Access -
OLTP queries
Data Writes \
(DML) to OLTP Index
Database Tables —/ Maintenance

Figure 3: Abstract Time Profile for a Typical Application (* - time potentially reduced by Database In-Memory)

1.

Application Time: Time within the application is unaffected by optimizations within the database. Application—
specific optimizations, including pushing more work into the database (as stated earlier in Table 1), are required
to minimize this time.

Network communication between client and database: This is not affected by how fast the database runs.
Standard techniques for reducing this time include using batched or array execution when possible to amortize
the cost of database round-trips.

Logon and Logoff: Database connect / disconnect can be expensive, including the cost of authentication,
process creation / teardown, etc. This time is completely unrelated to data processing. Standard techniques for
minimizing this include keeping connections open and reusing connections when possible (e.g. by using
connection pools).

Parse Time: While Database In-Memory can make the execution of SQL statements much faster, it has no
impact on the time required to parse and optimize a SQL statement. Parse time should be minimized through
common best practices by using bind variables, keeping cursors open, using session cached cursors, etc.

The remaining areas that do not benefit from Database In-Memory are more fundamental to the application, and it is
less likely that they can be addressed without some application redesign:

1.

PL/SQL and SQL function execution: If the application spends most of its time within PL/SQL procedures,
functions, or within built-in or user-defined SQL functions, then the bottleneck is in computation, and not in
analytic data access. Database In-Memory does accelerate the evaluation of many common query predicates
such as equality, range and list predicates, as well as many common aggregation functions such as MIN(),
MAX(), SUM(), etc. In general however, a computation-intensive application will tend to benefit less from
Database In-Memory.

5 | ORACLE DATABASE IN-MEMORY

2. Data access by OLTP queries: OLTP queries, characterized by highly selective lookups (e.g. by Primary Key)
or simple primary-foreign key joins, will not benefit from Database In-Memory. If a workload is dominated by this
type of data access, the Oracle TimesTen In-Memory Database may be a better match (if the data being
accessed can fit in memory).

3. OLTP index maintenance: Likewise, the indexes that are present in order to purely accelerate OLTP queries
(such as Primary / Foreign key indexes) or those required for referential integrity, are still necessary even if
Database In-Memory is used. Thus, the time spent in maintaining these indexes remains unchanged with
Database In-Memory. Again, Oracle TimesTen may be a match for use cases dominated by this type of index
access (if the data being accessed can be accommodated in memory).

4. Writes to Database Tables: The time spent on update/insert/delete DMLs against application tables will remain
unchanged whether the tables are in memory or not. An application that is extremely write-intensive, and
bottlenecked on DML on tables, will be unlikely to benefit significantly from Database In-Memory

What Types of Queries Benefit from Database In-Memory

So far we have explained some of the high-level use cases for Database In-Memory, and shown an abstract
breakdown of application execution time to show what areas can benefit from Database In-Memory. It is also
necessary to understand what types of analytic queries benefit most from the IM column store since not all queries
will benefit equally.

As a general rule of thumb: The greater the ratio of the total data accessed by a query to the data actually
processed by the query, the greater the potential benefit from Database In-Memory.

For example, let’'s consider the following scenario:
1) Query A scans a table with a million rows, but 990,000 rows are eliminated by the query predicates.
2) Query B scans the same million row table, but only 10,000 rows are eliminated by the query predicates.

In this case, although both queries access 1 million rows, query A processes only 10,000 rows (since the rest are
eliminated by the query predicates) while query B must process 990,000 rows (only 10,000 are eliminated). Query A
therefore spends a far greater fraction of its total execution time on data access than Query B does. Query A will
experience a greater reduction in execution time than Query B if the table is in-memory.

To further illustrate this principle, we enumerate various query properties (properties impact how much a query can
benefit from Database In-Memory) in Table 2 below. For each property, we show two queries that vary only in terms
of the specified query property — showing one query for which Database In-Memory provides a smaller benefit, and
one for which it provides a larger benefit.

This table is not intended to be a comprehensive list, rather to serve as a rough guide to help you understand what
to look for when estimating the potential benefits of Database In-Memory.

For these examples, we assume a simple star schema representing sales by an online marketplace: A single large
SALES fact table and various much smaller dimension tables such as STORES, PRODUCTS, SHIPMENTS,
CUSTOMERS, etc.

6 | ORACLE DATABASE IN-MEMORY

Table 2:Typical Query Properties and how they impact the benefit from Database In-Memory

Example Queries

Query L
Description
Property Less Benefit More Benefit
Number of | As more table SELECT * FROM Sales; SELECT revenue FROM Sales;
columns columns are selected
selected by a query, column
processing costs start
to dominate query Less benefit since the query selects | More benefit since the query selects
execution time, all columns, and spends more time | only 1 column and spends less time
reducing the benefit. | Processing column values relative to | processing column values relative to
the number of rows it accesses. the number of rows it accesses.
Number of | The greater the SELECT revenue SELECT SUM (revenue)
values number of values FROM Sales; FROM Sales;
returned returned by a query,
the sn-13IIer the IM Less benefit since the query returns | More benefit since the query returns
benefllt, because a value for each row in the table. only one value even though it
returning data back to .
, . accesses all values in the column.
the client will
dominate the costs.
Selectivity | A more selective SELECT MEDIAN (revenue) SELECT MEDIAN (revenue) FROM
of column column predicate FROM Sales Sales
predicates | enables more filtering |WHERE revenue > 2; WHERE revenue < 2;

on the scan results,
and reduces the
amount of data that
intermediate query
plan nodes need to
process. Selective
predicates can also
leverage in-memory
storage indexes to
further accelerate data
access.

Less benefit since most rows will
qualify (most sales are for items
priced higher than $2) and a larger
fraction of the query execution time
will be spent in calculating the
median.

More benefit since fewer rows will
qualify and a smaller fraction of the
query execution time will be spent in
calculating the median..

7 | ORACLE DATABASE IN-MEMORY

Table 2:Typical Query Properties and how they impact the benefit from Database In-Memory

Example Queries

Query L
Description
Property Less Benefit More Benefit
Selectivity | A more selective join | SELECT SELECT
of Join condition will yield a Si.d, S.revenue, P.name S.id, P.name, S.revenue
Conditions | smaller join result, and | FROM FROM
cause less data to Sales S,Products P Sales S, Products P
have to be processed |WHERE WHERE
by the query. S.prod id=P.1id; S.prod id=P.id AND
P.type=‘Footwear’;
The above join will return a row for | This join will only return rows that
all sales records since each sale has | correspond to sales of footwear
a matching product. The query will | products, a subset of total sales. As
spend far more time processing the | a result the query will spend much
join result less time processing the join result.
Number of | The greater the SELECT <select list> SELECT <select list>
tables being | number of tablesina |FROM Sales, Products, FROM Sales, Products,
joined join, the larger the Customers, Shipments, Customers
percentage of time Stores, Suppliers, WHERE <join condition>
spent in the join Warehouses
processing. WHERE <Join Condition>
The above query involves a join The above query involves a join
between 7 tables and will spend between 3 tables and will spend less
more time in join processing as a time in join processing as a fraction
fraction of the total execution time of total execution time, and will
and will benefit less from in-memory. | benefit more with the tables in-
memory.
Complexity | Queries involving SELECT I.id, sum(S.revenue) |SELECT I.id, sum(S.revenue)
of SQL computationally FROM Sales S, Items I FROM Sales S, Items I
functions expensive SQL WHERE S.item id = I.id WHERE S.item id = I.id

functions will benefit
less from in-memory.

AND
MyMatch (I.name, ”LED TV”)=1
GROUP BY I.id;

AND
I.name LIKE “S$LEDSTV”
GROUP BY I.id;

The above query will spend more of
in predicate evaluation using the
user defined PL/SQL function
MyMatch() and benefit less from
Database In-Memory.

The query will spend less time in
predicate processing by applying the
built-in fast string match LIKE
operator to each item and benefit
more from Database In-Memory.

8 | ORACLE DATABASE IN-MEMORY

THE FACTS ABOUT ORACLE DATABASE IN-MEMORY

Powering the Real-Time Enterprise

Speed Up Analytics by
Orders of Magnitude

Oracle Database In-Memory transparently extends industry-leading Oracle Database 12¢c
with columnar in-memory technology. Users get inmediate answers to business
questions that previously took hours because highly optimized in-memory column formats
and SIMD vector processing enable analytics to run at a rate of billions of rows per
second per CPU core.

Unique Architecture Runs
Analytics in Real-Time while
Accelerating Mixed Workload
OLTP

Column format is optimal for analytics while row format is optimal for OLTP. Oracle
Database In-Memory uses both formats simultaneously to allow real-time analytics on
both Data Warehouses and OLTP databases. Indexes previously required for analytics
can be dropped, accelerating mixed-workload OLTP.

Compatible with All Existing
Applications

Deploying Oracle Database In-Memory with any existing Oracle Database-compatible
application is as easy as flipping a switch, no application changes are required. All of
Oracle’s extensive features, data types, and APIs continue to work transparently.

Industry-Leading Scale-Up

Oracle’s highly mature scale-up technologies enable application transparent In-Memory
scale-up on SMP computers with up to tens of terabytes of memory and thousands of
CPU threads. Data is analyzed at the enormous rate of hundreds of billions of rows per
second with outstanding efficiency and no feature limitations.

Industry-Leading Scale-Out

Oracle’s highly mature scale-out technologies enable application transparent In-Memory
scale-out across large clusters of computers with 100s of terabytes of memory and
thousands of CPU threads. Data is analyzed at the enormous rate of trillions of rows per
second with no feature limitations.

Industry-Leading High
Availability and Security

Oracle’s renowned Availability and Security technologies all work transparently with
Oracle Database In-Memory ensuring extreme safety for mission critical applications. On
Oracle Engineered Systems, In-Memory fault tolerance duplicates in-memory data across
nodes enabling queries to instantly use an in-memory copy of data if a node fails.

Cost Effective for Even the
Largest Database

Oracle Database In Memory does not mandate that all data must fit in memory.
Frequently accessed data can be kept In-Memory while less active data is kept on much
lower cost flash and disk.

Powering the Real-Time
Enterprise

The ability to easily perform real-time data analysis together with real-time transaction
processing on all existing applications enables organizations to transform into Real-Time
Enterprises that quickly make data-driven decisions, respond instantly to customer
demands, and continuously optimize all key processes.

9 | ORACLE DATABASE IN-MEMORY

Oracle Corporation, World Headquarters Worldwide Inquiries
500 Oracle Parkway Phone: +1.650.506.7000
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

CONNECT WITH US

n blogs.oracle.com/in-memory

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0315

White Paper When To Use Oracle Database In-Memory
March 2015
Author: Tirthankar Lahiri

