

 ADF Code Corner

79. Strategy for global buttons on a page template

Abstract:

Page templates in ADF Faces help designing custom

application layout standards for a consistent look and feel

throughout an application or applications. Page templates

and skinning present the corner stones of the application

visual appearance. A productivity aspect of templates is

ease of use and maintenance: Template definitions are

not compiled into the consuming page but referenced at

runtime, which makes it easy to apply layout changes to

an existing application.

A frequent requirement for templates is to provide default

behavior and global command action items, like global

toolbars or buttons. In this article I show how global action

and toolbars can be implemented in templates.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
13-APR-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER Strategy for global buttons on a page template

2

Introduction
Page templates can be imported to a project through the use of ADF Library. ADF Libaries allow

developers to also deploy JavaServer Faces artifacts like managed beans and ADF controller

and faces-config.xml configurations used by by ADF reusable components.

From all reusable elements in ADF, including bounded task flows, ADF regions, dynamic and tag

library based declarative components, page fragments and page templates, there are two that are

candidates for implementing the use case of "templates with behavior": declarative components

and page templates.

Building functional reusable layouts using tag library driven declarative components is subject of

sample #24, also here on ADF Code Corner. The remainder of this article therefore focuses on

how to add pre-defined functions to page templates:

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

The challenge with page templates is that, in contrast to declarative components, they don't have

method attributes to expose to the consumer page. Method attributes in declarative components

can be used to broadcast a component event, like ActionEvent, to a property that application

developers can assign an action listener to.

To work around the absence of method attributes,in this article, I use a managed bean that is part

of the template to dispatch between the action in the template and the function performed in the

application. A similar approach, to deploy a managed bean with a template, is also used in the

Dynamic Tabs UI Shell Template that is available in Oracle JDeveloper 11.1.1.4 onwards to

build desktop like web user interfaces with ADF and ADF Faces:

http://www.oracle.com/technetwork/developer-tools/adf/uishell-093084.html

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://www.oracle.com/technetwork/developer-tools/adf/uishell-093084.html
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER Strategy for global buttons on a page template

3

Implementation Outline

Page templates can have Facets, Attributes and ADF bindings defined. Facets are used by the template

developer to define areas in which application developers later add ADF Faces components to. Attributes

show as template properties in the Oracle JDeveloper Property Inspector.

Read more about page templates in Oracle ADF Faces in the product documentation at

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/web_getstarted.htm#BABJEDHG

To implement a strategy that allows a template to invoke a method in the consuming page, I use the

following artifacts

 A managed bean owned by the template that all command components are bound to. The

managed bean is configured in backing bean scope using the adfc-config.xml configuration

file. The bean does not need to hold state longer than request and using the backing bean scope

allows this template to be used in page fragments as well.

 A Java interface class that describes the methods used by the template. This interface is the

contract between the template and the consuming page and is exposed as a required template

attribute. Consuming applications must provide a managed bean that implements the interface.

All command items in the template that need to execute page specific actions are bound to the

managed bean in the template.

 A template attribute that allows developers to use Expression Language to reference a managed

bean in their application for the template to call in response to a global button action.

Step-by-step

To build page re-usable templates I recommend building them in their own Oracle JDeveloper project.

Ensure the project has the ADF Faces and ADF Page Flow technology scope set.

To create a new template, I chose File | New from the JDeveloper menu.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/web_getstarted.htm#BABJEDHG

ADF CODE CORNER Strategy for global buttons on a page template

4

In the template dialog, I defined the template name (display and file name), the facets (areas for the

application page content), and an attribute (a property to hold the reference to a managed bean in the

application). The attribute – so to say – is my API to implement the contract between the template and

the consuming application.

Note: Using the Quick Start Layout really turbo boosts the creation of page templates and should

always be considered as the starting point

The template definition of the sample in this article is shown in the image below. Note that it defines a

single attribute of type String. This attribute holds the reference to a managed bean in the consuming

application. The Facet Definitions are not further explained and most likely will differ in their number

and position in your custom templates. Just note that defined facets are added to the template layout using

FacetRef components from the component palette.

ADF CODE CORNER Strategy for global buttons on a page template

5

Next I created a Java Interface class to define the methods that are invoked by command items in the

template. This interface class is the most important detail for the strategy introduced in this paper. You

should have a good naming convention for the template and interface names to ensure the name of the

interface is predictable for developers using your template in their application development.

import javax.faces.event.ActionEvent;

public interface CreateInsertCancelHelpTemplateInterface {

 public void create(ActionEvent actionEvent);

 public void insert(ActionEvent actionEvent);

 public void cancel(ActionEvent actionEvent);

 public void delete(ActionEvent actionEvent);

 public void help(ActionEvent actionEvent);

 }

After creating the interface class, I created a managed bean that I configured in the template's adfc-

config.xml file (The adfc-config.xml file is created automatically for you if the project you

develop the template in has the ADF Page Flow technology scope set.

Notice that the managed bean scope is set to backingBean. Using the backingBean scope allows

multiple instances of the template to be used on a page, for example when applied to page fragments

added to a page through the use of ADF regions.

The managed bean implements the same Java interface that managed beans in the consuming application

are expected to implement (the interface created earlier). Using Expression Language, the command

buttons in my template all reference one of the methods in the template managed bean in their Action

Listener property.

ADF CODE CORNER Strategy for global buttons on a page template

6

Note: If the command buttons are not supposed to refresh the page, make sure their PartialSubmit

property is set to true.

The template managed bean code is shown below. Note that this bean is private to the page template. To

indicate that this bean is not for public use, you could (optionally) follow the ADF framework approach

and use the word "internal" in the bean package name.

import adf.sample.view.beans.interfaces.

 CreateInsertCancelHelpTemplateInterface;

import javax.el.ELContext;

import javax.el.ExpressionFactory;

import javax.el.ValueExpression;

import javax.faces.context.FacesContext;

import javax.faces.event.ActionEvent;

public class TemplateImplementationBean implements

CreateInsertCancelHelpTemplateInterface{

 CreateInsertCancelHelpTemplateInterface templateBean = null;

 public TemplateImplementationBean() {

 super();

 }

 public void create(ActionEvent actionEvent){

 CreateInsertCancelHelpTemplateInterface bean = getBean();

 bean.create(actionEvent);

 };

 public void insert(ActionEvent actionEvent){

 CreateInsertCancelHelpTemplateInterface bean = getBean();

 bean.insert(actionEvent);

 };

 public void cancel(ActionEvent actionEvent){

ADF CODE CORNER Strategy for global buttons on a page template

7

 CreateInsertCancelHelpTemplateInterface bean = getBean();

 bean.cancel(actionEvent);

 };

 public void delete(ActionEvent actionEvent){

 CreateInsertCancelHelpTemplateInterface bean = getBean();

 bean.delete(actionEvent);

 };

 public void help(ActionEvent actionEvent){

 CreateInsertCancelHelpTemplateInterface bean = getBean();

 bean.help(actionEvent);

 };

 //Access the template attribute to resolve the application

 //managed bean reference

 private CreateInsertCancelHelpTemplateInterface getBean(){

 if (templateBean == null) {

 FacesContext fctx = FacesContext.getCurrentInstance();

 ELContext elctx = fctx.getELContext();

 ExpressionFactory exprFactory =

 fctx.getApplication().getExpressionFactory();

 ValueExpression ve = exprFactory.createValueExpression(

 elctx,

 "#{attrs.toolbarCommandsBean}",

 Object.class);

 Object valueObject = ve.getValue(elctx);

 if (valueObject != null) {

 templateBean =

 (CreateInsertCancelHelpTemplateInterface)valueObject;

 } else {

 // log message here

 }

 }

 return templateBean;

 }

}

The getBean() method in the sample code above is the implementation of the strategy introduced in

this article. Using the "attrs" template variable handle, the managed bean attempts to access the application

managed bean that is referenced from the template. It then passes the command action from the global

buttons to the application bean to handle the job.

To deploy the template, create a new deployment profile for an ADF library. This ADF library can then

be imported into the consuming application project, which also makes the interface class available.

ADF CODE CORNER Strategy for global buttons on a page template

8

Read more about ADF Libraries:

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/reusing_components.htm#BEIG

HHCG

Using the Template

To use the template in an application, I referenced the ADF Library in the Oracle JDeveloper Resource

Palette:

I then added the template library to an ADF Faces project so the template definition, managed bean and

interface class become available. A managed bean is created that implements the template interface class

to handle the method invocation of the template. The Java source file creation dialog of the managed

bean I created is shown below.

http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/reusing_components.htm#BEIGHHCG
http://download.oracle.com/docs/cd/E17904_01/web.1111/b31974/reusing_components.htm#BEIGHHCG

ADF CODE CORNER Strategy for global buttons on a page template

9

In my test application, I configured the application managed bean in the adfc-config.xml file. The

managed bean class contains the methods that are called from the template.

All I need to do in the consuming application is to provide the implementation code for the template

methods. As a start, I let the consuming application print statements about the methods called by the

template button to verify it is working. In a later step, I would add the real application code to execute.

Note: If the template is applied to a page fragment in a bounded task flow, you configure the bean in the

task flow definition file.

After importing the ADF Library that contains the template to the view controller project, when creating

a new page, the template shows in the list of available templates:

ADF CODE CORNER Strategy for global buttons on a page template

10

With the template referenced from the page, I configured the toolBarCommandBean property to point

to the managed bean in the application that implemented the interface defined by the template. This way,

whenever a button in the template is pressed, the corresponding managed bean method is invoked.

This strategy allows developers to build templates with global function buttons, but also templates that

have command items with a page or view specific functionality because in theory, each template usage can

be supported by a different managed bean in the application.

Note: If the application managed bean is in a scope other than request, session and application, you need

to prefix it with the scope. For example, if the application managed bean is configured in view scope, you

would use #{viewScope.applicationManagedBean} as the value of the "toolbarCommandBean" property.

As an advice for best practices: managed beans should be configured to be in the shortest possible scope.

The less state variables of a managed bean need to remember between subsequent requests the shorter the

lifespan of the scope can be. If a bean only executes functionality, the scope to use is none, request, or

backingBean. Only backing bean scope references need a prefix of "backingBeanScope".

Download

You can download the sample template I built for this article as sample #79 from the ADF Code Corner

website.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER Strategy for global buttons on a page template

11

The Deploy folder contains an ADF Library JAR file that I generated from the project and that you can

use to try the integration of this template in a sample application. The workspace is for Oracle JDeveloper

11.1.1.4, the strategy though will work with any existing Oracle JDeveloper 11g release.

