ADF Code Corner

81. How-to create master-detail behavior using
af:panelTabbed and DVT graph components

ORACLE’

CODE CORNER

s

twitter.com/adfcodecorner

Abstract:

Oracle ADF Faces tree, tree table and table components
keep track of their row (node) selection state, allowing
developers to access the selected data rows, for example,
to fetch dependent detail data or similar operations. The
af:iterator component behaves like trees or table in
that it stamps it child components, but does not keep track
of the selected data row. This sample shows how you can
build better user interfaces for master-detail data display
using the af:iterator component while still keeping
track of the current row selection.

Frank Nimphius, Oracle Corporation

twitter.com/fnimphiu
01-MAY-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

How-to create master-detail behavior using
LADINGOIDAGOINNNE af:panclTabbed and DVT graph component

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
corvection. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTIN forum
for Oracle | Developer: bttp:/ / forums.oracle.com/ forums/ fornm.jspa2forumID=83

Introduction

The af:iterator component and the af : forEach component both iterate over a data set to
display data values in custom arranged user interfaces. The af:iterator component behaves
like an ADF Faces table component, without the table header, column, row and border chrome. It
works well with collection models, which are exposed by the ADF tree binding in the PageDef file.
In general, using af: iterator is a lower footprint on the client than using af : forEach. The
af:forEach tag substiutes the JSTL c: forEach tag, which does not support the "varStatus"
reference that give developers access to the iteration statelike. the index of the current printed
row. The af : forEach component does not stamp it children but creates object representations
and renders list data. It does not support collections. As af: forEach is index based, items
should not be removed after the list is rendered. A use case for this component is to dynamically
render entries of an af: selectOneChoice list.

In this article, | explain how you use the af:iterator to iterate over a master detail set to
render its rows as tabs in an af : panelTabbed component. Each tab contains an ADF bound
graph that displays dependent detail data.

Administration Marketing Purchasing Legal Human Resources m Public Relations Sales Executive Finance Accounting

12K

10K

BK

6K W salary

4K

2K

K
Raphasly Baida Himurmo
Khoo Tobias Colmenares

http://forums.oracle.com/forums/forum.jspa?forumID=83

How-to create master-detail behavior using
LADINGOIDAGOINNNE af:panclTabbed and DVT graph component

Administration Marketing Purchasing Legal Human Resources m Public Relations Sal% Executive Finance Accounting

TEK
14K
12K
10K
K M zalary
BK
4K
2K

0K

|[Essny

The ADF BC model

The ADF Business Components model is a master-detail structure consisting of a DepartmentsView view
object and an EmployeesView view object.

The data model defined in the ADF BC Application Module exposes an instance of departments and
employees that is connected by a ViewLink so that selecting a department automatically synchronizes the
dependent employee detail records. For demonstration purposed only, the allDepartments instance is

filtered by a ViewCiriteria to only show departments having employees. The image below shows the data
model in the Data Controls panel view.

~ Data Controls R
=R Y ppModuleDataControl
E{E alDepartmentsWithEmployees
----- @ Departmentld
----- =3 DepartmentMame
----- ¥ Locationld
----- 3 Managerld
EEI'"E EmployeesInDepartment
Eﬂ---D Operations
(-] Mamed Criteria
Eﬂ---l:l Operations

[» Recently Opened Files

ADF Faces implementation

To implement the solution, you create an ADF tree binding in the PageDef file of the view that should
contain the master-detail display. To create an ADF tree binding, right mouse click onto the page or page
fragment and choose Go to Page Definition. If no ADF binding file exists, it can be created on the fly.
With the binding file open, click the green plus icon in the Bindings section

How-to create master-detail behavior using
VDI G@IDINGORWIANE af:panclTabbed and DVT graph component

Bindings I* Z R

From the list of ADF bindings, choose the tree binding

i ™
(= Insert Item g

Select the category of components from which you would like to find an item:

lGeneric Bindings ']

Select the item to be created:

S T VETTITC Ty
[l graph

list
listOfValues
[=] methodAction
navigationlist
[table

Gy drmm mbil W

Description:

Tree binding for the control. Tree binding lets users view a

hierarchical list of attributes derived from master-detail
Lk It Wod bhae tl b 1 H

[CK L\\rl [Cancel]

d

Use the Add button in the Create Ttree Binding dialog to create a new iterator to base the tree binding

on. In the image below, the iterator is created for the allDepartmentsWithEmployees View Object
instance.

f Y
Create Tree Binding M

Select the data source for the root tree node, and decide which attributes you want to display in
the tree. To add additional tree level rules for child collections, select the parent tree level rule
anddick the Add icon. If no child collections are available for the selected node, the Add icon is

dizabled.
Root Data Source: vl idd. .]
Tree Level Rules: - ¥

Create rules for the tree nodes, like you are familiar with when building trees from dragging a collection
from the Data Control panel.

How-to create master-detail behavior using
VDI G@IDINGORWIANE af:panclTabbed and DVT graph component

r -
Create Tree Binding [ertving ata ¢

Select the data source for the roat tree node, and decide which attributes you want to display in
the tree. To add additional tree level rules for child collections, select the parent tree level rule
anddiick the Add icon. If no child collections are available for the selected node, the Add icon is
disabled.

Root Data Source: [[[£] AppModuieDataControl.alDepartmentsitheml... =] [Add... |

Tree Level Rules:

| adf.sample.model.vo.DepartmentsView

Accessor: [] Enable Filtering:
Ayailable Attributes: Display Attributes:
Departmentiame Departmentid
Locationld > &
ManagerTd @
3 Y

&
[Target Data Source
|

T

Drag and drop the af : panelTabbed component from the ADF Faces component palette onto the
view. This automatically adds a default Show Detail Item to represent a tab.

Deparhﬂents.jspx EDeparhﬂentsPageDef. xml E] LéfﬁResouroe Palette ﬁl
=
+ Show * [Full Screen Size '] |§[[None | Default 'INone '] @ @ @ B -~ [ADF Faces
Showe Detail ltem - # deptrow. Departmenthame? = ™
#...0Departmentlame} E I ADF Faces

AR L AR L B A B A R AR - e e e mmcemcccecccmmmmmesssssssssssssssss————————

; [+ Common Companents
H = Layout

E a Decorative Box

- Document

E [} tnline Frame

E [4l¥ Navigation Pane

i D Panel Accordion

E L} Panel Border Layout
E D Panel Box

i E Panel Collection

E Panel Dashboard

i 155 | Panel Form Layout

=4 Panel Group Layout
"] Panel Header

= panel List

=
m Panel Splitter
@ Panel Stretch Layout

& Panel Tabbed

S -

Next, surround the af : showDetailItem component with an af:iterator tag, using the source
editor. Of course, there is a declarative and visual way of doing the same, but over time I found the use of
the source editor for this to be quick and efficient, especially because of the tag and syntax help Oracle
JDeveloper provides.

<afipanelTabbed id="pt1">

How-to create master-detail behavior using
VDI G@IDISAGORWIANE af:panelTabbed and DVT graph component

<afiiterator var=""deptrow" value="# {bindings.allDepartmentsWithEmployees.collectionModel}">
<af:ishowDetailltem text="# {deptrow.DepartmentName}" id="sdil"
disclosureListener="# {graphBean.onTabDisclosure}">

<f:attribute name="rowKey" value="#{deptrow.keyPath}" />

</af:showDetailltem>
</afiiterator>

</af:panelTabbed>

Note the content highlighted in bold! The var attribute defines an EL accessible object during rendering,
which gives you access to the current rendered data row. This variable is used in an f:attribute tag, which
is the JSF way of extending existing components with additional attributes. In the use case above, the key
path of the current row is added as a new "rowKey" attribute to the af : showDetail component. The
rowKey value is different for each tab generated for a department. Also note the reference of the ADF
tree binding (allDepartmentsWIthEmployees.collectionModel) from the value attribute of
the af:iterator tag. A disclosure listener is defined on the af : dowDetailItem component to
handle the master-detail correlation. Handling the master-detail correlation in this use case means to
access the selected detail item, read the key path value from the rowKey attribute and make this key the
current selected row in the allDepartmentsWithEmployees iterator.

The managed bean containing the disclosure listener, is shown below
public class GraphBean {

//bean is in request scope. So accessing FacesContext here is
//okay as there is no risk of using stale context data
FacesContext fctx = FacesContext.getCurrentInstance();
ELContext elctx = fctx.getELContext();

ExpressionFactory expressionFactory =
fctx.getApplication () .getExpressionFactory () ;

public GraphBean() {
super () ;

}

//called by each tab with a changed disclosure state
public void onTabDisclosure (DisclosureEvent disclosureEvent) {
RichShowDetailItem tab =
(RichShowDetailItem) disclosureEvent.getSource();
if (tab.isDisclosed()) {
//read the custom attribute "rowKey" from the showDetailltem
//component reference. Note that the key is the key of the data
//in the collection model and thus is a List

How-to create master-detail behavior using
VDI G@IDISAGORWIANE af:panelTabbed and DVT graph component

List key = (List)tab.getAttributes () .get ("rowKey");

JUCtrlHierBinding treeBinding = this.getTreeBinding() ;

//get the ADF tree binding node that corresponds with the

//key path in the Collection Model

JUCtrlHierNodeBinding currentNode =
treeBinding.findNodeByKeyPath (key) ;

//make the current node the current row in ADF

makeCurrent (currentNode) ;

}

/*

* Make row current in underlying iterator

*/

private void makeCurrent (JUCtrlHierNodeBinding node) {
//get the key of the row represented
//by the node binding
Row rw = node.getRow () ;
Key key = rw.getKey();
//make this row the current row in the binding layer
//so master/detail behavior works correctly
JUCtrlHierBinding treeBinding = this.getTreeBinding() ;
DCIteratorBinding iterator = treeBinding.getDCIteratorBinding() ;
iterator.setCurrentRowWithKey (key.toStringFormat (true)) ;

private JUCtrlHierBinding getTreeBinding () {
BindingContext bctx = BindingContext.getCurrent () ;
BindingContainer bindings = bctx.getCurrentBindingsEntry () ;
//get reference to tree binding by its ID in the PageDef
JUCtrlHierBinding treeBinding =
(JUCtrlHierBinding) bindings.get ("allDepartmentsWithEmployees") ;

return treeBinding;

}

Making the selected tab's keyPath value the current row in ADF, synchronizes the employees data to
show employees for the selected department. 1f the business service was not ADF Business Components
but Web Services, you would take the key path value, or a primary key value, and call a method exposed
on the service. Only change to this sample is that the Refresh attribute on the iterators should be set to
ifNeeded instead of deferred, which is used in this sample.

To display the Graph, you select the EmployeesInDepartment collection from the DataControls panel
and drag and drop it into the showDetailltems component.

How-to create master-detail behavior using
DI NO@IDISNEOL NN af:panelTabbed and DVT graph component

|» Application Resources
= Data Controls W7

Create
EHE AppModuleDataControl 100 Carousel
EIE allDepartments\WithEmployees me_ N
i {E Departmentld -
{=2 DepartmentMame ' Gantt ¢
- @ Locationld H Gauge...
{58 Managerld : Geographic Map k

{E EmployeesInDepartment

l_:l Operations
[-[-7] Named Criteria

==

Hierarchy Viewer...

{ _ - »
EJ...D Operations ' Master-Detail
: Multiple Selection F
E Mavigation]
] i Single Selection 4
I Recently Opened Files E Table R
= E Tree »
. =Departments. jspx - Structure E]] H
& H Cancel
- | M

The completed page source then looks as shown below
<af:panelTabbed id="pt1">
<afiiterator var="deptrow" value="# {bindings.allDepartmentsWithEmployees.collectionModel} ">
<af:showDetailltem text=""#{deptrow.DepartmentName}" id="sdil"
disclosureListener=""#{graphBean.onTabDisclosure}" >
<f:attribute name=""rowKey" value="#{deptrow.keyPath}" />
<dvt:barGraph id="barGraph1"
value="# {bindings. EmployeesInDepatrtment.graphModel}"
subType="BAR_VERT_CLUST">

<dvt:background>

<dvt:specialEffects/>
</dvt:background>
<dvt:graphPlotArea/>
<dvt:seriesSet>

<dvt:series/>
</dvt:seriesSet>
<dvt:olAxis/>
<dvt:ylAxis/>
<dvtlegendAtea automaticPlacement="AP_NEVER"/>

</dvt:barGraph>

</af:showDetailltem>

How-to create master-detail behavior using
LADINGOIDAGOINNNE af:panclTabbed and DVT graph component

</ afiiterator>

</af:panelTabbed>
Download
The Oracle JDeveloper 11.1.1.4 workspace can be downloaded as sample #81 from the ADF Code
Corner website.

http://www.oracle.com/technetwork/developer-tools /adf/learnmore /index-101235.html

Configure the database connection in the workspace to point to a database with the HR schema installed
and run the JSPX file. The steps explained in this sample should also work with upcoming JDeveloper
11g releases (11.1.1.5 and 11.1.2), as well as with previous 11g versions.

RELATED DOCOMENTATION

O | ADF Faces af:iterator tag documentation:

http://download.oracle.com/docs/cd/E17904 01/apirefs.1111/e12419/tagdoc/af iterator.html

0 | ADF Faces af:forEach tag documentation

http://download.oracle.com/docs/cd/E17904 01/apirefs.1111/e12419/tagdoc/af forFach.html

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_iterator.html
http://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e12419/tagdoc/af_forEach.html

