

 ADF Code Corner

86. Reading boilerplate images and icons from a

JAR

Abstract:

Images that are a part of an application UI are usually

queried from a folder within the public_html folder of the

ADF Faces web project. The Fusion Order Demo (FOD)

sample has an "images" directory defined that contains

images and icons. For best performance the images are

referenced like /images/img_name.png, avoiding to serve

them through the JSF servlet.

However, what if you want to keep images separate in a

different Oracle JDeveloper project or workspace for

better management and sharing across applications? In

this article we show how the ADF Faces resource loader

can be used to read images from a Java Archive (JAR)

library, which also can be configured as a shared library

on WebLogic Server.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
08-JUL-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER Reading images and icons from a JAR

2

Introduction
Resources in ADF Faces can be loaded by a resource loader, which is accessed from a resource

servlet configured in the web.xml file of the web project. An example for resources loaded by the

resource loader are skins as documented in chapter 20 of the Oracle Fusion Middleware Web

User Interface Developer's Guide for Oracle Application Development Framework 11g Release 1

http://download.oracle.com/docs/cd/E21764_01/web.1111/b31973/af_skin.htm#CHDBEDHI

This approach is also documented on page 15 of the November 2010 OTN Harvest montly

bulletin, which explains how to deploy skins as shared libraries on WLS

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/nov2010-otn-harvest-

190744.pdf

Since the resource loader not only loads skin definitions (CSS) but images and JavaScript

sources, too, its worth looking at this feature again in this article.

ADF Faces Resource Loading

ADF Faces loads external web resources used by components or templates, for example CSS, images and

JavaScript files through a resource servlet that consults a distinct resource loader implementation.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://download.oracle.com/docs/cd/E21764_01/web.1111/b31973/af_skin.htm#CHDBEDHI
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/nov2010-otn-harvest-190744.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/nov2010-otn-harvest-190744.pdf
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER Reading images and icons from a JAR

3

The image above shows the servlet configuration of the Apache Trinidad ResourceServlet, which is

mapped to the /adf/* URL path.

<servlet>

 <servlet-name>resources</servlet-name>

 <servlet-class>org.apache.myfaces.trinidad.webapp.ResourceServlet</servlet-class>

 </servlet>

…

<servlet-mapping>

 <servlet-name>resources</servlet-name>

 <url-pattern>/bi/*</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>resources</servlet-name>

 <url-pattern>/adf/*</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>resources</servlet-name>

 <url-pattern>/afr/*</url-pattern>

</servlet-mapping>

Unlike loading files from the public_html directory, or a sub directory within, the resource loader also

knows how to load resources from JAR files located in the application classpath. The resource loader that

is used by the resource servlet is determined by the servlet mapping.

For example, the servlet mapping /adf/* looks for its resource loader implementation in a configuration

file named adf.resources. The entry of this file points to the distinct resource loader implementation class

to be used to serve the resources referenced by this servlet path. In the case of the adf.resources file, the

resource loader class is

org.apache.myfaces.trinidadinternal.resource.CoreRenderKitResourceLoader

The /afr/* servlet mapping pattern, which is used internally by the ADF Faces framework to server

JavaScript and CSS files looks at a file named afr.resources for the resource loader to use, which is

ADF CODE CORNER Reading images and icons from a JAR

4

oracle.adfinternal.view.resource.rich.RenderKitResourceLoader

Not to mess with the ADF Faces framework internal resource loading (which would be a pity if you

broke it), we suggest to use the /adf/* mapping for application specific image loading.

Preparing the FOD project

Fusion Order Demo (FOD) is an end-to-end application sample developed by Fusion Middleware

Product Management.

http://www.oracle.com/technetwork/developer-tools/jdev/index-095536.html

The purpose of the demo is to demonstrate common use cases in Fusion Middleware applications. In this

article we use the StoreFrontModule workspace that uses images as icons in its StorefrontUI project. To

read images from JAR files instead of the file system, we need to change image references from

/images/ to /adf/images/, for which the search and replace function of the Oracle JDeveloper Search

| Replace in Files menu option can be used.

Note that you need to accept the replacement for the found occurrences by pressing the green run icon

on the Replace in Files – Log window. Once you've done so, the images on the user interface appear as

broken like shown below. No worries, we are going to fix this soon.

http://www.oracle.com/technetwork/developer-tools/jdev/index-095536.html

ADF CODE CORNER Reading images and icons from a JAR

5

Note: FOD serves the product images from the database. These images are not to be added to the JAR

file. Only boilerplate images used on command items and for branding are targeted by this approach.

Configuration Option #1: ADF META-INF directory

Every UI project in Oracle ADF has an .adf/META-INF folder which you can use to locally store the

images used in an application. The images will show in the IDE at design time and are deployed with the

application within the application EAR file.

Note that while this approach is a good interim step to prepare for image sharing, which also allows

version controlling the image files, it makes sense only for projects that don't yet have a final version of

the images to share across applications. If you want to configure and deploy images in a shared WLS

library, you need to provide them in a stand-alone JAR file.

ADF CODE CORNER Reading images and icons from a JAR

6

As shown in the image above, the application boilerplate images are stored within the adf/images sub

directory under the .adf/META-INF directory of the FOD StoreFrontModule application.

Because the images are accessible to the resource loader at design time as well, the visual appearance of

the IDE is corrected to show boilerplate images instead of the broken image links.

Configuration Option #2: Imported JAR file

This option is what you want to do for sharing images between applications and for deploying them in

WLS shared libraries. To create the JAR file, you create a temporary folder META-INF/adf on the file

system and copy the whole images folder of the FOD application into it. If you later do this for your

application then the folder containing your images will be the one to copy into this directory.

Open the command window and ensure the Java JDK (you can also reference the one used by Oracle

JDeveloper) is in the path.

Set path="<JDK install drive>\Program Files\Java\jdk<version>\bin";%PATH%

You then create the JAR file by issuing

ADF CODE CORNER Reading images and icons from a JAR

7

jar –cvf fodimages.jar META-INF

For this to work, the cursor must be in the temporary directory that holds the META-INF directory you

created. In this example this directory is c:\temp

When creating the Jar file, the "v" flag produces the verbose output shown in the image below.

To show the images at design time, or to deploy them in the JAR file with the application, you open the

view controller project properties (double click onto the StoreFrontUI project node in the FOD sample)

and select Libraries and Classpath. Use the Add JAR / Directory button to find and select the JAR file

to add to the project.

ADF CODE CORNER Reading images and icons from a JAR

8

The IDE visual editor view refreshes and immediately shows the images referenced in the JAR file. While

this approach provides you the option to deploy and share images in JAR files, it does not yet make it

available in a shared instance.

Images in Shared Libraries

To create a shared library for the images, open the WLS console, issuing http://<host>:<port>/console

in a browser URL field. Connect to the console using the weblogic/weblogic1 username and password

pair, or, in case of a changed username and password, you administrator account details.

Select the Deployments node and press the Install button. Browse the file system for the JAR file that

you produced following the steps in the previous section.

ADF CODE CORNER Reading images and icons from a JAR

9

Copy the Name of the created library to the clipboard as you need it as a reference in the deployed

application. The error message on top of the library selection screen can be ignored.

Once the JAR file is uploaded as a library to WLS, select the weblogic-application.xml file in the Oracle

JDeveloper IDE for the application. The file is located in Application Resources | Descriptors |

META-INF. Open the file with a double click and select the Libraries entry. Create a new line in the

opened dialog and copy the name of the shared library deployment (fodimages in this example) as a

name reference.

Note: Doing so will require this library to be installed on WLS to successfully deploy and run the

application. So in case you experience deployment failures for this application on other servers, check if

the library is installed.

ADF CODE CORNER Reading images and icons from a JAR

10

You can now remove any direct image references in the JDeveloper project properties Library reference

or the .adf\META-INF directory. At runtime the images are now served by the resource loader from

the shared library.

Conclusion

In this article, we showed how boiler plate images can be read from a shared library to simplify resource

management and enforce a consistent look and feel across applications.

We don't expect a performance boost by using this approach, given that the resource loader referenced by

the /adf/* mapping is Apache Trinidad's CoreRenderKitResourceLoader which does not add extra

caching or compression for images.

However, sometimes it’s the knowing about what is possible that paves the bases for invention. So now

you know what you can do and we leave it to your use cases to whether or not use it.

RELATED DOCOMENTATION

 OTN Harvest Summary Nov 2010

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/nov2010-otn-harvest-

190744.pdf

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/nov2010-otn-harvest-190744.pdf
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/nov2010-otn-harvest-190744.pdf

