

 ADF Code Corner

81. How-to create master-detail behavior using

af:panelTabbed and DVT graph components

Abstract:

Oracle ADF Faces tree, tree table and table components

keep track of their row (node) selection state, allowing

developers to access the selected data rows, for example,

to fetch dependent detail data or similar operations. The

af:iterator component behaves like trees or table in

that it stamps it child components, but does not keep track

of the selected data row. This sample shows how you can

build better user interfaces for master-detail data display

using the af:iterator component while still keeping

track of the current row selection.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
01-MAY-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to create master-detail behavior using
af:panelTabbed and DVT graph component

 2

Introduction
The af:iterator component and the af:forEach component both iterate over a data set to

display data values in custom arranged user interfaces. The af:iterator component behaves

like an ADF Faces table component, without the table header, column, row and border chrome. It

works well with collection models, which are exposed by the ADF tree binding in the PageDef file.

In general, using af:iterator is a lower footprint on the client than using af:forEach. The

af:forEach tag substiutes the JSTL c:forEach tag, which does not support the "varStatus"

reference that give developers access to the iteration statelike. the index of the current printed

row. The af:forEach component does not stamp it children but creates object representations

and renders list data. It does not support collections. As af:forEach is index based, items

should not be removed after the list is rendered. A use case for this component is to dynamically

render entries of an af:selectOneChoice list.

In this article, I explain how you use the af:iterator to iterate over a master detail set to

render its rows as tabs in an af:panelTabbed component. Each tab contains an ADF bound

graph that displays dependent detail data.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to create master-detail behavior using
af:panelTabbed and DVT graph component

 3

The ADF BC model

The ADF Business Components model is a master-detail structure consisting of a DepartmentsView view

object and an EmployeesView view object.

The data model defined in the ADF BC Application Module exposes an instance of departments and

employees that is connected by a ViewLink so that selecting a department automatically synchronizes the

dependent employee detail records. For demonstration purposed only, the allDepartments instance is

filtered by a ViewCriteria to only show departments having employees. The image below shows the data

model in the Data Controls panel view.

ADF Faces implementation

To implement the solution, you create an ADF tree binding in the PageDef file of the view that should

contain the master-detail display. To create an ADF tree binding, right mouse click onto the page or page

fragment and choose Go to Page Definition. If no ADF binding file exists, it can be created on the fly.

With the binding file open, click the green plus icon in the Bindings section

ADF CODE CORNER
How-to create master-detail behavior using
af:panelTabbed and DVT graph component

 4

From the list of ADF bindings, choose the tree binding

Use the Add button in the Create Tree Binding dialog to create a new iterator to base the tree binding

on. In the image below, the iterator is created for the allDepartmentsWithEmployees View Object

instance.

Create rules for the tree nodes, like you are familiar with when building trees from dragging a collection

from the Data Control panel.

ADF CODE CORNER
How-to create master-detail behavior using
af:panelTabbed and DVT graph component

 5

Drag and drop the af:panelTabbed component from the ADF Faces component palette onto the

view. This automatically adds a default Show Detail Item to represent a tab.

Next, surround the af:showDetailItem component with an af:iterator tag, using the source

editor. Of course, there is a declarative and visual way of doing the same, but over time I found the use of

the source editor for this to be quick and efficient, especially because of the tag and syntax help Oracle

JDeveloper provides.

<af:panelTabbed id="pt1">

ADF CODE CORNER
How-to create master-detail behavior using
af:panelTabbed and DVT graph component

 6

 <af:iterator var="deptrow" value="#{bindings.allDepartmentsWithEmployees.collectionModel}">

 <af:showDetailItem text="#{deptrow.DepartmentName}" id="sdi1"

 disclosureListener="#{graphBean.onTabDisclosure}">

 <f:attribute name="rowKey" value="#{deptrow.keyPath}"/>

 …

 </af:showDetailItem>

 </af:iterator>

 </af:panelTabbed>

Note the content highlighted in bold! The var attribute defines an EL accessible object during rendering,

which gives you access to the current rendered data row. This variable is used in an f:attribute tag, which

is the JSF way of extending existing components with additional attributes. In the use case above, the key

path of the current row is added as a new "rowKey" attribute to the af:showDetail component. The

rowKey value is different for each tab generated for a department. Also note the reference of the ADF

tree binding (allDepartmentsWIthEmployees.collectionModel) from the value attribute of

the af:iterator tag. A disclosure listener is defined on the af:dowDetailItem component to

handle the master-detail correlation. Handling the master-detail correlation in this use case means to

access the selected detail item, read the key path value from the rowKey attribute and make this key the

current selected row in the allDepartmentsWithEmployees iterator.

The managed bean containing the disclosure listener, is shown below

public class GraphBean {

//bean is in request scope. So accessing FacesContext here is

//okay as there is no risk of using stale context data

FacesContext fctx = FacesContext.getCurrentInstance();

ELContext elctx = fctx.getELContext();

ExpressionFactory expressionFactory =

fctx.getApplication().getExpressionFactory();

public GraphBean() {

 super();

}

//called by each tab with a changed disclosure state

public void onTabDisclosure(DisclosureEvent disclosureEvent) {

 RichShowDetailItem tab =

 (RichShowDetailItem) disclosureEvent.getSource();

 if (tab.isDisclosed()) {

 //read the custom attribute "rowKey" from the showDetailItem

 //component reference. Note that the key is the key of the data

 //in the collection model and thus is a List

ADF CODE CORNER
How-to create master-detail behavior using
af:panelTabbed and DVT graph component

 7

 List key = (List)tab.getAttributes().get("rowKey");

 JUCtrlHierBinding treeBinding = this.getTreeBinding();

 //get the ADF tree binding node that corresponds with the

 //key path in the Collection Model

 JUCtrlHierNodeBinding currentNode =

 treeBinding.findNodeByKeyPath(key);

 //make the current node the current row in ADF

 makeCurrent(currentNode);

 }

 }

 /*

 * Make row current in underlying iterator

 */

 private void makeCurrent(JUCtrlHierNodeBinding node){

 //get the key of the row represented

 //by the node binding

 Row rw = node.getRow();

 Key key = rw.getKey();

 //make this row the current row in the binding layer

 //so master/detail behavior works correctly

 JUCtrlHierBinding treeBinding = this.getTreeBinding();

 DCIteratorBinding iterator = treeBinding.getDCIteratorBinding();

 iterator.setCurrentRowWithKey(key.toStringFormat(true));

 }

 private JUCtrlHierBinding getTreeBinding(){

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 //get reference to tree binding by its ID in the PageDef

 JUCtrlHierBinding treeBinding =

 (JUCtrlHierBinding) bindings.get("allDepartmentsWithEmployees");

 return treeBinding;

 }

}

Making the selected tab's keyPath value the current row in ADF, synchronizes the employees data to

show employees for the selected department. If the business service was not ADF Business Components

but Web Services, you would take the key path value, or a primary key value, and call a method exposed

on the service. Only change to this sample is that the Refresh attribute on the iterators should be set to

ifNeeded instead of deferred, which is used in this sample.

To display the Graph, you select the EmployeesInDepartment collection from the DataControls panel

and drag and drop it into the showDetailItems component.

ADF CODE CORNER
How-to create master-detail behavior using
af:panelTabbed and DVT graph component

 8

The completed page source then looks as shown below

<af:panelTabbed id="pt1">

 <af:iterator var="deptrow" value="#{bindings.allDepartmentsWithEmployees.collectionModel}">

 <af:showDetailItem text="#{deptrow.DepartmentName}" id="sdi1"

 disclosureListener="#{graphBean.onTabDisclosure}">

 <f:attribute name="rowKey" value="#{deptrow.keyPath}"/>

 <dvt:barGraph id="barGraph1"

 value="#{bindings.EmployeesInDepartment.graphModel}"

 subType="BAR_VERT_CLUST">

 <dvt:background>

 <dvt:specialEffects/>

 </dvt:background>

 <dvt:graphPlotArea/>

 <dvt:seriesSet>

 <dvt:series/>

 </dvt:seriesSet>

 <dvt:o1Axis/>

 <dvt:y1Axis/>

 <dvt:legendArea automaticPlacement="AP_NEVER"/>

 </dvt:barGraph>

 </af:showDetailItem>

ADF CODE CORNER
How-to create master-detail behavior using
af:panelTabbed and DVT graph component

 9

 </af:iterator>

 </af:panelTabbed>

Download

The Oracle JDeveloper 11.1.1.4 workspace can be downloaded as sample #81 from the ADF Code

Corner website.

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Configure the database connection in the workspace to point to a database with the HR schema installed

and run the JSPX file. The steps explained in this sample should also work with upcoming JDeveloper

11g releases (11.1.1.5 and 11.1.2), as well as with previous 11g versions.

RELATED DOCOMENTATION

 ADF Faces af:iterator tag documentation:

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_iterator.html

 ADF Faces af:forEach tag documentation

http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_forEach.html

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_iterator.html
http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_forEach.html

