

 ADF Code Corner

96. How to invoke a table selection listener from

Java

Abstract:

Component listeners like action, select and query are

invoked in response to user interaction with the UI.

However, there might be a use case in which you need

the component listener to fire as if the change was

triggered by a user. An example for this is to invoke the

selection listener on a table in response to navigating the

parent collection using a navigation bar. In this article I

show how you can implement such a use case using ADF

Faces and the ADF binding layer

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
01-FEB-2012

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER [ADF CODE CORNER:]

2

Introduction
The sample code in this article invokes a SelectionEvent on an ADF Faces table each time

the parent collection is navigated using the navigation commands.

By default, selection events in tables are only produced when the users selects a different row

than the current selected row.

Note: An alternative solution to manual invocation of a component event is to directly call the

code executed by the listener from Java. By default the selection listener added by ADF when

dragging a collection from the DataControls panel and dropping it as a table is to set the clicked

row as the current row in the underlying ADF itertor. This one for example would be an easy one

to do in Java from an action event invoked by a command button.

How it works!

Let's use the Next button as the starting point for the navigation of the parent collection (Departments)

that will result in a selection event invoked on the employee table.

First, you need to replace the default ActionListener configuration that is created when dragging the

Next operation as a button to the page, or when creating an ADF form. Instead of directly executing the

Next operation in the binding layer when the command button is pressed, we take a little detour

involving a managed bean.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER [ADF CODE CORNER:]

3

The managed bean and method reference can be created declaratively using the Edit menu option on the

ActionListener property.

In the example, a method onNext is created as shown in the image below.

ADF CODE CORNER [ADF CODE CORNER:]

4

To access the table instance in the managed bean, the Edit menu item next to the Binding property is

used. This turns the managed bean into a backing bean as now there is a direct relation created between a

component instance on the page and the bean.

Note: There are other options to look up components from a managed bean. For example, you can look

up the UIViewRoot on the FacesContext and perform a findComponent() call to find the table

instance.

For simplicity – and to stay focus on the solution explained in this example – I used the component

binding using the Binding property.

ADF CODE CORNER [ADF CODE CORNER:]

5

The managed bean code for the onNext method invoked by the Next button is shown below.

import java.util.ArrayList;

import java.util.List;

import javax.faces.event.ActionEvent;

import oracle.adf.model.BindingContext;

import oracle.adf.model.OperationBinding;

import oracle.adf.model.binding.DCIteratorBinding;

import oracle.adf.view.rich.component.rich.data.RichTable;

import oracle.adf.view.rich.component.rich.nav.RichCommandButton;

import oracle.binding.BindingContainer;

import oracle.jbo.Key;

import oracle.jbo.Row;

import org.apache.myfaces.trinidad.event.SelectionEvent;

import org.apache.myfaces.trinidad.model.RowKeySet;

import org.apache.myfaces.trinidad.model.RowKeySetImpl;

…

 public void onNext(ActionEvent actionEvent) {

 //preserve default behavior #{bindings.Next.execute}

 //in code below

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 OperationBinding nextButton =

 (OperationBinding) bindings.get("Next");

 nextButton.execute();

 //API: new Selection(RowKeySet oldSelection, RowKeySet newSelection,

 //UIComponent table)

 DCIteratorBinding employeeIterator =

 (DCIteratorBinding) bindings.get("employeesIterator");

 Row currentRow = employeeIterator.getCurrentRow();

ADF CODE CORNER [ADF CODE CORNER:]

6

 //build the table rowKeySet

 List rowKeyList = new ArrayList();

 //check if there is child data at all

 if (currentRow != null) {

 //add primary key as jbo key

 Key jboKey = new Key(new Object[] {

 currentRow.getAttribute("EmployeeId") });

 rowKeyList.add(jboKey);

 //add key to RowKeySet. For table multi row select usecases

 //you would add multiple row keys like this

 RowKeySet newRowKeySet = new RowKeySetImpl();

 newRowKeySet.add(rowKeyList);

 //create SelectioNEvent that pretends users has selected first row

 //in table

 SelectionEvent selectEvent =

 new SelectionEvent(emplTable.getSelectedRowKeys(),

 newRowKeySet, emplTable);

 //queue event for execution

 selectEvent.queue();

 }

}

Note: If you change the default ADF selection listener and instead point the table SelectionListener

property to a managed bean method that prints a statement when called, you have it easy to tell that the

code works.

Don't repeat yourself

There are more buttons than just the Next button to invoke the selection event. One way to make the

above code generic is to pass the ADF action to invoke as an attribute with the command button action.

Note: The Next, Last, Previous and First method bindings need to be created or exist in the PageDef file.

This can be achieved by creating an ADF input form with the navigation bar option selected or manually

in the PageDef file directly.

To define a custom attribute to the command button, drag and drop the Attribute element from the

ADF Faces component palette (in the JSF category) onto the command button.

ADF CODE CORNER [ADF CODE CORNER:]

7

In the opened dialog, define adfAction as the attribute name and Next, Previous, Last, First

respectively for the command buttons. The Value property name must match the name of the ethod

binding in the PageDef file (so pay extra attention here)

Note that in the managed bean I refactored the onNext method name to onNavigation. All command

buttons now have an f:attribute tag added and their ActionListener property pointing to the

onNavigation method in the managed bean.

ADF CODE CORNER [ADF CODE CORNER:]

8

The modified code in the onNavigation method is shown below

public void onNavigation(ActionEvent actionEvent) {

 RichCommandButton navButton =

 (RichCommandButton) actionEvent.getSource();

 //TODO: add null check in case component does not have

 //f:attribute set

 String adfAction =

 (String)navButton.getAttributes().get("adfAction");

 //preserve default behavior #{bindings.Next.execute}

 //in code below

 BindingContext bctx = BindingContext.getCurrent();

 BindingContainer bindings = bctx.getCurrentBindingsEntry();

 //TODO: check if binding exists. OperationBinding would be null if

 //binding does not exist

 OperationBinding nextButton =

 (OperationBinding) bindings.get(adfAction);

 nextButton.execute();

…

RELATED DOCOMENTATION

ADF CODE CORNER [ADF CODE CORNER:]

9

