Efficient Use of PL/SQL String
Functions for

Unicode Applications

An Oracle White Paper
July 2003

ORACLE

Efficient Use Of PL/SQL String Functions for

Unicode Applications
TOEEOAUCHON ettt sttt s saeeeas 3
UTF-8 And PL/SQL SO ...t 4
Processing FunCtionsccueveveviieiiiiiiiiiccccc s 4
An Bxample Of oo 6
Bad Programming PractiCes.........oemvruiieirieiiieinieisieeceece e 6
Byte Mode Of String FunCtONS ..o 7

Using Byte Mode String Functions When Charactets Are of No Concetn ... 7
Use Byte Mode String Functions When You Know That Strings Are

Composed of Pute Single-Byte Chatacterscoueeruererirveinueireeernnreernenenn 10
SUBSTRB and Blank Padding of Partial Charactersccevevruereevrueeenuenene. 10
SUMMALY 1.ttt 12

White Paper Title Page 2

Efficient Use of PL/SQL String Functions for
Unicode Applications

INTRODUCTION

The World Wide Web has changed the way we do business today, with an
emphasis on the global market that has made the supporting of multilingual data a
major requirement. While it is not impossible to use legacy character sets to
configure a multilingual environment, it is very complicated, difficult, and
expensive. This may force usage of separate databases to store data for different
languages. These separate databases make information sharing difficult and
inefficient, and the maintenance cost is high. To resolve these issues, customers
need to host multilingual data in a single central database and support many
different languages within the same application. Unicode is an answer to this need.

Unicode is a universal encoded character set that allows you to store information
from any language using a single character set. Unicode provides a unique code
value for every character, regardless of the platform, program, or language. With
Unicode support, virtually all contemporary languages and scripts can be easily
encoded. Unicode is fast becoming the standard character set for emerging
technologies and has been adopted by many software and hardware vendors. It is
the character set required by modern standards such as XML, Java, JavaScript,
LDAP, CORBA 3.0 and WML. It is also compatible with the ISO/IEC 10646
standard. Many companies have migrated their legacy character set to Unicode in
order to get ready for the data coming from all over the world.

A legacy Oracle database server can be migrated to support Unicode in two ways:

* Migrate the database character set to an Oracle character set with UTF-8
encoding

* Deploying Oracle's Unicode data type (that is, SQL NCHAR data type),
migrate all or part of the database's SQL. CHAR data to SQL. NCHAR
data, using Oracle's national character set encoding

For more information on database character set migration and the usage of
Oracle's Unicode data type, please visit the Globalization home page on OTN and

view the following papers: Character Set Migration Best Practices and Migration to
Unicode Datatypes for Multilingnal Databases and Applications in Oracle 9i.

This paper focuses on petformance implications of PL/SQL applications for a
Unicode database server using a UTF-8 database character set. We will analyze the

White Paper Title Page 3

costs of using PL/SQL string functions on different types of character set strings
and will discuss how good programming practices can keep the processing
overhead of variable-width character set strings to a minimum.

UTF-8 AND PL/SQL STRING
PROCESSING FUNCTIONS

After migrating from a legacy database character set to a UTF-8 database character
set, PL/SQL applications may see a difference in petrformance. If the original
database character set is a legacy multibyte character set, PL/SQL applications
should benefit from better performance. If the original database character set is a
single-byte character set, PL/SQL applications will likely have some performance
degradation, especially when the application contains heavy string processing
logic. This is because UTF-8 is a variable-width character set, which means that
the number of bytes requited to represent a character varies. The string and
character processing algorithms for a variable-width multibyte character set need to
look ahead to determine where character boundaries lie. Fixed-width character
sets, including all single-byte character sets, can always manipulate characters at
known byte boundaries. Generally speaking, the cost of identifying a character
boundary in a single-byte or a fixed-width character set string is constant. We use
the O-notation, O(1), to indicate that the cost will not change with the string
length. On the other hand, the cost of identifying a character boundary in a
vatiable-width character set string will increase with the length of the string. We
use O(n) to indicate that the cost is a linear function of n, where n is the byte
length of the string.

However, because UTF-8 follows a very well-defined encoding pattern, we can
casily tell the byte offset and byte size of the character being pointed to without
scanning the string from the very beginning. A UTF-8 codepath inside the Oracle
RDBMS server has been specifically refined to take full advantage of this fact and
hence make some of the UTF-8 string functions perform at a similar level as their
single-byte counterparts. For example, the CONCAT() function can determine
if a string contains any trailing partial characters by checking a few trailing bytes of
the string instead of scanning the whole string. This means the cost of CONCATY)
function is fixed no matter how long the strings to be concatenated are. Some
other string functions, for example, LENGTHY(), INSTR(), and SUBSTR(), must
scan the string either completely or partially because the number of characters in
the string is requested.

The following table lists the cost compatison of all PL/SQL built-in charactet
functions when they operate on putre single-byte character strings or variable-width
UTF-8 character strings:

STRING FUNCTION AL32UTF8 WESDEC NOTES

ASCII O(n) O(n) n is the length of the
string in bytes

CONVERT O(n) O(n)

INSTR O(n*m) O(m) m is the length of
the pattern string in
bytes

White Paper Title Page 4

INSTRB O(m) O(m)

LENGTH O(n) O(1)

LENGTHB o) O(1)

LOWER/UPPER O(n) O(n)

LPAD/RPAD O(n+m) O(n+m) mis the length of
the padding string in
bytes. Note that
because
LPAD/RPAD is
padding to display
length, not storage
width, even single-
byte character set
strings also must
scan the whole string
to calculate the
display width of
every character.

LTRIM/RTRIM/TRIM O(n*m) O(n*m) m is the size of the
trim set

O(c*n) O(c*n) cis a constant

NLS_LOWER/NLS_UPPER oreater than 1

REPLACE O(n*m) O(n*m) mis the length of
the from string

SUBSTR O(c*n) o) c is a constant less
than 1

SUBSTRB o) O(1)

TRANSLATE O@m*ml+m2) O(n*ml) ml is the length of
from string; m2 is
the length of the to
string

From the table, we see that most functions implemented in a UTF-8 environment
actually cost about the same as their single-byte counterparts. On the other hand,
we can see that the LENGTH(), SUBSTR(), and INSTR() string functions may
cause a larger performance degradation when strings are long in a UTF-8
environment. Their byte mode counterpart, LENGTHB(), SUBSTRB(), and
INSTRB(), cost the same on multibyte character strings and single-byte character
strings. So we should pay special attention when using these three string
functions in a UTF-8 database. We will discuss how and under what circumstances
the byte mode string functions should be used to improve petformance in the
following sections.

White Paper Title Page 5

AN EXAMPLE OF
BAD PROGRAMMING PRACTICES

Poor programming practices are often a side effect of schedule crunches. In such
circumstances, even experienced programmers might write code that hampers
performance. Poor programming practices include deploying inefficient algorithms,
declaring variables that are never used, passing unneeded parameters to functions and
procedures, and placing initializations or computations inside a loop needlessly. Some
of these poor programming practices affect Unicode applications much more

significantly than they do for a single-byte application. Here is an example:

7_writeamount :=0;
i_temp:="";

FOR 7 IN 1..ecxc_print_local.i_tmpxml.count LOOP
— get the number of characters in 1_tmpscml(i)

i_writeamount := LENGTH(ecx print locali tmpxml(i));
apnd_status := TRUE;

IF (i_wni + LENGTH(temp) > 32000) THEN
— write to the xnil doc
dbms_lob.writeappend(i_xmldoc, LENGTH(@ temp). 1_temp);
apnd_status := FALSE;
i temp :="";
i_temp = ecxc_print_local.i_tmpxml();
EISE
— concatenation when the total writable is less than 32000 characters
i_temp := CONCAT(i_temp, ecx_print_local.i_tmpxml(i));
END IF;
END ILLOOP;

IF apnd_status = TRUE THEN
dbms_output.put_line("Length of Document '| | LENGTH(I temp));

dbmis_lob.writeappend(i_xmldoc, LENGTH(I temp) , i temp);
END IF;

In this code sample, LENGTH() has been called many times inside a loop on a
local string variable, 7 _femp, to get the number of characters in the string. While
new strings are concatenated to 7 femp, LENGTH(i_temp) counts the number of
characters in 7 temp from the very beginning each time, resulting in unnecessary
repeated counting. Executing this code on a Unicode database takes about 2.5
times more CPU time than executing it on a single-byte character set database.
Because LENGTH)() is expensive, we should use it with great caution. We will
see in the following example that the number of characters in the string 7_zemzp can
be easily calculated. The underlined code is new:

i_temp VARCHAR2(32000);
i_temp_lenlnChar NUMBER;

7_writeamount := 0;

i_temp ="y

i_temp_lenlnChar := 0:

FOR 7 IN 1..ecxc_print_local.i_tmpxml.count L.OOP
i_writeamount := LENGTH (ecxc_print_local.i_tmpxmil(i));
apnd_status := TRUE;

IF (i_wri nt + 7_temp_lenlnChar > 32000) THEN
dbmis_lob.writeappend(i_xmldoc.i_temp_lenInChar, i_temp);
apnd_status := FALSE;
i_temp ="y

White Paper Title Page 6

i_temp := ecxc_print_local.i_tmpxml();
_temp_lenlnChar .= i_writeamount;
EISE
i_temp := CONCAT(i_temp, ecxc_print_local.i_tmpxml(i));
i temp lenlnChar .= i temp_lenlnChar + i writeamount;
END IF;
END LOOP;
IF apnd_status = TRUE THEN
dbms_output.put_line("Length of Document '| | {_temp_lenlnChar);
dbmis_lob.writeappend(i_xmldoc.i_temp_lenInChar , i_temp);
END IF;

The new code reduces the performance overhead greatly, and the execution time is
almost the same whether it is run on a single-byte database server or a UTF-8

database server.

BYTE MODE OF STRING FUNCTIONS

Several PL/SQL built-in string functions allow you to manipulate string data based
on bytes, UCS-2 code units, UCS-4 code units, and Unicode characters. They
are LENGTH(), SUBSTR() ,INSTR() and their wvariants, LENGTHB),
LENGTH?2(), LENGTH4(), LENGTHC(), SUBSTRB(), SUBSTR2(), SUBSTR4(),
SUBSTRC() and INSTRB(), INSTR2(), INSTR4(), INSTRC(). The default
behavior of LENGTH(), SUBSTR() and INSTR() is based on the UCS-4 encoding
for all character sets except for UTF8 and AL16UTF16, where the UCS-2
encoding is used. Pay special attention when using these string functions because
they may return different results when the chatracter set changes. To guarantee
correct results, you should use variants of these functions designed for multibyte
character sets. Please refer to Oracle9: SQOL. Reference and Oracle9i Globalization
Support Guide for detailed descriptions of their behavior for different kind of

character sets.

In this section, we focus on the byte mode of LENGTH(), SUBSTR(), and
INSTR() and illustrate how they can improve UTF-8 string processing

performance.

Using Byte Mode String Functions When Characters Are of No Concern
Let's start with the following example:

DECLARE
TYPE ¢ _simple_table
IS TABLE OF V.ARCHAR2(2000) INDEX BY BINARY INTEGER;
[_simple_table t_simple_table;

- procedure string_to_table put string fields into a table, the string field is
-- separated by a token, p_separator, which is a single character
PROCEDURE string_to_table(p_separator IN VARCHARZ,
p_string IN IVARCHAR?Z,
p_table OUT t_simple_table)
IS
[valne_indexx NUMBER := 1;
[_index_start NUMBER;
[index_next NUMBER;
[_logp_count NUMBER;

White Paper Title Page 7

[_result VARCHAR2(2000);
[_count_ex BOOLEAN;

BEGIN
— start from the first character following the first token in the string
[_index_start := INSTR(b_string, p_separator, 1, 1) + 1;

— NULL string or string contains no specified token

IF (I _indexc_start = 1 OR [_index_start 1S NULL) THEN
RETURN;

END IF;

[_logp_count := 0;
L.OOP
— character offset of next token in the string
[_index_next := INSTR(p string, p_separator, [index start, 1);

IF (I _indexc_next = 0) THEN - No more token in the string, get last field
Lresult .= SUBSTR(p_string, [index_start, LENGTH(p string) + 1 -
L_index:_start);
EILSE - Get the field: starting from character offset
[_index_start, get

— '] _index_next - [_index_start" characters
Sfrom string p_string
[_result := SUBSTR(p_string, [index:_start, [index next - [index:_start):
END IF;

IF [_result = NULL' THEN
[_result := NULL,;
END IF;

p_table(l_logp_count) := [_result;
[_index_start := [_index_next + 1;
[_logp_count := [_logp_count + 1;
EXIT WHEN [_index_next = 0;
IF (I_logp_count > 30000) THEN
[_count_ex := TRUE;
END IF;
END ILLOOP;
END string_to_table;

Pass in a string, ’'|1]2|3]4|5|6|7]8|9]10|" and ’|" as the separator, well get
asimple_table result:

0] ="1"
Py =2
P2 =3
PB] =4
PH] =5
23] ='6'
18] = 7"
p7] =8
28] =9
219] ="10'
p[10] = NULL

This PL/SQL code may run much mote slowly on a Unicode database than on a
singlebyte database because of the heavy use of string functions SUBSTR(),

White Paper Title Page 8

INSTR() and LENGTH(). First, remove the call to LENGTH®P_STRING) in
the following line:

[_result := SUBSTR(p_string,[_index_start, LENGTH(p_string)+1-/_index_start);

This code line gets the end of the string, p_string, from the character offset
[_index:_start. The code should be changed to:

[_result := SUBSTR (p_string, [_index_start);

When the size of the substring is omitted, SUBSTR takes the rest of the string
starting from the given offset. There is an optimized implementation for this
special case of SUBSTR: it checks a few trailing bytes of the soutce string to make
sure that no partial character is copied to the resulting substring. No string
scanning from the offser to the end of the string needs to be done. While the
original code line scans the whole p_string (caused by LENGTH (p_string)), the
modified code line needs to check only several trailing bytes of p_string.

Second, in this tokenizer-like code, it is always safe to use the byte mode of
LENGTH)(), SUBSTR() and INSTR(), that is, to use LENGTHB(), SUBSTRB()
and INSTRB() if the p_string and p_separator contain no partial or invalid
characters, because it does not matter if the index offset is the character offset or
the byte offset. The absolute position is always the same, whether it is on the #zh
character or on the mzh byte. With a littdle change to the original code, we
can switch to the byte mode variants of LENGTH(), SUBSTR(), and INSTR() and
still get the same result even in a UTF-8 database. The petformance will also be the
same as in a single-byte database. The highlighted lines have been changed in the
following example:

DECLARE

TYPE t_simple_table

IS TABLE OF V.ARCHAR2(2000) INDEX BY BINARY INTEGER;
[_simple_table t_simple_table;

-- procedure STRING_TO_TABLE put string fields into a table, the string field is
-- separated by a token, p_separator
PROCEDURE string_to_table(p_separator IN VARCHARZ,
p_string IN IVARCHAR?Z,
p_table OUT t_simple_table)
IS
[valne_indexx NUMBER := 1;
1 _separator_len NUMBER;
[index_start NUMBER;
[_index_next NUMBER;
[_logp_count NUMBER;
_result varchar2(2000);
[count_ex BOOLEAN;
BEGIN
-- byte length of the separator
1 _separator_len := LENGTHB(p_separator);
- start from the first byte following the first token in the string
[_indexc_start := INSTRB(p string. p_separator, 1. 1) + I separator len;

-- NULL string or string contains no specified token
IF (l_index_start = 1_separator_len OR [index_start IS NULL) THEN

White Paper Title Page 9

RETURN;
END IF;
[_logp_count := 0;
L.OOP
— byte offset of next token in the string
[_index_next := INSTRB(p_string. p_separator. [_index_start. 1):

IF (I_indexc_next = 0) THEN - No more token in the string, get last field
[result .= SUBSTRB(p string, I index start);
EILSE

- starting from character offset [_index_start, get '[_index_next - [_index_start' characters
[_result := SUBSTRB(p_string. [index._start, [index next - [index._start);
END IF;

IF [result = NULL' THEN
[result := NULL;
END IF;

p_table(l_logp_count) := [_result;

[_index_start := [_index_next + 1_separator_len;
[_logp_count := [_logp_count + 1;

EXIT WHEN [_index_next = 0;

IF (I_logp_count > 30000) THEN
[_count_ex := TRUE;
END IF;
END ILLOOP;
END string_to_table;

This new code illustrates that a simple but powerful arrangement takes care of the
character boundaries properly when byte mode string processing functions are

used. We should never assume that a character is one byte long,.

Use Byte Mode String Functions When You Know That Strings Are
Composed of Pure Single-Byte Characters

A string is composed of pure single-byte characters if the number of characters in
the string is the same of the number of bytes in the string. That is, if
LENGTH(str) = LENGTHB(str), then str contains only single-byte characters. It
is always safe to use byte mode string functions on these kinds of strings. Use
knowledge of the contents of the string to gain better performance.

SUBSTRB and Blank Padding of Partial Characters

By default, SUBSTRB() will replace any partial characters in the result substring
with blanks. Assume a UTF-8 string, '47.42B1C1C2C3D1D2', in which 4742
represents a 2-byte character, B represents a 1-byte character, C7C2C3 represents
a 3-byte character, and D7D2 represents another 2-byte character:

SUBSTRB('A1A2B1C1C2C3D1D2', 2, 6)

Requests a substring starting from byte offset 2 and containing 6 bytes, which is
'A2B1C1C2C3D1". Because A2 is the second byte of the 2-byte character 4742,
and D7 is the first byte of the 2-byte character D7D2, SUBSTRB() will replace A2
and D7 with blanks. So the result of

White Paper Title Page 10

SUBSTRB('A1A2B1C1C2C3D1D2", 2, 6)

Is '[space/B1CT1C2C3 [space]', whete [space] is a single-byte space character. You can
change this default behavior of SUBSTRB() by setting a event in the zzit.ora file as
follows:

event = ""10943 trace name context forever, level 524288"

Event 10943 indicates that SUBSTRB() will not replace the partial characters with
spaces but simply skips them. So the result of the above call to SUBSTRB() will
be 'B1CTC2C3" when event 10943 is set in the znit.ora file.

This feature can improve performance in specific situations. For example, due to
the maximum size limitation of a string buffer allowed in PL/SQL, a big chunk of
character data may need to be cut into many smaller buffer-sized pieces and then

processed consecutively:

chr_offset :=1;

LOOP
buffer := SUBSTR(local_msg, chr_offset, 2000);
EXIT WHEN buffer = NULL;

- gperations on buffer

chr_offset := chr_gffset + 2000;
END LOOP;

The SUBSTR() in the loop is a very expensive operation in a UTF-8 environment
because it has to scan /lcal_msg from the beginning to find the character offset
chr_offset, and then count another 2000 characters to get the requested substring.
We can use SUBSTRB() to avoid expensive repeated string scanning:

byte_offset := 1;

LOOP
buffer := SUBSTRB(local_msg, byte_offset, 2000);
EXIT WHEN buffer = NULL;
— gperations on buffer

byte_offset := byte_offset + LENGTHB (buffer);
END LOOP;

Hetre we update the byre_offser in the loop by adding LENGTHB(buffer) to it
because the 2000th byte starting from byfe_offier may not fall on a character
boundary, in which case swbstrb will cut the ending partial character when the
following is specified in the znzt.ora file:

White Paper Title Page 11

event = ""10943 trace name context forever, level 524288"

SUMMARY

Because of the specific characteristic of UTF-8 as a variable-width character set
encoding, it always requires more processing power for UTF-8 string
manipulations compared to single-byte character string manipulations.
Programming carefully and using full knowledge of the string data can help reduce
the UTF-8 petformance overhead. Keep the following rules in mind when dealing
with UTF-8 strings:

* Avoid calling unnecessary string functions
* Keep the string being processed as short as possible

* Use byte mode string functions when it is easy to control the chatracter

boundaries in the program logic

White Paper Title Page 12

ORACLEC

White Paper Title
[June] 2003

Author: lei zheng
Contributing Authors:

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Copyright © 2003, Oracle. All rights reserved.

This document is provided for information purposes only

and the contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to
any other warranties or conditions, whether expressed orally

or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically
disclaim any liability with respect to this document and no
contractual obligations are formed either directly or indirectly

by this document. This document may not be reproduced or
transmitted in any form or by any means, electronic or mechanical,
for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

