ADF Code Corner

042. How-to dynamically change the progress bar
color according to its current value

Abstract:

A while back, a question on OTN was of how to change

DR ACI—E, the color of an af:progressBar component such that it is

red in the beginning, yellow in the middle and green at the

CODE CORNER end of a process. This question has a lot of grounds to

pon cover and the solution - at least the one | could come up

with - involves building a custom progress bar model, start
and stop the progress bar update by showing/hiding an

af:poll component and skinning. This blog article covers it
all and provides you with an example to download that
gives you a head start when implementing a progress bar
into your custom application development

twitter.com/adfcodecorner

Frank Nimphius, Oracle Corporation

twitter.com/fnimphiu
03-May-2010

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

How-to dynamically change the progress bar color
VDI O@IDISNG@IWNEANE according to its current value

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
corvection. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTIN forum
for Oracle | Developer: bttp:/ / forums.oracle.com/ forums/ fornm.jspa2forumID=83

Introduction

The af:progressBar component in the ADF Faces component set is an important widget in the
category of "end user entertainments" as it helps developers to visualize a longer running
background process to becalm users. The progress bar uses a managed bean model that
extends the Apache Trinidad BoundedRangeModel class to determine the current state of a
process based on a maximum value - like estimated row count - and a current value - for example
the current row index. Based on the state of the two values, the progress is shown as a
progressing bar image, or a clock which is used when the maximum value of a process cannot be
determined.

For more information about the af:progressBar, please refer to the tag documentation. In this blog
article, a progress bar is implemented that shows a bar item in the color red, yellow and green
dependent on its current value state. The use case for this sample was a question on the OTN
forum (http://forums.oracle.com/forums/forum.jspa?forumiD=83) and has a lot of information to

share, which makes it a good example for you to complete reading even if a progress bar is not
what you are currently looking for.

About the Sample

The sample to download at the end of this article shows a progress bar with a start and a stop button. The
progress bar reads its value and state from a managed bean that uses a Java Thread to loop through a

counter until 2 maximum value is reached.

The same managed bean exposes a getter method for the progtess bat's styleClass attribute to read its
value using Expression Language. Dependent on the current value of the progress bar, the returned values
for the styleClass property are red, yellow and green. All three values ate used as a style class , ".red",
"yellow" and ".green". in the skinning document that determines the color coding of the afiprogressBar
component. The progress bar is a image that gets stretched as a background image, which means that to
switch colors, three images need to be provided, one in red, one in yellow and one in green. The approach
I took for creating the images is to save the default image and to use my favorite picture editing software
to change the color.

http://forums.oracle.com/forums/forum.jspa?forumID=83
http://forums.oracle.com/forums/forum.jspa?forumID=83

How-to dynamically change the progress bar color
ADIENG@)IDISNG@INIBIE according to its current value

096

Start | Stop

10096

10096

100%%

10096

The ProgressBar model

The progressBar references an implementation of the Trinidad BoundedRangeModel from its value
property using Expressionlanguage. In the example, I extended BoundedRangeModel in a JavaBean and
configured this bean as a JavaServer Faces managed bean in the ADF Controller configuration file. I
chose the ADF Controller so that the managed bean could be stored in viewScope, which is a memory
scope that is active for as long as the viewld of the current view does not change. In other words, for as
long as the page or page fragment that holds the progress bar is not navigated away from, the managed
bean is available. I prefer the view scope over session scope as it ensures the progress bar model is
cleaned from memory when it is no longer needed, whereas using the session scope, it would be my task

as a developer - and as we all know, to ert' is human.

How-to dynamically change the progress bar color

VDINO@)IDISNG OIS according to its current value

= ProgressBarSample. jspx - Structure [;]
4

®
I

As

3 @Progress Indicator - Property Inspector
-2 Warrnings (9)

4D jsprraot P E S (6 $4)D
[jspudirective.page A
= (28] Frview

[=Common

=[5 af:document o Id: pit |~
& gorm Rendered: [<default> {true) '] v
=15 af:panelStretchLayout e — :
&5 Panel Stretch Layouk Faceks 3 Value: l#{ylewScope.ProgressBarModel} | v
/= bottom Action: I I v
- :! gﬂter . [=] Appearance
(== af:panelGroupLayout - vertical =
o] < :progressindicator ShortDesc: | %
§ il Rendered: [<default> {true) vJ M
5S4 af:panelGroupLayout - horizontal
. @ aficommandButton - Start =) Style
G af:commandButton - Stop B5tyleClass: #{viewScope.ProgressBarModel.styleClass} | v
. =Y Panel Group Layout facets " .
=4 Panel Group Layout facets Iinestyle: I l s
2 e
[start Q _
== top Color: [H v
X ‘iz afispacer - 10 Font: [SR
(- =i Document Facets ;
Size: l H[% '} 54
Ttalic: [[v] wl &,

Source I Design [

shown in the image above, the managed bean is referenced two times, from the za/ue property and the

StyleClass property.

import javax.faces.event.ActionEvent;
import org.apache.myfaces.trinidad.model.BoundedRangeModel;

b S . S . S

*

*/

>*

The progress bar model in this example allows components
to use style classes .green, .yellow, .red in combination with
skinning to color the progress bar according to its value state.

This bean must be in a scope larger than request to keep the state
across requests. The scope in this sample is set to viewScope, which
means that this progress bar stops when the user navigates off the

page.

public class ProgressBarModel extends BoundedRangeModel {

//progress bar status

final String GREEN = "green";
final String YELLOW = "yellow";
final String RED = "red";

//first style class color is red as progress has just started
String styleClass = RED;

Thread newProgress = null;

boolean stopFlag = false;

How-to dynamically change the progress bar color
VDI O@IDISNG@IWNEANE according to its current value

long maximum 10;

long value = 0;

long greenBoundary = maximum * 4/5;
long yellowBoundary = maximum * 3/5;

public ProgressBarModel () {
super () ;

}

public long getMaximum() {
return maximum;

}

public long getValue () {
return value;

}

public void setMaximum(long maximum) {
this.maximum = maximum;

}

public void setValue (long value) {
this.value = value;

}

//start progress count
public void start (ActionEvent ae) {
value = 0;
stopFlag = false;
styleClass = RED;
//make sure thread is properly cleared before starting a new
//thread
if (newProgress!=null) {
newProgress.interrupt () ;

}

ProgressUpdater progressSimulator = new ProgressUpdater();
newProgress = new Thread(progressSimulator);
newProgress.start();

}

public void stop (ActionEvent ae) {
value = 0;
styleClass = RED;
stopFlag = true;

}

//Simulate a business service progress
class ProgressUpdater implements Runnable

{

public void run () {

How-to dynamically change the progress bar color
VDI O@IDISNG@IWNEANE according to its current value

try
{
//stop fag is true if it is set to true or if value
//1s equals or greater than maximum
stopFlag = stopFlag == true?
true : (value < maximum? false:true);

//run in loop until stop condition is met. Make sure system
//doesn't fail if values are initially set to the same value
while (!stopFlag && value != maximum) {
Thread.sleep (1000) ;
value = value +1;
//set the color boundaries
if (value >= greenBoundary) {
styleClass = GREEN;
}
else if(value >= yellowBoundary) {
styleClass = YELLOW;
}
else(
styleClass = RED;
}

if (value == maximum) {
stopFlag = true;
}

}

//stop thread
newProgress.interrupt () ;
newProgress = null;

}
catch (Exception exc)

{

exc.printStackTrace () ;

}
}s

/*‘k
* method to be referenced from the StyleClass property of the
* progress bar component. The return string in combination with
* the skin definition sets the color of the progress bar item
* @return
*/

public String getStyleClass() {

return styleClass;
}
}

The maximum value can be set from an application and only by default is set to 10. Calling the start
method from an action listener - like available on af:commandButton - sets all internal state to the
beginning and starts the counter thread. The counter thread is what you need to change to show progress
of a real business task. For example, you could set the maximum value to the outcome of a

getBstimatedRowCount to then - in the Thread - access the rows in range to perform actions on. The

How-to dynamically change the progress bar color
VDI O@IDISNG@IWNEANE according to its current value

Thread is stopped when the maximum value is reached. In this case, the progress bar component is reset

to the default - empty - bar graph.

To update the progress bar Ul, an af:poll component is used, as shown in the image above.
The af:poll component is referenced from the progress bar Partial Triggers property and is
set to 500 ms. In a production environment you don't want a poll frequency like this and
instead use something in the range of 5 seconds to avid unnecessary network traffic. So 500
ms really is for this sample so you don't have to wait 50 seconds for what could be
demonstrated in 10 seconds.

The af:poll component

As mentioned, the af:poll component is used to refresh the progress bar component so the color for the
current state could be shown. The af:poll component frequently and endlessly polls the server in a pre-
defined frequency. To start and stop polling, you use the rendered property as whenever the af:poll
component is not rendered, it does not poll.

<af:poll id="pl" interval="500"

binding="#{viewScope.ProgressBarSampleBean.pollComponent}"
rendered="false"/>

The poll component by default is set to rendered="false" so that it only starts pinging the server when the
"start" button shown in the image on top is pressed. The command button for start and stop reference a

second managed bean, which also is in view scope.

The responsibility of the second managed bean is to enabled and disable the rendering of the af:poll
component, to refresh the af:poll component parent container - af:panelGroupLayout in this sample - and
to start and stop the timer thread.

<af:commandButton text="Start" id="cbl" partialSubmit="true"
actionListener="#{viewScope.ProgressBarSampleBean
.onProgressBarStart}"/>
<af:commandButton text="Stop" id="cb2" partialSubmit="true"
actionListener="#{viewScope.ProgressBarSampleBean
.onProgressBarStop}"/>

The managed bean that is referenced from the af:poll component and the command buttons is shown

below

import javax.el.ELContext;
import javax.el.ExpressionFactory;
import javax.el.MethodExpression;

import javax.faces.application.Application;
import javax.faces.context.FacesContext;
import javax.faces.event.ActionEvent;

import oracle.adf.view.rich.component.rich.RichPoll;
import oracle.adf.view.rich.component.rich.layout.RichPanelGroupLayout;
import oracle.adf.view.rich.context.AdfFacesContext;

public class ProgressBarSampleBean {
private RichPoll pollComponent;
private RichPanelGroupLayout pollComponentParent;

How-to dynamically change the progress bar color
VDI O@IDISNG@IWNEANE according to its current value

public ProgressBarSampleBean () {
super () ;

}

//methods referenced from the af:poll component "binding" property

public void setPollComponent (RichPoll pollComponent) {
this.pollComponent = pollComponent;

}

public RichPoll getPollComponent () {
return pollComponent;

}

//methods referenced from the af:panelGroupLayout
//component "binding" property
public void setPollComponentParent (
RichPanelGroupLlayout pollComponentParent) {
this.pollComponentParent = pollComponentParent;

}

public RichPanelGroupLayout getPollComponentParent () {
return pollComponentParent;

}

/*
* Start and stop Polling
*/

//method called to start af:pollComponent
public void onProgressBarStart (ActionEvent actionEvent) {
pollComponent.setRendered (true) ;
this.executeMethodExpression (
"#{viewScope.ProgressBarModel.start}", actionEvent);
AdfFacesContext.getCurrentInstance () .addPartialTarget (
pollComponentParent) ;}

//method called to stop af:pollComponent
public void onProgressBarStop (ActionEvent actionEvent) {
pollComponent.setRendered(false);
this.executeMethodExpression (
"#{viewScope.ProgressBarModel.stop}", actionEvent) ;
AdfFacesContext.getCurrentInstance () .addPartialTarget (
pollComponentParent) ;

}
/**

* helper method to invoke start/stop on the progressbar model
* @param expression The EL to reference the BoundedRangeModel
* implementation bean's start and stop method
* (@param actionEvent
*/
public void executeMethodExpression (
String expression, ActionEvent actionEvent) {
FacesContext fctx = FacesContext.getCurrentInstance()

How-to dynamically change the progress bar color
VDI O@IDISNG@IWNEANE according to its current value

Application application = fctx.getApplication();
ELContext elctx = fctx.getELContext ()
ExpressionFactory elFactory =
application.getExpressionFactory () ;
MethodExpression me =
elFactory.createMethodExpression (
elctx,expression, null,
new Class|[] {ActionEvent.class});
me.invoke (elctx,new Object[]{actionEvent});

}
Skinning

The progress ar color coding is determine by a custom skin. To implement skinning, you need to do the

following:

1. Create a trinidad-skins.xml file in the WEB-INF directory of the ViewLayer project. This file
defines the custom skin and extends one of the default skins - "fusion" in the example - so we
don't have to start skinning all components. The content of the trinidad-skins.xml file is shown

below

<rxml version="1.0" encoding="ISO-8859-1"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
<skin>
<id>sample.desktop</id>
<family>sample</family>
<render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
<extends>fusion.desktop</extends>
<style-sheet-name>css/sample.css</style-sheet-name>
</skin>
</skins>

2. Edit the trinidad-config.xml file in the WEB-INF directory of the ViewLayer project and set the
skin family name to the custom skin definition

3. <exml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/ trinidad / config">
<skin-family>sample</skin-family>
</trinidad-config>

4. Create a CSS file in the directory specified in the trinidad-skins.xml file. In the example the
directory is "css" and must be created under the public_html directory in the ViewLayer project.
You find the kin selector to use from the skin selector documentation on OTN. Note that the
three style classes .red, .yellow and .green have their own skin definition defined. The CSS

content is shown below

/¥
sample.css file in public_html/css
CSS that sets the progress bar image based on the current styleClass value

How-to dynamically change the progress bar color
VDI O@IDISNG@IWNEANE according to its current value

*/

.red af | progressIndicator::determinate-filled-icon-style {background-image:url(".. /images/redbar.png™);}

.yellow af | progressIndicator:determinate-filled-icon-style {background-
image:url("../images/yellowbar.png™);}

.green af | progressIndicator::determinate-filled-icon-style { background-
image:url("../images/greenbar.png™);}

Download Sample

As usual, samples on ADF Code Corner go with the latest fashion, which is Oracle JDeveloper 11g R1
PS2 that is available for download since April 2010. However, this example doesn't use any specific
feature of this release and therefore should work with an of the Oracle JDeveloper 11g releases so far.
The workspace does no require a database connection and runs off the ProgressBarSample.jspx page.
Note that randomly I experienced refresh issues on Firefox, which are a tribute to the 500 ms af:poll
frequency. Pressing F5 helps in such cases. Better though is to reduce the poll frequency. Download the
sample from ADF Code Corner

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

RELATED DOCOMENTATION

0 | Progress Indicator tag doc -
http://download.oracle.com/docs/cd/E15523 01/apirefs.1111/e12419/tagdoc/af progressIndica
tor.html

O | Skinning keys - http://download.oracle.com/docs/cd/E15523 01/apirefs.1111/e¢15862/toc.htm

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_progressIndicator.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_progressIndicator.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e15862/toc.htm

