

 ADF Code Corner

71. How-to integrate Java Applets with Oracle ADF

Faces

Abstract:

Oracle ADF Faces contains a JavaScript client framework

that developers can use to integrate 3
rd

 party technologies

like Java Applets and jQuery. This article explains how to

establish bi-directional communication between a Java

Applet and an ADF Faces application.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
08-FEB-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

2

Introduction
ADF Faces provides developers with a comprehensive list of JavaServer Faces user interface

components and behavior tags for building visually attractive web applications. Ideally, to ensure

a consistent request lifecycle, developers build web applications with ADF Faces and / or 3
rd

party JavaServer Faces components alone. However, there may be a need for ADF Faces to

integrate with 3
rd

 party technology like Java Applet, JQuery or Flash, when the business case

requires it. Integration with 3
rd

 party technology is on the client side with JavaScript, which also

means that the application lifecylce and transaction is not shared. In this how-to article, I explain

the integration of Oracle ADF Faces with Java Applets for bi-directional communication, as well

as the Java Applet calling a managed bean.

In the example, the Java Applet is added to the ADF Faces page as shown below:

 <APPLET code="adf.sample.applet.MessageApplet.class"

 archive="/ADFAppletTalk-AppletTalk-context-root/messageApplet.jar"

 height="130"

 width="400" align="bottom">

 This browser does not support Applets.

 </APPLET>

Note that the APPLET tag is used instead of the EMBED or OBJECT tag that would be needed to

explicitly invoke Java run by the Java PlugIn. As shown later, browsers can be configured to use

the Java PlugIn instead of its own integrated Java Runtime Rnvironment (JRE), which in many

cases does not exist, or is not sufficient to run latest Java.

When installing a client side Java Runtime Environment the browser configuration is added

automatically, so that using the APPLET tag is an option okay to use.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

3

Client side only communication
In the example, a Java Applet input text field and a command button are used to send text messages to

the ADF Faces input form. The Java Applet uses the netscape.javascript.JSObject class

contained in jre6\lib\plugin.jar to issue JavaScript calls to the containing page.

private void sendMessageButton_keyPressed(KeyEvent e) {

 int keyCode = e.getKeyCode();

 if (keyCode == 10){

 String message = messageField.getText();

 JSObject win = (JSObject) JSObject.getWindow(this);

 //call the JavaScript messae

 if(printToServer.isSelected()){

 //make sure message is printed to JSF managed bean

 win.eval("callAdfFromJavaMessage('"+message+"',true);");

 }

 else{

 win.eval("callAdfFromJavaMessage('"+message+"',false);");

 }

 }

 }

On the ADF Faces page, the JavaScript function callAdfFromJavaMessage is defined as shown

below:

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

4

function callAdfFromJavaMessage(messageFromApplet, printToServer){

 var textField = AdfPage.PAGE.findComponentByAbsoluteId("it1");

 textField.setValue(messageFromApplet);

 textField.focus();

 if(printToServer == true){

 //send message as immediate

 AdfCustomEvent.queue(textField,"AppletIsCallingADF",

 {appletMessage:messageFromApplet},true);

 }

}

The JavaScript function uses the AdfPage.PAGE API to lookup the ADF Faces input text field

component. It then determines the value of the printToServer argument to determine whether to send the

message to the server too.

Note: When used in production, all of the JavaScript sources used in this sample should be stored in an

external JavaScript library for better performance and code organization.

When a message is sent from the Java Applet, it is printed to the ADF Faces input text field as shown

here:

Note that the message is added to the input text field such that submitting the ADF Faces form also

submits the message to the Java Server Faces model or ADF binding. Calling a managed bean from a Java

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

5

Applet directly therefore is only required for events that should not update input fields on an ADF Faces

page but only notify the server.

Public methods of the Java Applet are accessible from JavaScript. In the image below, the ADF Faces

form sends a message back to the Java Applet. The Applet displays the message and paints the text field

background in yellow.

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

6

The public Java Applet method called from JavaScript is shown here:

public void handleJavaScriptToAppletMessage(String message){

 messageField.setBackground(Color.yellow);

 messageField.setText(message);

}

The JavaScript function to call into the Java Applet is invoked from an af:clientListener

tage on the Send Message command button.

//JavaScript function calling client side

function writeAdfFacesMessageToApplet(evt) {

 var textField = AdfPage.PAGE.findComponentByAbsoluteId("it1");

 var message = textField.getSubmittedValue();

 //talk to Applet

 document.applets[0].handleJavaScriptToAppletMessage(message);

}

The Java Applet is accessed by its index in the browser page's document JavaScript reference.

The JavaScript code reads the current value of the ADF Faces input text field, again using the

AdfPage.PAGE API to look it up.

Note ADF Faces components must have their clientComponent property set to true or an

af:clientListener attached to be accessible from JavaScript. The latter is used in this

example.

Java Applet to managed bean communication

A custom event is used in ADF Faces to call a managed bean from a Java Applet. The Java

Applet calls a JavaScript function as before, but passes true as the value of the printToServer

argument. The following line of JavaScript queues the incoming Java Applet message as a

custom ADF Faces event for a managed bean method to handle:

AdfCustomEvent.queue(textField,"AppletIsCallingADF",

 {appletMessage:messageFromApplet},true);

The textField reference in the above code references the ADF Faces component that has the

af:serverListener tag defined to call the managed bean method.

The name of the af.serverListener tag on the page is AppletIsCallingADF.

The Java Applet message is passed as the payload, a set of key-value pairs, of the custom

event. In the example, a single argument is passed with the name of appletMessage.

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

7

The last argument specifies how the queued event should be handled by the ADF Faces request

lifecycle. In the above example, the argument is set to immediate so the server call can be made

without client validation to be performed on the ADF Faces page.

As shown in the image above, the Java Applet in this sample uses a checkbox component in

Swing for the user to indicate the call to be sent to a managed bean on the server too.

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

8

The server side managed bean receives an event object of type ClientEvent that contains the

message sent by the Java Applet.

public void onAppletCall(ClientEvent clientEvent) {

 String message = (String)clientEvent.getParameters().get("appletMessage");

 //just print it out

 System.out.println("MESSAGE FROM APPLET");

 System.out.println("===================");

 System.out.println(message);

 System.out.println("===================");

 …

 }

For this to work, the af:serverListener tag is configured on the input text field as shown

below

<af:inputText id="it1" rows="5" columns="50" >

 <af:serverListener

 type="AppletIsCallingADF" method="#{AppletCallCenter.onAppletCall}

 "/>

 <af:clientListener method="clearInputTextField" type="dblClick"/>

</af:inputText>

Note: For JavaScript in ADF Faces to find the af:inputText component instance, the text field

must have an af:clientListener attached or its clientComponent attribute set to true. If, like

in the above case, the text field also has an af:serverListener attached, then it must also

have an af:clientListener defined

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

9

ADF Faces managed bean to Applet communication

Using the Apache Trinidad ExtendedRenderKitService class, managed bean in ADF Faces

can call client JavaScript, which then can call back to the JavaApplet. This way, messages can
be sent from the server to the client side Applet.

Note: When communicating from a managed bean to the Java Applet, keep browser and network
latency in mind. Especially when sending multiple messages, then, unless you handle queueing
of server side messages, messages may get lost if the browser cannot handle the frequency you
sent them.

The image below shows a message sent from a managed bean in response to the Java Applet calling the

server.

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

10

…

 //send feedback back to the Applet

 FacesContext fctx = FacesContext.getCurrentInstance();

 ExtendedRenderKitService erks =

 Service.getRenderKitService(fctx,

 ExtendedRenderKitService.class);

 erks.addScript(fctx,

 "window.writeAnyMessageToApplet('Your wish has been granted !')");

…

Configuring the Java Applet for deployment

Java Applets are deployed with the application but downloaded to the client at runtime. This means that

the Java Applet source, usually a Java Archive (JAR) file needs to be located in the Web project's public-

html folder or a sub-folder of it. The JAR file is then referenced from the Applet archive tag

archive="/ADFAppletTalk-AppletTalk-context-root/messageApplet.jar"

In the sample above, the archive reference to the Applet JAR file located in the public-html folder starts

from the Java EE context root. The Java EE context root is determined by the Web project's Java EE

Application property. You access this property by double clicking the Web project node in Oracle

JDeveloper.

Ensuring the JavaPlugin is used

The one thing JavaScript and Java Applets have in common is that browser support varies. For Java

Applets, the solution providing a consistent runtime environment is the Java Plugin that can be used

instead of the browser native Java VM.

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

11

The Java Plugin is installed to replace the browser Virtual Machine when installing the Java Runtime

Environment (JRE) to a computer. To test this on Windows, select Start | Control Panel and then click

Programs

Click the Java entry, as shown below, to access the configuration panel.

Select the Java tab to ensure the Java version that is installed. This information becomes handy in case

you experience a Java minor or major version mismatch, which may happen when an Applet is compiled

with an old version of Java.

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

12

Click the Advanced tab and expand the Default Java for browsers entry to see a list of browsers and

their use of the Java Plugin at runtime.

Note: Alternatively you can change the JSF page's Java Applet tag reference to use the EMBED and/or

OBJECTS tag to enforce the use of the Java Plugin. In this case, the lookup of the Applet changes and

the plugin also needs to have its mayscript property set to allow the Applet to send JavaScript to the client.

If your Java Applet requires access to the client computer, then, in addition to downloading the JAR file,

the JAR file needs to be signed with a certificate that the user needs to accept. Signing JAR files is out of

scope for this article, but there are plenty resources available on the Internet describing this process.

The infamous "incompatible magic value" issue

Not every error message makes sense, and some error messages cause more confusion than the help they

are supposed to provide. The infamous "incompatible magic value" message has confused developers

over many years.

Note: I don't want to imagine the cost caused by this misleading message as developers spent their time

researching the real issue of the failed Java Applet loading instead of doing their job. The error message

itself is shown below:

java.lang.ClassFormatError: Incompatible magic value 1013478509 in class file

adf/sample/applet/MessageApplet

 at java.lang.ClassLoader.defineClass1(Native Method)

 …

ADF CODE CORNER How-to integrate Java Applets with Oracle ADF Faces

13

When you see this error message then, most likely the Java archive could not be found, in which case the

server replies with http-404 or similar. The server side http-404 error message is delivered in an HTML

document that the Java Plugin eagerly attempts to treat like a JAR file. Confused about the mismatch, the

Plugin shows this confusing message. However, now you know that when the magic number shows

incompatible, you need to double check the JAR or codebase setting (if not using JAR files for the Applet

download).

Download

You can download the Java Applet and ADF Faces sources from the ADF Code Corner website. Its

sample 71 and provided as Oracle JDeveloper workspaces

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

RELATED DOCOMENTATION

 Using JavaScript in ADF Faces applications – Whitepaper

http://www.oracle.com/technetwork/developer-tools/jdev/1-2011-javascript-302460.pdf

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://www.oracle.com/technetwork/developer-tools/jdev/1-2011-javascript-302460.pdf

