

 ADF Code Corner

65. Active Data Service Sample –Twitter Client

Abstract:

 Active Data Service is a push event framework in Oracle

ADF Faces that allows developers to implement real time

server to client notification when a server side event, like

RDBMS change notification or twitter stream notification,

occurs. Unlike other technologies in Oracle ADF, Actice

data Services (ADS), except for the BAM Data Control, is

not a declarative implementation and instead requires

developers to write a fair amount of Java. This ADF Code

Corner articles provides an Active Data Services sample

that listens for Twitter messages of registered friends.

Friends are registered within the part of the sample code

that starts a Twitter4J instance to start the active service.

This sample does not teach ADS in detail but comments

on the code it uses to implement the use case. You find

references to additional documentation at the end of this

article.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
01-DEC-2010

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER Active Data Services Sample – Twitter Client

2

Introduction
Active Data Services (ADS) in Oracle ADF Faces solves the problem of the disconnected Web

that disallows servers to actively push messages to the browser client. ADS is a framework that

lets developers decorate a component model, like table, to then configure the adf-config.xml

file for whether to use streaming, poll or long-poll for checking server side events and payloads.

Twitter – http://twitter.com – provides development API for application developers to program

against the site's service. Twitter4j is an open source library that simplifies the use of Twitter

streaming APIs. A version of the Twitter4j runrime JAR files is shiupped with the sample.

In the sample, a managed bean is used to connect to Twitter, requiring username and password

of a valid Twitter account. The sample then starts listening for registered friends – which you

learn how to setup – to display incoming messages in an ADF Faces table.

Note This sample neither uses the full functionality available in Active Data Services, nor does it

make use of all that is possible with Twitter4J.

At runtime – and only after you completed reading this article - you authenticate to the sample

application with your Twitter account credentials.

This does not yet create a connection to Twitter but performs web authentication and keeps the

account information for later when you decide to start listening.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://twitter.com/
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER Active Data Services Sample – Twitter Client

3

A tweet sent from one of the registered friends immediately shows in the ADF Faces table

Note: The above conversation between myself and Maiko Rocha in the team is a fake and coded

in the sample to not start with an empty table, which for a demo you show on stage would be just

too boring. However, you can change this "initial" conversation to have you and one of your peers

chatting.

To start the listen process, click the "Listen for News" button, which then connects to Twitter –

assuming Internet connection and proxy settings allow it,

Database Connection

The sample uses data of the HR schema for the other parts of it. For this you need to change the database

connection to point to a database on your laptop or near you. For his, select View | Database |

Database Navigator from the Oracle JDeveloper menu

ADF CODE CORNER Active Data Services Sample – Twitter Client

4

Expand the Twitter node and select the hrconn entry with the right mouse button. Choose the

"Properties" option in the opened context menu to bring up the database connection dialog.

Optional: The User Profile tab in the application shows detail data about the authenticated user. For the

perfect illusion, you can change the EMAIL column value of an employee, like "Alexander Hunold", to

the name of your Twitter account name.

For this, expand the hrconn connection in the Database Navigator view and double click onto the

Employees table. In the opened dialog, select the Data tab at the bottom

ADF CODE CORNER Active Data Services Sample – Twitter Client

5

Navigate to the account of Alexander Hunold and update the EMAIL value with your Twitter account.

This now makes you employee and manager at the same time, information shown in the user profile tab

Configuring and running the Sample

Before you can run the sample, you need to

 Configure the jazn-data.xml configuration file with your Twitter username and password

 Add Twitter account Ids of users you want to listen for (this should be your account too, in case you

plan to demo the sample on stage

 Deploy the Twitter4J JAR as shared library to WLS

Configuring jazn-data.xml

In the Oracle JDeveloper Application Navigator, click the folder icon next to the "Twitter" workspace

name and choose Secure | Users from the popup menu.

ADF CODE CORNER Active Data Services Sample – Twitter Client

6

In the opened dialog, configure the "your_twitter_name" account with the username and password of

your Twitter account. The password is encrypted and kept with the application afterwards Click the Save

icon to ensure your changes are persisted.

Register Twitter accounts to listen for

The users to listen for on Twitter are defined in the TwitterTableModel.java class.

The registration is by user Id, not the Twitter user name. To obtain the Id of a Twitter user, go to

twitter.com and login. Search for the user to listen for and hover over the RSS feed icon shown on the

user profile page. The RSS feed contains the user Id, which then you copy into the list of friends.

ADF CODE CORNER Active Data Services Sample – Twitter Client

7

Then copy the user id into the TwitterTableModel.java class shown below

Note: The existing accounts in this class are from: Frank Nimphius, Matthias Wessendorf, Maiko Rocha

and Oracle JDeveloper. All of the accounts are from Oracle JDeveloper development and management.

Note: I am not sure if you need to follow the accounts you want to listen for in the sample. So a save

harbor is to use the Ids of friends and co-workers you are listening for anyway

Deploy Twitter4J JAR as shared library

The sample is configured to reference a shared library with the name "twitter-4j-core-2". If you deploy the

Twitter4J library that comes with this sample, then you don't need to take care of providing the correct

name upon deployment. It is well defined within the Twitter4J JAR file. All you need to do is to deploy

the JAR.

ADF CODE CORNER Active Data Services Sample – Twitter Client

8

To deploy the Twitter4J JAR as a shared library, start WebLogic Server (WLS). If you run the application

in the integrated WLS server, choose Run | Start Server Instance from the Oracle JDeveloper menu to

start the server instance.

Open a browser window and type http://host:7101/console to start the WebLogic server console

When the console is deployed, it displays a logon screen that you connect to using weblogic/weblogic1 as

username and password

Note: production servers should have this default configuration changed. Also, starting Oracle

JDeveloper 11.1.1.4 the default password policy is changed as well

ADF CODE CORNER Active Data Services Sample – Twitter Client

9

Under Domain Structure, select the Deployments node.

Press the Install button to start the library deployment

In the first screen, you can type the path of the Twitter4J JAR location into the Path field or navigate to it

ADF CODE CORNER Active Data Services Sample – Twitter Client

10

The select the JAR entry and press Next. You can ignore error messages if displayed in the WLS console

On the next screen, the twitter4j-core-2 name is already set. Select the Copy this application onto

every target for me option and hit Next or Finish.

Note: If the Web Logic Server console informs you to accept changes then do so. Once done, re-start the

WLS server by stopping it – e.g. from the Oracle JDeveloper– and starting it up again. Do so even if the

WLS console says that this is not required.

Note: If you download and deploy a newer version of the Twitter4J library, make sure its Manfifest file is

corrected. The Manifest file in the JAR contains an invalid version number. Only numbers are allowed to

specify a JAR version.

Run the application from the Oracle JDeveloper Application Navigator. Select the Home.jspx page

and choose Run from the right mouse context menu.

ADF CODE CORNER Active Data Services Sample – Twitter Client

11

Understanding the code

The classes related to Active Data Services in this sample are shown in the image below

ADF CODE CORNER Active Data Services Sample – Twitter Client

12

ActiveTwitterServiceImpl – contains the code that interacts with Twitter through Twitter4J. It also

holds the initial conversation between Maiko Rocha and me shown after application startup. This class

needs to be changed only to create a different opening talk.

TwitterTableModel - This class contains the Active Data Service implementation. It decorates the ADF

Faces table model and registers with the ActiveTwitterServiceImpl class to receive notification when a

new message is posted by a friend on Twitter. The TwitterTableModel class is referenced from the ADF

Faces table displaying the tweet messages.

The TwitterTableModel bean is configured as a managed bean in view scope because it holds the

table data, which should not be re-queried with each request

 <managed-bean id="__11">

 <managed-bean-name id="__12">tableModel</managed-bean-name>

 <managed-bean-class id="__10">

 adf.sample.managed.twitter.TwitterTableModel

 </managed-bean-class>

 <managed-bean-scope id="__9">view</managed-bean-scope>

 </managed-bean>

In the bean constructor, the table model registers itself with the ActiveTwitterServiceImpl class,

which is the active listener using Twitter4J.

public TwitterTableModel() {

 super();

 activeTwitterDataService = new ActiveTwitterServiceImpl(this);

 //get some start tweets

 tweetCollection = activeTwitterDataService.getTweets();

 Collections.reverse(tweetCollection);

 //create Trinidad collection model

 tableModel = new SortableModel(tweetCollection);

}

For every new Twitter message, ActiveTwitterServiceImpl calls the TwitterTableModel

class's pushActiveDataChangeNotification method to update the table using ADS

public void pushActiveDataChangeNotification(ActiveDataModel model,

 TwMessage message) {

 TwitterActiveDataModel adm = (TwitterActiveDataModel)model;

 adm.increaseChangeCounter();

 //perform update update

 ActiveDataUpdateEvent updateEvent = null;

 ArrayList<String> attributeList = new ArrayList<String>();

 //create the list of attributes to update in the table view

 attributeList.add("profileImageUrl");

 attributeList.add("user");

 attributeList.add("location");

ADF CODE CORNER Active Data Services Sample – Twitter Client

13

 attributeList.add("message");

 attributeList.add("created");

 String[] attributeListArray = new String[attributeList.size()];

 ArrayList<Object> updateValueList = new ArrayList<Object>();

 updateValueList.add(message.getProfileImageUrl());

 updateValueList.add(message.getUser());

 updateValueList.add(message.getLocation());

 updateValueList.add(message.getMessage());

 updateValueList.add(message.getCreated());

 //call the ADS proxy framework to add a new message as the

 //first row in the table

 updateEvent =

 ActiveDataEventUtil.buildActiveDataUpdateEvent(

 ActiveDataEntry.ChangeType.INSERT_BEFORE,

 model.getCurrentChangeCount(),

 new Object[]{0},

 null,

 attributeList.toArray(attributeListArray),

 updateValueList.toArray());

 //call the Active Data Model internal class

 adm.notifyDataChange(updateEvent);

 //synchronize the table data collection with the current state of the

 //table model

 tweetCollection.add(0,message);

 tweetCollection = activeTwitterDataService.getTweets();

 }

TwMessage – An object representation of the Twitter message. A row in the ADF Faces table represents

exact one instance of this object

The most interesting class for you to study is TwitterTableModel. The class contains an inner class

TwitterActiveDataModel that extends the ADF Faces Active Data Services BaseActiveDataModel.

Download

The Oracle JDeveloper 11.1.1.3 workspace configured in this document can be downloaded as sample

065 from ADF Coder Corner:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

What else do you need to know?

You should be aware that this sample only implements one aspect of Active Data Services, which is the

creation of a new object. In addition ADS can be used to update screens for delete and update operations

as well, which you find information about in the collateral referenced at the end of this document.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER Active Data Services Sample – Twitter Client

14

The Twitter sample code in the documented work space can be changed to adapt to any messaging

service that provides a streaming API for Java.

The default push protocol used by the sample is streaming. To change this to poll or long-polling, edit the

adf-config.xml file in there. However, before changing the settings in this file, I recommend reading the

ADS documentation that is available.

Last but not least – this sample is a demo to get you started or for you to be able to demo Active Data

Services. There are no plans to extend this demo to be a complete Twitter client that not only allows to

read but also to write tweets.

RELATED DOCOMENTATION

 Ch 42 - Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development

Framework

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/adv_ads.htm#BEIDHJFD

 Ch 20 – Fusion Developer Guide, Frank Nimphius, Lynn Munsinger (McGraw Hill) –

http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/adv_ads.htm#BEIDHJFD
http://www.mhprofessional.com/product.php?cat=112&isbn=0071622543

