ADF Code Corner

028. How-to scroll an ADF bound ADF Faces Table
using a Keyboard Shortcut

ORACLE

CODE CORNER

L ]

twitter.com/adfcodecorner

Author:

Abstract:

The Oracle JDeveloper code editor allows developers to
navigate to a specific line in the source code using
the ctrl+g keyboard shortcut. In this how-to article, | use
the same approach, which is to allow users to press ctrl+g
on a table at runtime to provide the row number they want
to navigate to. The sample is an improved version of the
sample Lynn Munsinger and | provide in our book "Oracle
Fusion Developer Guide Building Rich Internet
Applications with Oracle ADF Business Components and
ADF Faces" and nicely shows how JavaScript can be
used to provide client side functionality in ADF Faces RC,
plus how the ADF binding layer is used to scroll a table

Frank Nimphius, Oracle Corporation

twitter.com/fnimphiu
08-JAN-2010



http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

How-to scroll an ADF bound ADF Faces Table using a
VDIENO@)IDISNE OIS Keyboard Shortcut

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions

to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
corvection. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTIN forum
for Oracle | Developer: bttp:/ / forums.oracle.com/ forums/ fornm.jspa2forumID=83

Introduction

In a previous article, | showed how a character index menu can be build and used to scroll an

ADF bound table. Clicking an index link, users navigate and select the first occurrence of a row
matching the search criteria represented by the link [see]. In this article, | demonstrate how users
can scroll a table to a specific table row knowing about the row number they want to access.

Pressing the ctrl+g keyboard shortcut, with the table selected, opens a dialog that users type in

the row number to access.

Departmentld Employeeld Firsthame LastMame
50 198 Donald OConnell ~
50 199 Douglas Grant =
10 200 Jennifer Whalen
20 201 Michael Harktstein
20 202 Pat Fay.
40 203 Susan Mavris
70 204 Hermann Baer
110 205 Shelley Higgins
110 206 ‘William Gietz
90 100 Steven King s
Ll 44 Rl = 12w b le wie —
£ Ilf | >
[Go to table row (]
Row number 66 = Go

Pressing the "Go" button navigates the table as shown below



http://oracle.com/technology/products/jdev/tips/fnimphius/tablescrollingbyindex/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=83

How-to scroll an ADF bound ADF Faces Table using a
AVDISNO@IDISNG@INIANE Keyboard Shortcut

|Departmentld Employeeld FirstMame LastMame

80 156 Janette King ~
80 157 Patrick Sully i
80 158 {Allan McEwen

80 159 Lindsey Smith

80 160 Louise Doran

30 161 Sarath Sewall

30 162 Clara Vishney &
30 163 |Danielle Greene

a0 164 éMattea Marvins

] s L ——
< | ' >

The af:table component has its display row property set to "selected" to always show the selected
row on top of the table, which is why the row always shows as the first.

View Layer Implementation

The implementation of this solution is view layer only, using JavaScript and a managed bean. The way it
works is that a JavaScrip event listener is assigned to the ADF Faces table using the af:client listener. The
called JavaScript function looks for the pressed keys and - if detecting cttl+g - opens an af:popup dialog

for the user to provide the row number.
JavaScript

The JavaScript code can be added somewhere within the af:document tag using the afiresource tags. The
afiresource tag ensures that the JavaScript code uses an optimized download to the client and for this

reason is recommended to use.

<afiresource type="javascript">

function launchTableRowScroller(evt) {

G_KEY = 71;

//call delete command if ctrl+g key is pressed
keyPressed = evt.getKeyCode();

modifiers = evt.getKeyModifiers();
if (keyPressed == G_KEY) {
if (modifiers == AdfKeyStroke.CTRL MASK) {

evt.cancel () ;
popup = AdfPage.PAGE.findComponentByAbsoluteId('pl');
var hints = {};
popup.show (hints) ;
}
}
}

</af:resource>

The JavaScript function gets the key code from the event object that is passed in to the JavaScript
function. The event object is an ADF Faces keyboard event that allows us to read the pressed key and the



How-to scroll an ADF bound ADF Faces Table using a
AVDISNO@IDISNG@INIANE Keyboard Shortcut

n.n

modifier (if one is pressed). This information then is compared to the "g" character code, which is 71. If
ctrl+g is pressed, then a popup dialog that is defined on the same page is launched and the keyboard
event is canceled so it doesn't continue bubbling. If the event is canceled first (like the book example
does) then all keyboard events on the table are canceled, which is a technique you can use to suppress any

key to be handled by the browser.

The JavaScript function is configured on the af:table component as shown below:

<af:table value="#{bindings.EmployeesViewl.collectionModel}"
var="row" rows="#{bindings.EmployeesViewl.rangeSize}"
>
<af:clientListener type="keyDown" method="launchTableRowScroller"/>
</af:table>
Whenever a keyboard down event is performed on the table, the JavaScript function us called. Note that

the function name is used only, The event object is implicitly passed in to the function.

af:popup

The popup dialog is defined as a DHTML popup window in ADF Faces.

<af:popup id="pl">
<af:panelWindow id="pwl" modal="true" inlineStyle="width:250px;"
title="Go to table row">
<af:panelGroupLayout id="pgll" layout="horizontal">
<af:inputNumberSpinbox label="Row number" id="insl" minimum="1"
maximum="#{bindings.EmployeesViewl.estimatedRowCount}"
value="#{SearchRowBean.rowNumber}"/>
<af:commandButton text="Go" id="cbl" partialSubmit="true"
actionListener="#{SearchRowBean.onRowSearch}"/>
</af:panelGroupLayout>
</af:panelWindow>
</af:popup>
Pressing the "Go" button in the dialog calls 2 managed bean method that gets the rowKey of the
requested row to then set it as the current row in the underlying ADF binding. The
af:inputNumberSpinbox component has its value property set to reference a managed bean property. This

way the user provided row number is accessible in the managed bean.

Managed Bean Code

The major part of the job is done by the managed bean, which I configured in request scope because its

maintains the state of the number input component.

public class SearchRowBean {

Integer rowNumber = 1;
private RichTable tablel;

public SearchRowBean () {

}

public void onRowSearch (ActionEvent actionEvent) {




How-to scroll an ADF bound ADF Faces Table using a

AVDISNO@IDISNG@INIANE Keyboard Shortcut

}

//get the table model
CollectionModel collectionModel =
(CollectionModel) tablel.getValue() ;
//the table model - CollectionModel - wraps the ADF tree
//binding for this table
JUCtrlHierBinding tableBinding =
(JUCtrlHierBinding) collectionModel.getWrappedData () ;
//get the iterator for the tree binding
DCIteratorBinding iteratorBinding =
tableBinding.getIteratorBinding() ;
//from the table instance itself, get the requested row number
JUCtrlHierNodeBinding rowBinding =
(JUCtrlHierNodeBinding) tablel.getRowData (rowNumber-1);
//from the node binding, get the JBO rowKey
Key rowKey = rowBinding.getRow () .getKey () ;
//make the searched row the current
iteratorBinding.setCurrentRowWithKey (rowKey.toStringFormat (true)) ;
//create a new table rowKey (the RichTable row key
//1is different from JBO Key
ArrayList tableRowKey = new ArrayList();
tableRowKey.add (rowKey) ;
RowKeySetImpl rks = new RowKeySetImpl () ;
rks.add (tableRowKey) ;
tablel.setSelectedRowKeys (rks);
//close the search dialog
closePopup ("pl") ;
//refresh table
AdfFacesContext.getCurrentInstance () .addPartialTarget (tablel);

private void closePopup (String popup) {

}

FacesContext fctx = FacesContext.getCurrentInstance();
//create the JaavScript expressions

StringBuffer scriptBuffer = new StringBuffer();
scriptBuffer.append (

"var popup = AdfPage.PAGE.findComponentByAbsoluteId('");
scriptBuffer.append (popup+"');");
scriptBuffer.append ("if (popup.isPopupVisible ()==true){");
scriptBuffer.append ("popup.hide();}");

String script = scriptBuffer.toString();

//execute the script on the client
ExtendedRenderKitService extendedRenderKitService =
Service.getRenderKitService (fctx, ExtendedRenderKitService.class) ;
extendedRenderKitService.addScript (fctx, script) ;

public void setRowNumber (Integer rowNumber) {

}

this.rowNumber = rowNumber;

public Integer getRowNumber () {

}

return rowNumber;

public void setTablel (RichTable tablel) {

this.tablel = tablel;




How-to scroll an ADF bound ADF Faces Table using a
AVDISNO@IDISNG@INIANE Keyboard Shortcut

}

public RichTable getTablel () {
return tablel;

}

}

As you can see by reading the code, the managed bean also is responsible for closing the popup dialog
before refreshing the table. This sample therefore also provides yo with a demo of how to call client side
JavaScript from Java in a managed bean.

Note: As of Jdeveloper 11g R1 PS2 (11.1.1.3) there exist an API on the RichPopup instance to close a
popup. So the above JavaScript, though still working, is not needed anymore

I commented the soutce code so you know what it is doing. Worth pointing out though that the table
binding, the ADF tree ninding and the iterator binding are read from the table and ot looked up on the
binding layer using the "bindings" object. Not accessing the "bindings" object for this means that the
developers doesn't make the code dependent on the implementation he / she builds, which means that

code can be reused easily.

Download Sample Workspace

The sample was built with JDeveloper 11g R1 PS1 and runs against the HR database schema of the
Oracle XE and Oracle RDBMS database. You only need to change the database connection to point to
your database SID and provide the HR username and password. Get the workspace from ADF Code
Corner:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

RELATED DOCOMENTATION

| Oracle Fusion Developer Guide — McGraw Hill Oracle Press, Frank Nimphius, Lynn Munsinger
http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543



http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

