An Overview of Oracle® Forms Server Architecture

An Oracle® Technical White Paper
April 2000

ORACLE

INTRODUCTION

This paper is designed to provide you with an overview of some of the key points of the Oracle® Forms Server

architecture and the processes involved when forms are deployed over the Web.

Using the Forms Server you can run complex applications over the Internet, without compromising either
functionality or richness of interface. You can build new applications specifically for Web deployment, or take
your existing Forms, Menus and Libraries that are currently deployed in Client Server and move them to Web
deployment almost without change. There are some restrictions inherent in using Forms over the web, and

these are explained in the section “Forms Server Restrictions.”

The architecture of the Forms Server is more complex than that of the conventional Client/Server

implementation of the product, so let3 examine it in detail.

Components

The Forms Server consists of a Java Client that is downloaded automatically to the end user and three

components in the middle tier “Application Server:”” Figure 1 illustrates how a form runs on the web.

An Overview of Oracle® Forms Server Architecture
April 2000

Clieat Tiar Mliddle Tier Diatabase Tier
Web Biowser The “bpplication S erver”

User Interfane Application Legie,
& Drata Mansz ernent

Jaa B %
AFRDeE FL/SCL Engive

Figure 1. Running a Form on the Web

Java Applet: When a user runs a Forms session over the web, a thin 100 percent pure Java Client
dynamically downloads from the Application Server. This Java Client provides the user interface for the
associated Forms Server Runtime Engine on the server, and handles user interaction and visual feedback such
as that generated by navigating between items or checking a checkbox. This applet is the same for any Form
that is run using it, you don T have to generate Java code for every application or form that you want to web
deploy.

Forms Server Runtime Engine: The Forms Server Runtime Engine performs the same function as the
Client Server Runtime Engine, except that all user interface functionality is redirected to the Java Client
(above). The Forms Server Runtime Engine is the process that maintains a connection to the database on
behalf of the Java Client. The code that will be run by the Forms Server Runtime Engine are the same Forms,
Menus and Libraries files that would be used for running in Client/Server mode on the same platform. No
conversion or re-compilation is required to web-deploy an application!

Forms Server Listener: The Forms Server Listener acts as a broker, taking connection requests from the
Java Client processes and initiating a Forms Server Runtime process on their behalf. The Listener can also
maintain a pool of running engines ready for connection, making the connection from the Java Client
complete as quickly as possible.

An Overview of Oracle® Forms Server Architecture 3
April 2000

Forms CGI (optional): The Forms GCI provides a single entry point to many different Forms applications
and administers load balancing.

CONNECTION PROCESS IN DETAIL

We Ve looked at the components that make up the Forms Server, now let3 look at the connection process
itself. Figure 2 illustrates the steps that establish a Forms session with the Forms Server.

Cliert Broarser § 4 ppletriaarar

Fomms Jawa

Applet

(4) Devwnload sequest fox (6) Comect to Forms
Jawa dpplet Listerer

IR

(E Client semndk (51 Applet whormed

UERL o chient
(31 Hand off cormection
(B HTML paze to the applet
sarved o client
Y
¥
. Fonms Funtine
Fomms Listensy [Engire
(T ipaarn!
allocate
[ZIHTML page whieved orceated EIEV
(7] Load
Modules
Y
(1) Cormact to database

Figure 2. Forms Connection Process in Detail

An Overview of Oracle® Forms Server Architecture 4
April 2000

1. The user chooses a Link from a web page, types a URL directly or passes the URL as an argument to the applet
viewer.

2. The Web Server interprets the URL that is passed and displays an HTML page containing an <APPLET> tag
that describes the Forms Java Client to the Browser. The HTML page may be a static HTML page that has all of
its parameters hard-coded into it , or the URL that is passed could call the Forms Server CGI program to create
a HTML page dynamically.

3. The Client receives the HTML file served by the Web Server. The <APPLET> tag in the HTML file will
supply the information required to locate the Java Class files that make up the Forms Java Client. Within the
APPLET tag in the HTML file you would also supply information about the Form that should be run, and any
other parameters that you want to pass to your Forms session, such as the Login information. The APPLET
definition also contains instructions on what Forms Server to run and many parameters which can help you to
customize aspects of the Java Client such as the Look and Feel, color schemes etc.
The HTML file might also contain other HTML tags such as those to tell the browser to run this particular
applet using the Jinitiator Plug-in (see Jinitiator).

4. The Browser asks the Web Server for the Java Class files from the location specified in the HTML file. The
APPLET CODEBASE parameter in the HTML file is used to define this. The files may be downloaded
individually or as an “Archive” This archive will have an extension of .JAR and can be best thought of as a
.ZIP file containing all of individual .CLASS files required by the Applet. The use of a JAR file speeds up the
download of the Java Client. The ARCHIVE parameter defines which (if any) .JAR file should be used. If this
particular HTML file specified that Jinitiator should be used, then Jinitiator will carry out the additional step of
checking the version of the Forms Client Java code available on the Web Server and will only download it if it
turns out to be newer that any version that JInitiator currently has cached.

5. The .CLASS or .JAR files are downloaded (if not already present) to the Browser and the Java applet starts.

6. The Java Client applet connects to the Forms Server Listener by talking to the TCP/IP socket or HTTP port
defined by the serverPort parameter in the APPLET Tag. The Forms Listener will have already been started and
will be listening for incoming requests on this particular socket.

7. After receiving the connection request from the Java Client, the Forms Listener starts a new Forms Runtime
engine for this client. You can configure the Forms Server to hold a pool of unconnected Runtime engines
which can be allocated as connection requests come in, thus speeding up the whole connection process.

8. The Forms Server Listener hands off the connection to the Java Client and has no further part in the process.

9. The Forms Server Runtime Engine allocated to this client takes over, loading the module specified in the
serverArgs entry in the HTML file and any libraries and menus that are required by that form.

10. The user is prompted for database login information, if this had not already been supplied, and the connection
to the database server is established. The user is now ready to work.

FORMS SERVER LOAD BALANCING

The Forms Developer Server provides the facility to load balance, when using the Forms CGI program. This
allows you to maintain a pool of middle tier machines a “Server Farm,””each of which would run a Web Server

and the Forms Server.

An Overview of Oracle® Forms Server Architecture 5
April 2000

Load Balancing provides you with a more scaleable configuration. When you approach the limits of your
current hardware, rather than either upgrading or throwing out that machine, you can just add more nodes to

run your application and spread the increasing load across several machines rather than one.

When users connect to the Forms CGI (see below) that is set up for load balancing, two extra components of

the Forms Server are utilized:

Forms Load Balancing Server The Server maintains information about all machines currently allocated to
the “Server Farm””and their current loading.

Forms Load Balancing Client The Client runs on each of the machines allocated to be in the “Server
Farm,”” its job is to simply report to the Load Balancing Server with loading information, that is, the number
of Forms processes that are currently running on that particular machine.

When a user connects to the Forms CGl in a load balancing situation, the sequence of events to create a Forms

session is slightly different.

An Overview of Oracle® Forms Server Architecture 6
April 2000

Fomns Java

1. The Load Balancing Server is continually appraised of the process loading on each of the Load Balancing Clients

Applet
& \ f I 3
[54) Dovamload wques tfor
Java Applet (B Compect to Fornes
Lis temer
[RLCARER R S
(21 Clientsends I
URL i (5] Lpplet mburmed (%) Hard off comfertion
! o cliend to the applet
I
(41 HTML pagz= Server Farm
served to client
|
(7] &llowcate 2
Y Y Fortitme Y
Engire
Pl Foans
: | Funtime
Listerer Fingine
[3) Ask for least
Loaded Clisnt () Load
Wodiles
Load Balareer | Load Balancer
Server i Cliert

(11 Load Balancer Senmr

¥

[10) Comnect to database

Figure 3. Running a Form in a Load Balancing Scenario

on machines within the server farm.

2. Inthis case, the URL supplied by the user is passed to the Forms CGI.

3. The Forms CGI will already have been configured to know that it should be load balancing and will ask the
Load Balancing Server for the member if the Server Farm that currently has the lowest number of Forms Server
processes running. If your Server Farm consists of a mix of different hardware platforms or configurations then
scaling factors can be applied when starting the Load Balancing Clients. This scaling factor will allow you to
skew the loading in favor of more powerful machines, rather than the choice of least loaded server being

determined solely by the number of processes running.

An Overview of Oracle® Forms Server Architecture

April 2000

4. Having determined the machine in the Server Farm that is best able to handle this new connection, the Forms
CGI will build an HTML file pointing the browser at that server for the download of the Java Applet and
connection to a Forms Server Listener.

5. The user3 browser will now download the Forms Java Applet from this dynamically determined location, and
thereafter the rest of the connection process will take place to this machine.

COMMUNICATIONS AND SECURITY

When running the Forms Server, the Java Applet implementing the user interface and the Forms Server engine
need to communicate. This can be done using a conventional TCP/IP Sockets connection for intranet use, or

using HTTP/1.1 as a protocol for Internet use where Firewalls prevent the use of a direct socket connection.

In either case, all of the traffic that is transmitted between the Client and Forms Engine is encrypted using 40-
bit RSA encoding. This encryption can be turned off optionally, but we would not recommend that sites do
this.

Also available as an option is the use of Secure Sockets Layer (HTTPS) instead of Sockets or HTTP to provide
a further layer of security. HTTPS currently supports 128-bit encryption for US domestic customers and 40-bit
for non-US customers. As the US relaxes laws for the export of encryption technologies, 128-bit encryption

will become available for all users.

For more information on the use of HTTP with Oracle Developer Forms Server and security/firewall issues
generally see the Oracle White Paper: Deploying Internet Applications using HTTP Enabled Oracle Developer Server.

SECURITY CONSTRAINTS IMPOSED BY JAVA

As the thin client portion of the Forms Server is written in Java, it has to comply with certain restrictions that
Java Appletst have imposed upon them. The first thing that you would notice when running a Forms
application over the Web is that the Windows have a bright yellow bar across the button bearing the legend
“Warning Applet Window”” This is Java3 way of reminding you that you downloaded this program from

someone you can T necessarily trust!

Yitis important to note the difference between a Java Applet and a Java application. As an Applet is by definition downloaded off of the Web,
the Java virtual machine that runs in the web browser or appletviewer strictly controls what the applet can do. This is termed the sandbox;
applications running within the sandbox do not have access to objects outside of it such as memory, the local hard drive, printers etc. So if
you access a web page that attempts to download a rogue Java application onto your machine, it won’t be able to escape from the sandbox
and therefore won’t be able to damage your machine.

In the case of a Java Application, this is where the Java code is sourced from your machine and therefore is implicitly trusted to behave
responsibly with your hard-disk etc. in the same way that any normal ‘C’ program would be.

An Overview of Oracle® Forms Server Architecture 8
April 2000

As well as the warning you 1l find that the Java Virtual Machine prevents you from carrying out simple tasks

such as printing the screen or copying data onto the clipboard.

These constraints can of course be a little too restrictive, when you do in fact, know where the code has come
from, which is true in the case of Oracle Forms Developer. Therefore you can choose to “trust”” Oracle Forms
Developer on your machine, by registering a Certificate that we supply with the Java Virtual Machine. Then,
when you download an applet which claims to be the Forms Server Applet, the JVM will check its credentials
using the stored certificate information, and if all matches, the applet will be trusted and able to print, use the

clipboard and of course you don T get the bright yellow warning any more!

When you install Jinitiator, we automatically register the Forms Certificates for you.

PERFORMANCE AND SCALABILITY

A lot of work has been done with the Forms Developer Server to make it as performant as possible from end
to end and giving you performance that you would expect from a Client-Server implementation, but with the

vastly reduced administrative overheads of Web Deployment, and no client software installs!

Details of how to leverage the maximum scalability and performance from the Forms Server can be found in

the White Paper: Oracle Developer Server: How to Optimize the Deployment of Internet Applications.

Additionally, if you would like more “Real””World””information about Oracle Developer Server scalability and

performance refer to the following White Papers:

Scaleable Web Deployment with Oracle Developer Server —A Benchmark Comparison of Client/Server and
Web Deployment by Retek Information Systems (December 1998).

Developer Server Scalability Testing (December 1998).

JINITIATOR

JInitiator is Oracle's version of Sun's Java Plug-In, which provides the ability to specify the use of a specific
Java Virtual Machine on the client instead of using the browser's default JVM. Oracle Jlnitiator runs as a plug-
in for Netscape Navigator and as an ActiveX component for Internet Explorer; allowing customers to run

Oracle Developer Server applications using Netscape Navigator or Internet Explorer.

The Oracle Jlnitiator provides these major benefits:
Allows the latest Oracle-certified JVM to run in older browser releases.

Ensures a consistent JVM between different browsers.

An Overview of Oracle® Forms Server Architecture 9
April 2000

Provides functional extensions to the basic JVM such as SSL support.

Provides a reliable deployment platform. Oracle Jlnitiator has been thoroughly tested and certified for use
with the Oracle Developer Server.

Is a performant deployment environment. Application class files are automatically cached by the Jinitiator,
providing fast application start-up.

Is a self-installing and self-updating deployment environment. Oracle Jinitiator automatically installs and
updates itself like a plug-in or an Active-X component. Local cached application class files will be
automatically updated from the application server based on a date-time stamp comparison.

FORMS SERVER RESTRICTIONS

Although the Forms server allows you to deploy your existing applications without major changes, some

restrictions are imposed by the three-tier architecture which you will need to take into account:

OCX, and VBX controls are not supported. As the user interface is not on the same machine as the runtime
engine, there is no way for the control to display. As version 6.0 of Developer Forms Server supports the use
of Java Beans, you can replace the functionality provided by the Windows Specific control with a similar Bean.

User_Exits, ORA_FFI and Host commands all execute on the middle tier, not on the Java Client. This
implies that they cannot carry out any user interface interaction as the display being used by the user is not the
same display as the middle tier.

TEXT_10. Reading and writing files using the Text_io package will again take place in the middle tier. You
cannot read a “Local’”file off of the end users machine, unless the user 3 drive is shared and visible from the
Forms Server machine, or alternatively you use a Java Bean.

Mouse Move, Mouse Enter and Mouse Leave events. The Triggers that would normally be executed by
Forms in a client server deployment have been disabled when running on the web. This prevents the network
from being swamped with mouse messages between the Forms Java Client and the middle tier.

Local devices. Customers often ask if they can utilise devices such as Barcode scanners attached to their
browser machines and integrate them with Forms running over the web. By default this is not possible as
there is (as was mentioned above) no way of programmatically accessing the browsers local machine from
within the Java Applet. It is possible to implement this functionality by writing a trusted Java bean which can
be embedded into the Forms application and access the local operating system.

An Overview of Oracle® Forms Server Architecture 10
April 2000

ORACLE

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
+1.650.506.7000

Fax +1.650.506.7200
http://www.oracle.com/

Copyright © Oracle Corporation 2000
All Rights Reserved

This document is provided for informational purposes only, and the
information herein is subject to change without notice. Please report any
errors herein to Oracle Corporation. Oracle Corporation does not provide any
warranties covering and specifically disclaims any liability in connection with
this document.

Oracle is aregistered trademark, and Oracle8i, Oracle8, PL/SQL, and Oracle
Forms are trademarks of Oracle Corporation. All other company and product
names mentioned are used for identification purposes only and may be
trademarks of their respective owners.

