

When to Use Oracle Database In-Memory
Identifying Use Cases for Application Acceleration

O R A C L E W H I T E P A P E R | M A R C H 2 0 1 5

1 | ORACLE DATABASE IN-MEMORY

Executive Overview

Oracle Database In-Memory is an unprecedented breakthrough in Oracle database performance,

offering incredible performance gains for a wide range of workloads. Oracle Database In-Memory can

provide orders of magnitude performance improvements for analytics workloads, as well as substantial

improvements for mixed-workload Enterprise OLTP applications. This document briefly introduces

Database In-Memory, enumerates high-level use cases, and explains the scenarios under which it

provides a performance benefit. The purpose of this document is to give you some general guidelines

so that you can determine whether your use case is a good match for this exciting new technology.

Introducing Database In-Memory

Database In-Memory features a highly optimized In-Memory Column Store (IM column store) maintained alongside

the existing row formatted buffer cache as depicted below in Figure 1. The primary purpose of the IM column store

is to accelerate column-oriented data accesses made by analytics operations. It is similar in spirit to having a

conventional index (for analytics) on every column in a table. However, it is much more lightweight than a

conventional index, requiring no logging, or any writes to the database. Just as the performance benefit to an

application from conventional indexes depends on the amount of time the application spends accessing data in the

tables that are indexed, the benefit from the IM column store also depends on the amount of time the application

spends on data access for analytic operations. It is therefore important to understand the basic characteristics of

your application in order to determine the potential benefits from Database In-Memory.

Figure 1: Dual format in-memory representation featuring new in-memory column store

How Does Database In-Memory Improve Performance?

The IM column store includes several optimizations for accelerated query processing. These are described in detail

in the Database In-Memory Whitepaper so only a brief overview is provided here.

There are four basic architectural elements of the column store that enable orders of magnitude faster analytic query

processing:

1. Compressed columnar storage: Storing data contiguously in compressed column units allows an analytic

query to scan only data within the required columns, instead of having to skip past unneeded data in other

columns as would be needed for a row major format. Columnar storage therefore allows a query to perform

http://www.oracle.com/technetwork/database/in-memory/overview/twp-oracle-database-in-memory-2245633.html

2 | ORACLE DATABASE IN-MEMORY

highly efficient sequential memory references while compression allows the query to optimize its use of the

available system (processor to memory) bandwidth.

2. Vector Processing: In addition to being able to process data sequentially, column organized storage also

enables the use of vector processing. Modern CPUs feature highly parallel instructions known as SIMD or

vector instructions (e.g. Intel AVX). These instructions can process multiple values in one instruction – for

instance, they allow multiple values to be compared with a given value (e.g. find sales with State = “California”)

in one instruction. Vector processing of compressed columnar data further multiplies the scan speed obtained

via columnar storage, resulting in scan speeds exceeding tens of billions of rows per second, per CPU core.

3. In-Memory Storage Indexes: The IM column store for a given table is divided into units known as In-Memory

Compression Units (IMCUs) that typically represent a large number of rows (typically several hundred

thousand). Each IMCU automatically records the min and max values for the data within each column in the

IMCU, as well as other summary information regarding the data. This metadata serves as an In-Memory

Storage Index: For instance, it allows an entire IMCU to be skipped during a scan when it is known from the

scan predicates that no matching value will be found within the IMCU.

4. In-Memory Optimized Joins and Reporting: As a result of massive increases in scan speeds, the Bloom

Filter optimization (introduced earlier in Oracle Database 10g) can be commonly selected by the optimizer. With

the Bloom Filter optimization, the scan of the outer (dimension) table generates a compact bloom filter which

can then be used to greatly reduce the amount of data processed by the join from the scan of the inner (fact)

table. Similarly, an optimization known as Vector Group By can be used to reduce a complex aggregation query

on a typical star schema into a series of filtered scans against the dimension and fact tables.

Apart from accelerating queries, Database In-Memory has the ability to speed up DML operations or writes to the

database with the ability to replace analytic Indexes: Since the IM column store enables superfast analytics, it is

possible to drop conventional indexes used only to accelerate analytic queries. Avoiding costly index maintenance

allows update/insert/delete operations to be an order of magnitude faster. As stated earlier, the IM column store is a

purely in-memory structure, and maintaining it is very low overhead.

The following table summarizes the key application design principles for maximizing the benefits of Database In-

Memory. None of these principles are new, but they are even more important to follow when using Database In-

Memory because of the incredible speedup it provides for analytic data access.

Table 1: General Guidelines for Maximizing the Benefits of Database In-Memory

Rule 1

Process Data in the Database, not in the

Application

Instead of reading rows out of the database into

the application in order to compute a metric such

as a total or an average, it is far more efficient to

push that computation down into the database.

This is especially true with Database In-Memory,

since the benefits of processing within the

database are much higher.

Rule 2

Process Data in Sets, not Row by Row This rule is applies to any analytics workload: The

costs of database entry and exit are amortized by

the number of rows processed. Since Database

In-Memory can process billions of rows per

second, it is important to give the database

enough data to process on each invocation.

3 | ORACLE DATABASE IN-MEMORY

Table 1: General Guidelines for Maximizing the Benefits of Database In-Memory

Rule 3 Use Representative Optimizer statistics Plan differences can make a huge difference to

the performance of a query especially when in-

memory access paths can provide orders of

magnitude faster performance. To ensure that

you have optimal plans, please follow Oracle’s

recommended best practices for gathering a

representative set of statistics.

Rule 4

When Possible, Use Parallel SQL With Database In-Memory, IO bottlenecks are

alleviated and CPU time dominates the overall

execution profile. Parallelism is essential to

maximize performance, using all available CPU

cores for In-Memory processing. This is

especially true in an Oracle Real Application

Cluster environment, where Auto DOP is needed

to fully utilize all available CPU cores.

High-Level Use Cases for Database In-Memory

As depicted in Figure 2 below, Database In-Memory can be used both within Enterprise OLTP systems and within

Data Warehouses for real time analytics.

Data Warehouse Systems

For Data Warehouses, Database In-Memory can significantly improve the performance of analytics and reporting on

data that can be accommodated within the IM column store, such as on table partitions representing relatively near-

term data.

 Tables within the Foundation layer and within the Access layer can leverage Database In-Memory. Due to

the massive performance gains for queries on in-memory tables within the Foundation layer, it may be

possible to eliminate many indexes and other summary objects such as (pre-computed cubes) from the

Access layer.

 Database In-Memory is particularly applicable to data marts. Pre-computed summaries and aggregates

(such as Key Performance Indicators), can usually be stored easily within memory.

Note: Database In-Memory is generally not useful for the ETL or Staging layer where data tends to be written and

read only once.

Enterprise OLTP Systems

Enterprise OLTP systems (those running packaged ERP, CRM, HCM applications such as Siebel, Peoplesoft, JD

Edwards, etc) typically include a mixture of both OLTP transactions and periodic analytic reporting. In these

systems, Database In-Memory can be used for real-time reporting against the base OLTP data. As stated earlier,

the IM column store can potentially replace analytic indexes in these systems with significant speedups for OLTP

DML operations.

4 | ORACLE DATABASE IN-MEMORY

Removing analytic indexes results in many system-wide benefits, e.g. it reduces the total size of the database

resulting in reduced storage requirements and faster backups. Analytic index removal also improves buffer cache hit

rates, reduces overall redo and undo generation rates, and reduces the total I/O to the database.

Figure 2: Use cases for Database In-Memory within the Enterprise

Note: For specialized “pure” OLTP systems (such as real-time trading engines, real-time telecommunications billing

or call routing applications) that do not have an Analytics component, there is no benefit from Database In-Memory.

The Oracle TimesTen In-Memory Database is highly optimized for pure OLTP workloads providing response times

in microseconds. For such systems, TimesTen may be a better choice if the data can be stored in-memory.

Understanding Your Application

Once there is a high-level match between Database In-Memory and your use case, it is important for you to

understand where your application bottleneck is (i.e. where it spends the majority of its time) in order for you to

estimate overall benefits from Database In-Memory. The abstract pie chart shown in Figure 3 below depicts a typical

application time profile.

Areas that Benefit from Database In-Memory

As described earlier, Database In-Memory provides optimizations for dramatically faster Analytic queries. Therefore

the following workload time components potentially benefit from Database In-Memory (as indicated in the pie chart):

1. Data Access for Analytics and Reporting: This is the core value proposition of Database In-Memory, to enable

orders of magnitude faster analytic data access.

2. Analytic Index Maintenance: Database In-Memory often enables analytic indexes to be dropped, and

eliminating the maintenance of these indexes improves overall application performance.

Areas that do not benefit from Database In-Memory

As the pie chart shows, there are also a number of other workload time components that do not benefit since they

are unrelated to analytic data access or indeed, to any aspect of SQL execution. The same Oracle Database best

practices that have been in vogue prior to the existence of Database In-Memory still apply when minimizing the time

spent in these areas.

http://www.oracle.com/technetwork/database/database-technologies/timesten/overview/index.html

5 | ORACLE DATABASE IN-MEMORY

Figure 3: Abstract Time Profile for a Typical Application (* - time potentially reduced by Database In-Memory)

1. Application Time: Time within the application is unaffected by optimizations within the database. Application–

specific optimizations, including pushing more work into the database (as stated earlier in Table 1), are required

to minimize this time.

2. Network communication between client and database: This is not affected by how fast the database runs.

Standard techniques for reducing this time include using batched or array execution when possible to amortize

the cost of database round-trips.

3. Logon and Logoff: Database connect / disconnect can be expensive, including the cost of authentication,

process creation / teardown, etc. This time is completely unrelated to data processing. Standard techniques for

minimizing this include keeping connections open and reusing connections when possible (e.g. by using

connection pools).

4. Parse Time: While Database In-Memory can make the execution of SQL statements much faster, it has no

impact on the time required to parse and optimize a SQL statement. Parse time should be minimized through

common best practices by using bind variables, keeping cursors open, using session cached cursors, etc.

The remaining areas that do not benefit from Database In-Memory are more fundamental to the application, and it is

less likely that they can be addressed without some application redesign:

1. PL/SQL and SQL function execution: If the application spends most of its time within PL/SQL procedures,

functions, or within built-in or user-defined SQL functions, then the bottleneck is in computation, and not in

analytic data access. Database In-Memory does accelerate the evaluation of many common query predicates

such as equality, range and list predicates, as well as many common aggregation functions such as MIN(),

MAX(), SUM(), etc. In general however, a computation-intensive application will tend to benefit less from

Database In-Memory.

Application
Network

communication
 Database

Logon/Logoff

Parse

PL/SQL execution

SQL function
execution

 Data Access -
OLTP queries

OLTP Index
Maintenance

Data Writes
(DML) to

Database Tables

 Analytic Index
Maintenance *

Data Access -
Analytics and
Reporting *

6 | ORACLE DATABASE IN-MEMORY

2. Data access by OLTP queries: OLTP queries, characterized by highly selective lookups (e.g. by Primary Key)

or simple primary-foreign key joins, will not benefit from Database In-Memory. If a workload is dominated by this

type of data access, the Oracle TimesTen In-Memory Database may be a better match (if the data being

accessed can fit in memory).

3. OLTP index maintenance: Likewise, the indexes that are present in order to purely accelerate OLTP queries

(such as Primary / Foreign key indexes) or those required for referential integrity, are still necessary even if

Database In-Memory is used. Thus, the time spent in maintaining these indexes remains unchanged with

Database In-Memory. Again, Oracle TimesTen may be a match for use cases dominated by this type of index

access (if the data being accessed can be accommodated in memory).

4. Writes to Database Tables: The time spent on update/insert/delete DMLs against application tables will remain

unchanged whether the tables are in memory or not. An application that is extremely write-intensive, and

bottlenecked on DML on tables, will be unlikely to benefit significantly from Database In-Memory

What Types of Queries Benefit from Database In-Memory

So far we have explained some of the high-level use cases for Database In-Memory, and shown an abstract

breakdown of application execution time to show what areas can benefit from Database In-Memory. It is also

necessary to understand what types of analytic queries benefit most from the IM column store since not all queries

will benefit equally.

As a general rule of thumb: The greater the ratio of the total data accessed by a query to the data actually

processed by the query, the greater the potential benefit from Database In-Memory.

For example, let’s consider the following scenario:

1) Query A scans a table with a million rows, but 990,000 rows are eliminated by the query predicates.

2) Query B scans the same million row table, but only 10,000 rows are eliminated by the query predicates.

In this case, although both queries access 1 million rows, query A processes only 10,000 rows (since the rest are

eliminated by the query predicates) while query B must process 990,000 rows (only 10,000 are eliminated). Query A

therefore spends a far greater fraction of its total execution time on data access than Query B does. Query A will

experience a greater reduction in execution time than Query B if the table is in-memory.

To further illustrate this principle, we enumerate various query properties (properties impact how much a query can

benefit from Database In-Memory) in Table 2 below. For each property, we show two queries that vary only in terms

of the specified query property – showing one query for which Database In-Memory provides a smaller benefit, and

one for which it provides a larger benefit.

This table is not intended to be a comprehensive list, rather to serve as a rough guide to help you understand what

to look for when estimating the potential benefits of Database In-Memory.

For these examples, we assume a simple star schema representing sales by an online marketplace: A single large

SALES fact table and various much smaller dimension tables such as STORES, PRODUCTS, SHIPMENTS,

CUSTOMERS, etc.

7 | ORACLE DATABASE IN-MEMORY

Table 2:Typical Query Properties and how they impact the benefit from Database In-Memory

Query

Property
Description

Example Queries

Less Benefit More Benefit

Number of

columns

selected

As more table

columns are selected

by a query, column

processing costs start

to dominate query

execution time,

reducing the benefit.

SELECT * FROM Sales;

SELECT revenue FROM Sales;

Less benefit since the query selects

all columns, and spends more time

processing column values relative to

the number of rows it accesses.

More benefit since the query selects

only 1 column and spends less time

processing column values relative to

the number of rows it accesses.

Number of

values

returned

The greater the

number of values

returned by a query,

the smaller the IM

benefit, because

returning data back to

the client will

dominate the costs.

SELECT revenue

FROM Sales;

SELECT SUM(revenue)

FROM Sales;

Less benefit since the query returns

a value for each row in the table.

More benefit since the query returns

only one value even though it

accesses all values in the column.

Selectivity

of column

predicates

A more selective

column predicate

enables more filtering

on the scan results,

and reduces the

amount of data that

intermediate query

plan nodes need to

process. Selective

predicates can also

leverage in-memory

storage indexes to

further accelerate data

access.

SELECT MEDIAN(revenue)

FROM Sales

WHERE revenue > 2;

SELECT MEDIAN(revenue) FROM

Sales

WHERE revenue < 2;

Less benefit since most rows will

qualify (most sales are for items

priced higher than $2) and a larger

fraction of the query execution time

will be spent in calculating the

median.

More benefit since fewer rows will

qualify and a smaller fraction of the

query execution time will be spent in

calculating the median..

8 | ORACLE DATABASE IN-MEMORY

Table 2:Typical Query Properties and how they impact the benefit from Database In-Memory

Query

Property
Description

Example Queries

Less Benefit More Benefit

Selectivity

of Join

Conditions

A more selective join

condition will yield a

smaller join result, and

cause less data to

have to be processed

by the query.

SELECT

 Si.d, S.revenue, P.name

FROM

 Sales S,Products P

WHERE

 S.prod_id=P.id;

SELECT

 S.id, P.name, S.revenue

FROM

 Sales S, Products P

WHERE

 S.prod_id=P.id AND

P.type=‘Footwear’;

The above join will return a row for

all sales records since each sale has

a matching product. The query will

spend far more time processing the

join result

This join will only return rows that

correspond to sales of footwear

products, a subset of total sales. As

a result the query will spend much

less time processing the join result.

Number of

tables being

joined

The greater the

number of tables in a

join, the larger the

percentage of time

spent in the join

processing.

SELECT <select list>

FROM Sales, Products,

Customers, Shipments,

Stores, Suppliers,

Warehouses

WHERE <Join Condition>

SELECT <select list>

FROM Sales, Products,

Customers

WHERE <join condition>

The above query involves a join

between 7 tables and will spend

more time in join processing as a

fraction of the total execution time

and will benefit less from in-memory.

The above query involves a join

between 3 tables and will spend less

time in join processing as a fraction

of total execution time, and will

benefit more with the tables in-

memory.

Complexity

of SQL

functions

Queries involving

computationally

expensive SQL

functions will benefit

less from in-memory.

SELECT I.id, sum(S.revenue)

FROM Sales S, Items I

WHERE S.item_id = I.id

AND

 MyMatch(I.name,”LED TV”)=1

GROUP BY I.id;

SELECT I.id, sum(S.revenue)

FROM Sales S, Items I

WHERE S.item_id = I.id

AND

 I.name LIKE “%LED%TV”

GROUP BY I.id;

The above query will spend more of

in predicate evaluation using the

user defined PL/SQL function

MyMatch() and benefit less from

Database In-Memory.

The query will spend less time in

predicate processing by applying the

built-in fast string match LIKE

operator to each item and benefit

more from Database In-Memory.

9 | ORACLE DATABASE IN-MEMORY

 THE FACTS ABOUT ORACLE DATABASE IN-MEMORY

Powering the Real-Time Enterprise

Speed Up Analytics by

Orders of Magnitude

Oracle Database In-Memory transparently extends industry-leading Oracle Database 12c

with columnar in-memory technology. Users get immediate answers to business

questions that previously took hours because highly optimized in-memory column formats

and SIMD vector processing enable analytics to run at a rate of billions of rows per

second per CPU core.

Unique Architecture Runs

Analytics in Real-Time while

Accelerating Mixed Workload

OLTP

Column format is optimal for analytics while row format is optimal for OLTP. Oracle

Database In-Memory uses both formats simultaneously to allow real-time analytics on

both Data Warehouses and OLTP databases. Indexes previously required for analytics

can be dropped, accelerating mixed-workload OLTP.

Compatible with All Existing

Applications

Deploying Oracle Database In-Memory with any existing Oracle Database-compatible

application is as easy as flipping a switch, no application changes are required. All of

Oracle’s extensive features, data types, and APIs continue to work transparently.

Industry-Leading Scale-Up Oracle’s highly mature scale-up technologies enable application transparent In-Memory

scale-up on SMP computers with up to tens of terabytes of memory and thousands of

CPU threads. Data is analyzed at the enormous rate of hundreds of billions of rows per

second with outstanding efficiency and no feature limitations.

Industry-Leading Scale-Out Oracle’s highly mature scale-out technologies enable application transparent In-Memory

scale-out across large clusters of computers with 100s of terabytes of memory and

thousands of CPU threads. Data is analyzed at the enormous rate of trillions of rows per

second with no feature limitations.

Industry-Leading High

Availability and Security

Oracle’s renowned Availability and Security technologies all work transparently with

Oracle Database In-Memory ensuring extreme safety for mission critical applications. On

Oracle Engineered Systems, In-Memory fault tolerance duplicates in-memory data across

nodes enabling queries to instantly use an in-memory copy of data if a node fails.

Cost Effective for Even the

Largest Database

Oracle Database In Memory does not mandate that all data must fit in memory.

Frequently accessed data can be kept In-Memory while less active data is kept on much

lower cost flash and disk.

Powering the Real-Time

Enterprise

The ability to easily perform real-time data analysis together with real-time transaction

processing on all existing applications enables organizations to transform into Real-Time

Enterprises that quickly make data-driven decisions, respond instantly to customer

demands, and continuously optimize all key processes.

Oracle Corporation, World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065, USA

Worldwide Inquiries

Phone: +1.650.506.7000

Fax: +1.650.506.7200

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0315

White Paper When To Use Oracle Database In-Memory
March 2015
Author: Tirthankar Lahiri

 C O N N E C T W I T H U S

blogs.oracle.com/in-memory

