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Abstract: 

 A while back, a question on OTN was of how to change 

the color of an af:progressBar component such that it is 

red in the beginning, yellow in the middle and green at the 

end of a process. This question has a lot of grounds to 

cover and the solution - at least the one I could come up 

with - involves building a custom progress bar model, start 

and stop the progress bar update by showing/hiding an 

af:poll component and skinning. This blog article covers it 

all and provides you with an example to download that 

gives you a head start when implementing a progress bar 

into your custom application development 
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Introduction 
The af:progressBar component in the ADF Faces component set is an important widget in the 

category of "end user entertainments" as it helps developers to visualize a longer running 

background process to becalm users. The progress bar uses a managed bean model that 

extends the Apache Trinidad BoundedRangeModel class to determine the current state of a 

process based on a maximum value - like estimated row count - and a current value - for example 

the current row index. Based on the state of the two values, the progress is shown as a 

progressing bar image, or a clock which is used when the maximum value of a process cannot be 

determined.  

For more information about the af:progressBar, please refer to the tag documentation. In this blog 

article, a progress bar is implemented that shows a bar item in the color red, yellow and green 

dependent on its current value state. The use case for this sample was a question on the OTN 

forum (http://forums.oracle.com/forums/forum.jspa?forumID=83) and has a lot of information to 

share, which makes it a good example for you to complete reading even if a progress bar is not 

what you are currently looking for.  

About the Sample 

The sample to download at the end of this article shows a progress bar with a start and a stop button. The 

progress bar reads its value and state from a managed bean that uses a Java Thread to loop through a 

counter until a maximum value is reached.  

The same managed bean exposes a getter method for the progress bar's styleClass attribute to read its 

value using Expression Language. Dependent on the current value of the progress bar, the returned values 

for the styleClass property are red, yellow and green. All three values are used as a style class , ".red", 

".yellow" and ".green". in the skinning document that determines the color coding of the af:progressBar 

component. The progress bar is a image that gets stretched as a background image, which means that to 

switch colors, three images need to be provided, one in red, one in yellow and one in green. The approach 

I took for creating the images is to save the default image and to use my favorite picture editing software 

to change the color.  

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions 
to real world coding problems. 
 
Disclaimer: All samples are provided as is with no guarantee for future upgrades or error 
correction. No support can be given through Oracle customer support.  
 
Please post questions or report problems related to the samples in this series on the OTN forum 
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83 
 

http://forums.oracle.com/forums/forum.jspa?forumID=83
http://forums.oracle.com/forums/forum.jspa?forumID=83
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The ProgressBar model 

The progressBar references an implementation of the Trinidad BoundedRangeModel from its value 

property using ExpressionLanguage. In the example, I extended BoundedRangeModel in a JavaBean and 

configured this bean as a JavaServer Faces managed bean in the ADF Controller configuration file. I 

chose the ADF Controller so that the managed bean could be stored in viewScope, which is a memory 

scope that is active for as long as the viewId of the current view does not change. In other words, for as 

long as the page or page fragment that holds the progress bar is not navigated away from, the managed 

bean is available. I prefer the view scope over session scope as it ensures the progress bar model is 

cleaned from memory when it is no longer needed, whereas using the session scope, it would be my task 

as a developer - and as we all know, to err' is human.  
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As shown in the image above, the managed bean is referenced two times, from the value property and the 

StyleClass property. 

import javax.faces.event.ActionEvent; 

import org.apache.myfaces.trinidad.model.BoundedRangeModel; 

  

  

/** 

 * The progress bar model in this example allows components  

 * to use style classes .green, .yellow, .red in combination with   

 * skinning to color the progress bar according to its value state.  

 *  

 * This bean must be in a scope larger than request to keep the state  

 * across requests. The scope in this sample is set to viewScope, which  

 * means that this progress bar stops when the user navigates off the  

 * page.  

*/ 

public class ProgressBarModel extends BoundedRangeModel { 

   

  //progress bar status 

  final String GREEN  = "green"; 

  final String YELLOW = "yellow"; 

  final String RED    = "red"; 

    

  //first style class color is red as progress has just started 

  String styleClass = RED; 

  Thread newProgress = null; 

  boolean stopFlag = false; 
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  long maximum = 10; 

  long value = 0; 

   

  long greenBoundary = maximum *  4/5; 

  long yellowBoundary = maximum * 3/5; 

       

    public ProgressBarModel() { 

        super(); 

    } 

 

    public long getMaximum() { 

        return maximum; 

    } 

 

    public long getValue() { 

        return value; 

    } 

 

    public void setMaximum(long maximum) { 

        this.maximum = maximum; 

    } 

 

    public void setValue(long value) { 

        this.value = value; 

    } 

     

    //start progress count 

    public void start (ActionEvent ae){ 

      value = 0; 

      stopFlag = false; 

      styleClass = RED; 

      //make sure thread is properly cleared before starting a new 

      //thread 

      if (newProgress!=null){ 

        newProgress.interrupt(); 

      } 

       

      ProgressUpdater progressSimulator = new ProgressUpdater(); 

      newProgress = new Thread(progressSimulator); 

      newProgress.start(); 

 

    } 

     

  public void stop (ActionEvent ae){ 

    value = 0; 

    styleClass = RED; 

    stopFlag = true; 

  } 

     

  //Simulate a business service progress 

  class ProgressUpdater implements Runnable 

  {  

       

   

      public void run(){ 
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    try 

     { 

      //stop fag is true if it is set to true or if value  

      //is equals or greater than maximum 

      stopFlag = stopFlag == true?  

                               true : (value < maximum? false:true); 

            

      //run in loop until stop condition is met. Make sure system  

      //doesn't fail if values are initially set to the same value 

     while (!stopFlag && value != maximum) { 

              Thread.sleep(1000); 

              value = value +1; 

              //set the color boundaries 

              if (value >= greenBoundary){ 

               styleClass = GREEN; 

              } 

              else if(value >= yellowBoundary){ 

               styleClass = YELLOW; 

              } 

              else{ 

               styleClass = RED; 

              } 

               

              if (value == maximum){ 

                stopFlag = true; 

              } 

           } 

           //stop thread 

            newProgress.interrupt(); 

            newProgress = null;               

        } 

        catch (Exception exc) 

        { 

            exc.printStackTrace(); 

        } 

      } 

    }; 

 

    /** 

     * method to be referenced from the StyleClass property of the  

     * progress bar component. The return string in combination with  

     * the skin definition sets the color of the progress bar item 

     * @return 

     */ 

    public String getStyleClass() { 

        return styleClass; 

    } 

} 

The maximum value can be set from an application and only by default is set to 10. Calling the start 

method from an action listener - like available on af:commandButton - sets all internal state to the 

beginning and starts the counter thread. The counter thread is what you need to change to show progress 

of a real business task. For example, you could set the maximum value to the outcome of a 

getEstimatedRowCount to then - in the Thread - access the rows in range to perform actions on. The 
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Thread is stopped when the maximum value is reached. In this case, the progress bar component is reset 

to the default - empty - bar graph.  

To update the progress bar UI, an af:poll component is used, as shown in the image above. 

The af:poll component is referenced from the progress bar PartialTriggers property and is 

set to 500 ms. In a production environment you don't want a poll frequency like this and 

instead use something in the range of 5 seconds to avid unnecessary network traffic. So 500 

ms really is for this sample so you don't have to wait 50 seconds for what could be 

demonstrated in 10 seconds. 

The af:poll component 

As mentioned, the af:poll component is used to refresh the progress bar component so the color for the 

current state could be shown. The af:poll component frequently and endlessly polls the server in a pre-

defined frequency. To start and stop polling, you use the rendered property as whenever the af:poll 

component is not rendered, it does not poll. 

<af:poll id="p1" interval="500" 

         binding="#{viewScope.ProgressBarSampleBean.pollComponent}" 

         rendered="false"/> 

The poll component by default is set to rendered="false" so that it only starts pinging the server when the 

"start" button shown in the image on top is pressed. The command button for start and stop reference a 

second managed bean, which also is in view scope.  

The responsibility of the second managed bean is to enabled and disable the rendering of the af:poll 

component, to refresh the af:poll component parent container - af:panelGroupLayout in this sample - and 

to start and stop the timer thread.  

<af:commandButton text="Start" id="cb1" partialSubmit="true"                  

                  actionListener="#{viewScope.ProgressBarSampleBean   

                                    .onProgressBarStart}"/> 

<af:commandButton text="Stop" id="cb2" partialSubmit="true"                    

                  actionListener="#{viewScope.ProgressBarSampleBean 

                                    .onProgressBarStop}"/> 

The managed bean that is referenced from the af:poll component and the command buttons is shown 

below 

import javax.el.ELContext; 

import javax.el.ExpressionFactory; 

import javax.el.MethodExpression; 

 

import javax.faces.application.Application; 

import javax.faces.context.FacesContext; 

import javax.faces.event.ActionEvent; 

 

import oracle.adf.view.rich.component.rich.RichPoll; 

import oracle.adf.view.rich.component.rich.layout.RichPanelGroupLayout; 

import oracle.adf.view.rich.context.AdfFacesContext; 

 

 

public class ProgressBarSampleBean { 

    private RichPoll pollComponent; 

    private RichPanelGroupLayout pollComponentParent; 
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    public ProgressBarSampleBean() { 

        super(); 

    } 

 

    //methods referenced from the af:poll component "binding" property 

    public void setPollComponent(RichPoll pollComponent) { 

        this.pollComponent = pollComponent; 

    } 

 

    public RichPoll getPollComponent() { 

        return pollComponent; 

    } 

 

    //methods referenced from the af:panelGroupLayout  

    //component "binding" property 

    public void setPollComponentParent( 

                      RichPanelGroupLayout pollComponentParent) { 

        this.pollComponentParent = pollComponentParent;         

    } 

 

    public RichPanelGroupLayout getPollComponentParent() { 

        return pollComponentParent; 

    } 

     

     

    /* 

     * Start and stop Polling 

     */ 

     

     //method called to start af:pollComponent 

      public void onProgressBarStart(ActionEvent actionEvent) { 

       pollComponent.setRendered(true); 

       this.executeMethodExpression( 

             "#{viewScope.ProgressBarModel.start}", actionEvent); 

        AdfFacesContext.getCurrentInstance().addPartialTarget( 

                                             pollComponentParent);} 

 

    //method called to stop af:pollComponent 

    public void onProgressBarStop(ActionEvent actionEvent) { 

      pollComponent.setRendered(false); 

      this.executeMethodExpression( 

                  "#{viewScope.ProgressBarModel.stop}", actionEvent); 

      AdfFacesContext.getCurrentInstance().addPartialTarget(   

                     pollComponentParent); 

    } 

       

    /** 

     * helper method to invoke start/stop on the progressbar model 

     * @param expression The EL to reference the BoundedRangeModel  

     * implementation bean's start and stop method 

     * @param actionEvent 

     */ 

      public void executeMethodExpression( 

                  String expression, ActionEvent actionEvent){ 

         FacesContext fctx = FacesContext.getCurrentInstance(); 
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         Application application = fctx.getApplication(); 

         ELContext elctx = fctx.getELContext(); 

         ExpressionFactory elFactory =  

                                application.getExpressionFactory(); 

         MethodExpression me =  

                  elFactory.createMethodExpression( 

                             elctx,expression, null,  

                             new Class[]{ActionEvent.class}); 

         me.invoke(elctx,new Object[]{actionEvent}); 

      } 

} 

Skinning 

The progress ar color coding is determine by a custom skin. To implement skinning, you need to do the 

following: 

1. Create a trinidad-skins.xml file in the WEB-INF directory of the ViewLayer project. This file 

defines the custom skin and extends one of the default skins - "fusion" in the example - so we 

don't have to start skinning all components. The content of the trinidad-skins.xml file is shown 

below 

 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<skins xmlns="http://myfaces.apache.org/trinidad/skin"> 

    <skin> 

        <id>sample.desktop</id> 

        <family>sample</family> 

        <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id> 

        <extends>fusion.desktop</extends> 

        <style-sheet-name>css/sample.css</style-sheet-name>        

    </skin> 

</skins> 

2. Edit the trinidad-config.xml file in the WEB-INF directory of the ViewLayer project and set the 

skin family name to the custom skin definition 

3. <?xml version="1.0" encoding="windows-1252"?> 

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config"> 

  <skin-family>sample</skin-family> 

</trinidad-config> 

4. Create a CSS file in the directory specified in the trinidad-skins.xml file. In the example the 

directory is "css" and must be created under the public_html directory in the ViewLayer project. 

You find the kin selector to use from the skin selector documentation on OTN. Note that the 

three style classes .red, .yellow and .green have their own skin definition defined. The CSS 

content is shown below 

/* 

  sample.css file in public_html/css 

  CSS that sets the progress bar image based on the current styleClass value 
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*/ 

.red af|progressIndicator::determinate-filled-icon-style{background-image:url("../images/redbar.png");} 

.yellow af|progressIndicator::determinate-filled-icon-style{background-

image:url("../images/yellowbar.png");} 

.green af|progressIndicator::determinate-filled-icon-style{background-

image:url("../images/greenbar.png");} 

Download Sample 

As usual, samples on ADF Code Corner go with the latest fashion, which is Oracle JDeveloper 11g R1 

PS2 that is available for download since April 2010. However, this example doesn't use any specific 

feature of this release and therefore should work with an of the Oracle JDeveloper 11g releases so far. 

The workspace does no require a database connection and runs off the ProgressBarSample.jspx page. 

Note that randomly I experienced refresh issues on Firefox, which are a tribute to the 500 ms af:poll 

frequency. Pressing F5 helps in such cases. Better though is to reduce the poll frequency. Download the 

sample from ADF Code Corner 

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html  

 

 

RELATED DOCOMENTATION 

  

 Progress Indicator tag doc - 

http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_progressIndica

tor.html  

 Skinning keys - http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e15862/toc.htm  

  

 

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_progressIndicator.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_progressIndicator.html
http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e15862/toc.htm

